
Specht modules and chromatic polynomials

Norman Biggs

Centre for Discrete and Applicable Mathematics

London School of Economics

Houghton St.

London WC2A 2AE

U.K.

March 2003

LSE-CDAM-2003-06

Abstract An explicit formula for the chromatic polynomials of certain families of graphs,

called ‘bracelets’, is obtained. The terms correspond to irreducible representations of

symmetric groups. The theory is developed using the standard bases for the Specht

modules of representation theory, and leads to an effective means of calculation.

MSC 2000: 05C15, 05C50.



1 Introduction

The chromatic polynomial P (G; k) is the function which gives the number of ways of

colouring a graph G when k colours are available. The fact that it is a polynomial

function of k is essentially a consequence of the fact that, when k exceeds the number

of vertices of G, not all the colours can be used. Another quite trivial property of the

construction is that the names of the k colours are immaterial; in other words, if we are

given a colouring, then any permutation of the colours produces another colouring. In

Section 2 these facts will be cast into an algebraic form that provides the foundation of

our theory.

A ‘bracelet’ Gn = Gn(B, L) is formed by taking n copies of a graph B and joining

each copy to the next by a set of links L (with n + 1 = 1 by convention). Using the

framework described in Section 2, it can be shown that the chromatic polynomial of Gn

can be expressed in the form

P (Gn; k) =
∑

π

mB,π(k) tr(Nπ
L)n.

The sum is taken over all partitions π such that 0 ≤ |π| ≤ b, where b is the number

of vertices of B. The terms mB,π(k) are polynomials in k, and they are independent of

L. When B is the complete graph Kb the relevant polynomials mπ(k) are given by a

remarkably simple formula (see Sections 4 and 7). When B is incomplete they can be

expressed in terms of the mπ(k) with |π| ≤ b.

The entries of the matrices Nπ
L are also polynomials in k, but they do depend

on L. The original approach to these matrices [3] involved a sequence of elementary, but

complicated, calculations, culminating in a rather mysterious application of representation

theory. Here we shall present the theory in a more elegant form. In Section 3 we construct

explicit bases for certain irreducible modules (corresponding to the Specht modules of

representation theory), and we shall use these bases for our calculations.

The results obtained here also facilitate further study of the general properties of

the matrices Nπ
L . In particular, we are strongly motivated by the fact that the formula

displayed above is well-adapted to the application of the Beraha-Kahane-Weiss theorem

[1], leading to the construction of ‘equimodular curves’ [4] that describe the behaviour of

the roots of P (Gn; k) for large values of n.

2 Colourings and modules

Let B be a graph with vertex-set V and edge-set E. A colour-partition of B is a partition

of V into independent sets:

P = {P1, P2, . . . , Pr}.
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A k-colouring of B is a function c : V → K, where K = {1, 2, . . . , k}, such that c(v) 6= c(w)

whenever vw ∈ E. Clearly, any k-colouring induces a colour-partition, each part being a

set of vertices that are assigned a particular colour. A colour-partition with |P| parts is

induced by

(k)|P| = k(k − 1) . . . (k − |P|+ 1)

k-colourings, so the total number of k-colourings is

P (B; k) =
∑
P

(k)|P| =
|V |∑
r=1

qr(B) (k)r,

where qr(B) the number of colour-partitions of B with r parts. This simple argument

shows that P (B; k) is a polynomial function of k. For our purposes we require its algebraic

counterpart, as follows.

Denote by Vk(B) the complex vector space whose basis is the set of all k-colourings

of B. Clearly, it is the direct sum of subspaces

Vk(B) =
⊕

Vk,P ,

where Vk,P is the subspace whose basis is the set of k-colourings that induce P . The

symmetric group Symk of all permutations of the set {1, 2, . . . , k} acts on Vk(B) by the

rule ω(c) = ωc, which makes Vk(B) a CSymk-module. (For the avoidance of doubt, we

state that, in this paper, the composite of two permutations ω1, ω2 is given by (ω1ω2)(x) =

ω1(ω2(x)).) This action preserves the subspaces Vk,P , and so they are CSymk-submodules.

Of course, Vk,P is just the module generated by the injections of an r-set into a k-set,

and its decomposition is an exercise in the representation theory of the symmetric group

[8, 11]. The analysis will be done here in terms that allow us to appeal directly to the

results as they are stated in [11], although we shall introduce some minor modifications

to the terminology.

A partition λ of a nonnegative integer k is a sequence (λ1, λ2, . . . , λk) such that

λ1 + λ2 + · · ·+ λk = k, (λ1 ≥ λ2 ≥ · · ·λk ≥ 0).

The notation is often abbreviated by collecting equal parts and omitting the parts that

are zero: for example (42, 3) is a partition of 11 with three non-zero parts. Associated

with λ is a set [λ] of k cells, usually depicted in a diagram (see below for examples). There

are no cells corresponding to parts of λ that are zero; in particular when k = 0 we have

the partition o for which [o] = ∅.
Given a partition λ we define a λ-tableau to be a function t : [λ] → N ∪ {0}. Note

that this corresponds to Sagan’s [11, 2.9.1] ‘generalized Young tableau’ except that we
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allow the value 0 as well as positive integers. A tableau is represented by putting the

values in the appropriate cells: for example, if λ = (42, 3), the following is a λ-tableau:

0 2 5 3

7 3 2 0

1 3 6

.

The link with graph colourings depends on the simple observation that a k-colouring

c of a graph B, which induces a colour partition P with r = |P|, can be represented by a

tableau corresponding to the partition λk,r = (k − r, 1r):

∗ ∗ ∗ · · · ∗
∗
.

.

.

∗

.

Here each ∗ stands for one of the colours, that is, the numbers 1, 2, . . . , k. The k−r colours

in the top row are those that c does not assign to any vertex. There is one colour in each

of the remaining rows, these colours being the ones that c assigns to the independent sets

comprising P . Note that this is a bijective tableau on {1, 2, . . . , k}; in other words, each

value occurs exactly once in a cell.

In order to take this idea further, we need some more terminology. We shall denote

the rows of [λ] by ri (i = 0, 1, 2, . . .), and the columns by cj (j = 1, 2, . . .). Thus

[λ] = r0 ∪ r1 ∪ r2 ∪ . . . = c1 ∪ c2 ∪ . . . .

The reason for calling the top row r0 will appear later. The row stabilizer and column

stabilizer corresponding to λ are defined to be, respectively, the subgroups Rλ and Cλ of

the symmetric group Sym[λ] of permutations of [λ], given by

Rλ = Sym(r0)× Sym(r1)× . . . and Cλ = Sym(c1)× Sym(c2)× . . . .

Given a λ-tableau t and ρ ∈ Rλ, tρ is a λ-tableau in which the values occurring

in each row are the same as those in t, but in a different order. In the case when t is a

bijective λ-tableau on {1, 2, . . . k}, the equivalence class

{t} = {tρ | ρ ∈ Rλ}

is known as a tabloid [11, 2.1.4].
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Let Zλ denote the complex vector space whose basis is the set of all bijective λ-

tableaux on {1, 2, . . . , k}. Associated with each tabloid we have an element of Zλ:

{t} ←→ ft =
∑

s∈{t}
s =

∑
ρ∈Rλ

tρ.

The space spanned by these elements will be denoted by Mλ. (In the usual development

of the subject [11, 2.1.5] Mλ is defined directly as the complex vector space whose basis

is the tabloids.) Note that Mλ is a CSymk-module by virtue of the action of Symk on

{1, 2, . . . , k}.
In the correspondence between colourings and tableaux described above, it is clear

that order of the numbers within each row is irrelevant. So each k-colouring c corresponds

to a λk,r-tabloid, where r = |P| is the number of colours actually used in c. We have the

isomorphism

Vk,P ≈Mλk,r .

It is a standard result [11, 2.4.7] that, for any partition λ of k, the irreducible constituents

of the CSymk-module Mλ are Specht modules Sµ, where µ is a partition that dominates

λ. This means that

µ1 + µ2 + · · ·+ µi ≥ λ1 + λ2 + · · ·+ λi (i = 1, 2, . . . k).

When λ = λk,r, the condition with i = 1 implies that µ1 ≥ k − r. Writing µ1 = k − `,

(0 ≤ ` ≤ r), it follows that the remaining conditions are satisfied when π = (µ2, µ3, . . .) is

any partition of `. Thus, provided k is large enough, the partitions µ of k that dominate

λk,r are in bijective correspondence with the partitions π such that 0 ≤ |π| ≤ r. The

inverse bijection is such that, given π such that |π| = `, the corresponding partition of k

is

πk = (k − `, π1, π2, . . . , π`) (k ≥ 2`).

With this notation, the foregoing results can be summarized as follows.

Lemma 1 Vk,P contains irreducible submodules isomorphic to the Specht module Sµ if

and only if µ = πk, where π is such that 0 ≤ |π| ≤ |P|, and these are the only irreducible

submodules of Vk,P . 2

3 Bases for the Specht submodules

Given a bijective λ-tableau t on {1, 2, . . . , k} and σ ∈ Sym[λ], we have another bijective

λ-tableau tσ, and the associated ftσ ∈Mλ. Define et ∈Mλ as follows:
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et =
∑
γ∈Cλ

sign(γ)ftγ =
∑
γ∈Cλ

∑
ρ∈Rλ

sign(γ)tγρ.

For example, let λ = (2, 1) and t =
1 2

3
. Then Rλ = {id, α}, where α switches the cells

in the top row, and Cλ = {id, β}, where β switches the cells in the first column. So

et = ft − ftβ =
1 2

3
+

2 1

3
− 3 2

1
− 2 3

1
.

In the usual theory et is defined as {t} − {tβ}, and it is called a polytabloid. It is easy to

check that our definition of et is equivalent to the more usual one [11, 2.3.2]:

et = κt{t}, where κt =
∑
ρ∈Ct

sign(ρ)ρ ∈ CSymk,

and Ct is the subgroup of Symk given by {tγt−1 | γ ∈ Cλ}.

A λ-tableau t is said to be standard if the values assigned by t increase along each

row and down each column of [λ]. In particular, a standard tableau is bijective. The

fundamental result on the structure of the Specht modules Sλ is as follows [11, 2.5.2].

Lemma 2 The set of et such that t is a standard λ-tableau on {1, 2, . . . , k} is a basis of

a submodule of Mλ isomorphic to Sλ. 2

We now focus on the situation when the base graph B is a complete graph Kb with

vertex-set V = {1, 2, . . . , b}. It follows from the general theory outlined at the beginning

of this section that, in principle, the general case can be reduced to this one (for more

details, see [10]).

We shall write Vk(b) for Vk(Kb). Since there is only one colour-partition of Kb, the

trivial one in which each part is a single vertex, Vk(b) is isomorphic to a single Mλ:

Vk(b) ≈ Mλk,b where λk,b = (k − b, 1b).

Our first task is to construct the submodules of Vk(b) that correspond to the Specht

modules. From Lemma 1, we know that these are of the form Sπk
, where π is any

partition such that 0 ≤ |π| ≤ b.

Given an injection F : V → [πk], define F ∗ : [πk] → V ∪ {0} such that F ∗ is the

inverse of F on Im F and F ∗ is 0 on all cells not in Im F . In the usual terminology [S,

2.9.1], F ∗ is a πk-tableau of type (k− b, 1b). For example, let k = 10 and suppose π is the

partition (2, 2, 1) of 5. If b = 6, we could choose injections F : {1, 2, 3, 4, 5, 6} → [πk] to

give the following πk-tableaux F ∗, of type (4, 16):
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0 0 0 0 4

1 2

3 6

5

0 1 0 0 0

2 3

4 6

5

.

Such a tableau is said to be semistandard [11, 2.9.5] if the entries increase strictly down

each column and weakly along each row of [πk]. The first example displayed above is

semistandard, but the second is not. Observe that that all the k − b zeros occur in the

first k−b cells in the top row, and that the restriction of F ∗ to [π] is a standard π-tableau

on a subset of V .

The link with k-colourings of Kb can now be made. Given an injection F : V → [πk],

a permutation ω ∈ Sym[πk], and a bijective πk-tableau t on {1, 2, . . . , k}, the composite

function tωF is such a colouring. So, if we define ftF and etF in the obvious way:

ftF =
∑

ρ∈R
πk

tρF, etF =
∑

γ∈C
πk

sign(γ)ftγF ,

these are linear combinations of colourings with coefficients ±1 and thus elements of Vk(b).

Comparison with [11, 2.10.1] gives the fundamental result on the Specht submodules of

Vk(b).

Theorem 3 For each injection F : V → [πk], such that F ∗ is semistandard of type

(k − b, 1b), the set

{etF | t is a standard πk−tableau on {1, 2, . . . , k}}

is a basis for a submodule UF of Vk(b), isomorphic to the Specht module Sπk
. The set of

all such UF is the complete set of non-identical, irreducible submodules of Vk(b) that are

isomorphic to Sπk
. 2

For a given π, we denote the direct sum of these submodules UF of Vk(b) by Wπ.

That is

Wπ =
⊕

{UF | F ∗ is a semistandard πk−tableau of type (k − b, 1b)}.

Then we have

Vk(b) =
⊕

{W π | 0 ≤ |π| ≤ b}.

4 Formulae for dimension and multiplicity

It follows from Lemma 2 that the dimension d(πk) of a Specht module Sπk
is equal to

the number of standard bijections [πk] → {1, 2, . . . , k}. A simple formula for this number
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can be derived from the well-known hook formula [11, 3.10.2]. Given a partition µ and a

cell (i, j) ∈ [µ], there corresponds a ‘hook’ consisting of the cells (i, y) with y ≥ j and the

cells (x, j) with x ≥ i. The number of such cells is the hook-length

hij(µ) = (µi − j) + (µ′j − i) + 1,

where µ′j is the number of cells in the jth column of µ (that is, the jth part of the

conjugate partition µ′). The hook formula for the dimension of Sµ is

d(µ) =
|µ|!
h(µ)

where h(µ) =
∏
i,j

hij(µ).

Lemma 4 If |π| = `, and πk is as in Section 2, then

d(πk) =
d(π)

|π|!
∏

1≤i≤`

(k − `− πi + i).

Proof: By the hook formula, it is enough to prove that

h(πk) = h(π)

(
k!

G

)
, where G =

∏

1≤i≤`

(k − `− πi + i).

Since the diagram for πk is that for π with an extra row, h(πk) = h(π)H, where H is the

product of the hook-lengths corresponding to cells in the top row of πk. We have to prove

that GH = k!.

The hook-length corresponding to cell (0, j) is

(k − `− j + 1) + π′j (1 ≤ j ≤ k − `),

and so H is the product of these numbers. An elementary result [9, p.3] asserts that, for

any partition ν and any m ≥ ν1, n ≥ ν ′1, the numbers

νj + n + 1− j (1 ≤ j ≤ n) and n + i− ν ′i (1 ≤ i ≤ m)

are a rearrangement of 1, 2, . . . , m + n. Applying this result with ν = π′, m = `, and

n = k − ` it follows that the numbers

(k − `− j + 1) + π′j (1 ≤ j ≤ k − `) and k − ` + i− πi (1 ≤ i ≤ `)

are a rearrangement of 1, 2, . . . , k. The product of the first set is H and the product of

the second set is G, so GH = k! as claimed. 2

In terms of the strictly decreasing partition σ of 1
2
`(` + 1) associated with π by the

rule σi = πi + `− i (1 ≤ i ≤ `), the preceding result can be written in the form

d(πk) = (d(π)/|π|!) (k − σ1)(k − σ2) . . . (k − σ`).

This is clearly a polynomial in k of degree `, and the fact that it takes integer values for

all integers k is worth noting.
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Lemma 5 The number of submodules of Vk(b) isomorphic to Sπk
is independent of k and

is given by the formula

e(π) =

(
b

|π|
)

d(π).

Proof: It follows from Lemma 3 that the required number is equal to the number of

semistandard πk-tableaux on V ∪{0}, of type (k− b, 1b). In other words, it is the number

of ways of assigning the numbers 0, 1, 2, . . . , b to [πk] in such a way that (i) 0 occurs k− b

times and each i 6= 0 occurs once, and (ii) the numbers increase weakly in each row and

strongly in each column.

In order to satisfy condition (ii), the k − b 0’s must be assigned to the first k − b

cells of the top row r0. Let ` = |π|, and suppose we have chosen a subset L of size ` from

{1, 2, . . . , b}. Then we can put the elements of L into rows r1, r2, . . . , of [πk], forming a

standard π- tableau on L, and the rest (in numerical order) in the last b cells of r0. Hence

the required number is
(

b
`

)
times the number of standard π-tableau on L, and the second

term is clearly the same as the number of standard π-tableau on {1, 2, . . . , `}, that is,

d(π). 2

We shall refer to e(π) as the multiplicity of Sπk
.

5 The chromatic polynomials of bracelets

In this section we shall explain how the decomposition of Vk(b) into its irreducible sub-

modules leads to explicit formulae for the chromatic polynomials of certain families of

graphs. The generalization to Vk(B) is possible [10] but it will not be discussed here.

We continue to denote the vertex-set of Kb by V = {1, 2, . . . , b}. Given a set

L ⊆ V × V and an integer n ≥ 3, we construct the bracelet Bn(b, L) as follows. Take n

disjoint copies of Kb and link them so that, for each pair (v, w) ∈ L, the vertex v in one

copy of Kb is joined to the vertex w in the next copy, with the convention that n + 1 = 1.

We obtain a ring of n copies of Kb linked by edges in the manner prescribed.

A pair (α, β) of k-colourings of Kb is compatible with L if:

(v, w) ∈ L =⇒ α(v) 6= β(w).

This means that if one copy of Kb is coloured according to α, a second copy of Kb according

to β, and they are linked according to L, the resulting graph is properly k-coloured by α

and β. The compatibility matrix TL is the matrix whose rows and columns correspond to

the k-colourings of Kb, with entries

(TL)αβ =





1 if (α, β) is compatible with L;

0 otherwise.

8



Note that TL depends on k, specifically because its size is equal to the number of k-

colourings of Kb, the dimension of Vk(b). Indeed, we can regard TL as an operator on

Vk(b) in the standard way: if the k-colouring β is identified with an element of Vk(b), then

TL(β) =
∑

α

(TL)αβ α =
∑

α∈L(β)

α,

where L(β) is the set of α such that (α, β) is compatible with L.

The connection between the chromatic polynomial P (Bn(b, L); k) and TL is given

by the following well-known result [2].

Lemma 6 The number of k-colourings of Bn(b, L) is equal to the trace of (TL)n. 2

The symmetric group Symk acts on the k-colourings of Kb by permuting the colours.

Given ω ∈ Symk, let

(A(ω))αβ =





1 if ωβ = α

0 otherwise.

In other words, A(ω) is the matrix representation afforded by the CSymk-module Vk(b).

Recall that the submodule Wπ of Vk(b) is the sum of Specht submodules

Wπ = UF1 ⊕ UF2 ⊕ · · · ⊕ UFn ,

where n = e(π) =
(

b
|π|

)
d(π). Let t1, t2, . . . , tm be the standard πk-tableau on {1, 2, . . . , k},

where m = mπ(k) = d(πk). According to Theorem 3, a basis for UFj is the set

{etiFj | i = 1, 2, . . . , m}.

Thus, by changing to the basis {etiFj} for each Wπ, A(ω) can be reduced to the form

A(ω) ≈
⊕

0≤|π|≤b

In ⊗ Aπ(ω),

where In is the identity matrix of size n and Aπ(ω) is a matrix of size m.

Now, it can easily be checked that the action of Symk preserves compatibility. In

matrix terms, we have

TL A(ω) = A(ω) TL for all ω ∈ Symk,

which means that TL belongs to the commutant algebra of the representation A(ω). For

i = 1, 2, . . . , m, denote the subspace of Wπ with basis

{etiFj | j = 1, 2, . . . , n}
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by Y ti . (Note that this is not a CSymk-submodule.) However,

Wπ = Y t1 ⊕ Y t2 ⊕ · · · ⊕ Y tm ,

and applying Schur’s Lemma [11, Sections 1.6, 1.7] we conclude that since TL commutes

with A(ω) it can be reduced to the form

TL ≈
⊕

0≤|π|≤b

Im ⊗Nπ
L .

Here Im is the identity matrix of size m and Nπ
L is a matrix of size n, representing the

action of TL on any one of the subspaces Y ti . Note that since n = e(π) =
(

b
|π|

)
d(π), the

size of Nπ
L does not depend on k, although its entries do.

The explicit formula for d(πk) obtained in Section 4 shows that it can be written as

a polynomial in k:

mπ(k) = d(πk) =
d(π)

|π|!
|π|∏
i=1

(k − σi(π)),

where σi(π) = πi+|π|−i. Finally, applying the trace formula for the number of colourings

(Lemma 6), we have the key result.

Theorem 7 Suppose integers b and k are given, with k ≥ 2b. For each partition π with

0 ≤ |π| ≤ b let d(π) be the dimension of the Specht module Sπ, and let mπ(k) be the

polynomial displayed above. Then for any linking set L the number of k-colourings of

Bn(b, L) is equal to ∑
π

mπ(k) tr (Nπ
L)n ,

where Nπ
L is a matrix of size

(
b
|π|

)
d(π). 2

For example, the number of proper k-colourings of Bn(3, L) for any linking set L

can be written as

tr(N o
L)n + (k − 1) tr(N

(1)
L )n

+
1

2
k(k − 3) tr(N

(2)
L )n +

1

2
(k − 1)(k − 2) tr(N

(12)
L )n

+
1

6
k(k − 1)(k − 5) tr(N

(3)
L )n

+
2

6
k(k − 2)(k − 4) tr(N

(2,1)
L )n

+
1

6
(k − 1)(k − 2)(k − 3) tr(N

(13)
L )n.

The sizes of the matrices Nπ
L are as follows.
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π o (1) (2) (12) (3) (2, 1) (13)

size of Nπ
L 1× 1 3× 3 3× 3 3× 3 1× 1 2× 2 1× 1

Of course, the entries of the matrices Nπ
L depend on L, and they are functions of k. It

turns out these functions are polynomials, and our next task is to explain how to compute

them. The point of the theory developed above is that we can do this by choosing a fixed

t and considering the action on the basis elements

etF1, etF2, . . . , etFn,

where n = e(π) is independent of k.

6 More about the basis elements

Consider a typical basis element etF . By definition, it is a linear combination of terms of

the form fuF , where u = tγ, γ ∈ Cπk , andfuF is a formal sum of colourings

∑
ρ∈R

πk

uρF.

Lemma 8 Consider [π] as a subset of [πk] in the obvious way, and let VF = F−1[π].

Then the colourings that occur in the sum fuF are just those that agree on VF with uωF ,

for some ω ∈ Rπ, and each such colouring occurs (k − b)! times.

Proof: The row stabilizer Rπk is Sym(r0) × Rπ, so each ρ ∈ Rπk can be written as ωσ

with ω ∈ Rπ and σ ∈ Sym(r0). Thus we can write

fuF =
∑

ω∈Rπ

∑

σ∈Sym(r0)

uωσF.

For a fixed ω, each colouring uωσF agrees with uωF on VF . Conversely, recall that

precisely the last b− |π| cells of r0 belong to Im F . Hence if σ fixes these cells pointwise,

σF = F . The remaining cells of r0 are (k−|π|)− (b−|π|) = k− b in number, hence there

are (k − b)! colourings uωσF that agree with uωF on VF . 2

Let X be a subset of the vertex-set V and c an injection from X to {1, 2, . . . , k}.
(We shall think of c as a partial k-colouring of Kb, and sometimes abuse the notation by

allowing c to be defined on the whole of V .) We define {X | c} to be the set of those

k-colourings of Kb that agree with c on X. The element of Vk(b) that is the formal sum

of these colourings will be denoted by

[X | c] =
∑

c′∈{X|c}
c′.
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In actual calculations (see below) it is often convenient to employ a more explicit form

of this notation. If the members of X are listed in order, x1, x2, . . ., and c1, c2, . . . are

colours, we write [x1, x2, . . . | c1, c2 . . .] for the formal sum of the colourings c′ that satisfy

c′(x1) = c1, c′(x2) = c2, . . . .

With this notation, the result of Lemma 8 can be written as

ftγF = (k − b)!
∑

ω∈Rπ

[VF | tγωF ],

and consequently

etF = (k − b)!
∑

γ∈C
πk

sign(γ)
∑

ω∈Rπ

[VF | tγωF ].

Thus etF is expressed as a linear combination of elements of the form [VF | uF ]. The

factor (k − b)! is unimportant, because it is the same for all π.

As an example we calculate explicit basis elements for some typical subspaces Y t of

Vk(b), generalizing results formerly obtained by ad hoc methods. The complete calculation

for b = 3 may be found in [10]. It is convenient to arrange the calculation in levels,

each level ` corresponding to the partitions π with |π| = `, so there are b + 1 levels,

` = 0, 1, . . . , b.

At level 0 there is only one partition, the empty partition o, and ok = (k). There is

only one standard ok-tableau

t = 1 2 · · · k .

The column stabilizer is trivial, so et = ft. There is only one relevant F : V → [ok], which

corresponds to the semistandard [ok]-tableau of type (k − b, 1b)

F ∗ = 0 0 · · · 0 1 · · · b .

It follows that Wo = Y t and Y t has a basis consisting of one element etF = ftF . Here

VF = ∅, so by Lemma 8, ftF = (k − b)! [∅ | tF ]. Since [∅ | tF ] is the formal sum of all

colourings, Wo is the one-dimensional submodule of Vk(b) spanned by this element.

At level 1, there is only one partition, (1), and (1)k = (k − 1, 1). There are k − 1

standard (k − 1, 1)-tableaux, since the number in the bottom row can be any number r

such that 1 < r ≤ k:

t =
1 ∗ ∗ · · · ∗
r

,

where the ∗’s denote the elements of {1, 2, . . . , k} \ {r} in increasing order. The column

stabilizer is {id, β}, where β switches the cells in the first column. Hence

et = ft − ftβ.
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There are b injections Fj : {1, 2, . . . , b} → [(k − 1, 1)], corresponding to the semistandard

(k − 1, 1)-tableaux of type (k − b, 1b):

F ∗
j =

0 0 · · · 0 ∗ ∗ · · · ∗
j

where the ∗’s denote the elements of V \ {j} in increasing order. We have

VFj
= {j}, tFj(j) = r, tβFj(j) = 1.

Hence, by Lemma 8,

ftFj = (k − b)! [VFj
| tFj] = (k − b)! [j | r],

ftβFj = (k − b)! [VFj
| tβFj] = (k − b)! [j | 1],

and

etFj = ftFj − ftβFj = (k − b)! ([j | r]− [j | 1]).

Thus the subspace Y t has the basis

{[j | r]− [j | 1] | j = 1, 2, . . . b}.

W(1) is the sum of (k − 1) such b-dimensional modules, one for each r ∈ {2, 3, . . . , k}.

At level 2 there are two partitions, (2) and (12). The calculations are similar to

those given above, but obviously more complicated. For the partition (2), it turns out

that there are 1
2
k(k − 3) standard (k − 2, 2)-tableaux, one for each pair (r, s) satisfying

1 < r < s ≤ k except (2, 3). Thus W(2) is the sum of 1
2
k(k−3) subspaces Y t, with a basis

consisting of the 1
2
b(b− 1) elements

[i, j | r, s]− [i, j | 1, s]− [i, j | r, 1] + [i, j | 1, 2]

−[i, j | s, r] + [i, j | s, 1] + [i, j | 1, r]− [i, j | 2, 1],

where {i, j} is any pair of vertices.

7 The matrices SM

The key result concerning the matrix TL is its decomposition in terms of matrices Nπ
L

(Section 5). In this section we introduce a set of matrices SM that will simplify the

calculation of Nπ
L , for all linking sets L.
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We say that M ⊆ V × V is a matching if, given v, w ∈ V , there is at most one pair

(v, v′) in M , and at most one pair (w′, w) in M . The matrix SM is the matrix whose rows

and columns correspond to the k-colourings of Kb, with entries

(SM)αβ =





1 if (v, w) ∈ M ⇒ α(v) = β(w);

0 otherwise

SM can be regarded as an operator on Vk(b) in the same way as TL. In fact, we can

describe its action very simply. Given a matching M ⊆ V × V let M1,M2 denote the

projections on the factors, and µ : M1 → M2 the bijection such that M is the subset of

V × V consisting of the pairs (v, µ(v)) for all v ∈ M1. With this notation,

SM(β) =
∑

α

(SM)αβ α =
∑

α∈{M1|βµ}
α = [M1 | βµ].

A sieve argument gives the relation between TL and SM [5, Theorem 3].

Lemma 9 For any L ⊆ V × V ,

TL =
∑
M⊆L

(−1)|M | SM .

2

It is easily verified that SM commutes with the action of Symk on the colourings.

Hence, repeating the argument used for TL in Section 5, it follows that there exist matrices

P π
M of size e(π) such that

SM ≈
⊕

0≤|π|≤b

Id(πk) ⊗ P π
M .

Furthermore, it follows from Lemma 9 that

Nπ
L =

∑
M⊆L

(−1)|M | P π
M .

The entries of P π
M are given by the action of SM on the module Wπ, and according to the

theory developed in Section 5, it is enough to calculate the action on one subspace Y t. In

other words, the entries of P π
M are the terms p(F ′, F ) such that

SM(etF ) =
∑

F ′
p(F ′, F ) etF

′.
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8 Explicit calculation of the terms

Throughout this section we suppose that we are given k, V = {1, 2, . . . , b}, and a partition

π such that |π| ≤ b. The matching M and the standard tableau t : [πk] → {1, 2, . . . , k}
will also be fixed.

In order to calculate the terms p(F ′, F ) it is convenient to use the bijective repre-

sentation of semistandard tableaux, introduced in Lemma 5. Let |π| = `, let X be an

`-subset of V , and let g be a standard π-tableau on {1, 2, . . . , `}. If we order the elements

of X according to the natural order of V , x1 < x2 < · · · < x`, then we have a standard

π-tableau gX on X defined by

gX(r, s) = xg(r,s) (r, s) ∈ [π].

The elements of V \X are also ordered in the same way, say w1 < w2 < · · · < wb−`, and

we can define F (X, g) = F : V → [πk] as follows:

F (v) =





g−1(i) if v = xi ∈ X;

(0, k − b + j) if v = wj /∈ X.

Clearly the associated F ∗ : [πk] → V ∪{0} is a semistandard πk-tableau of type (k−b, 1b).

For example, suppose b = 9 and π = (3, 1). If we take X = {2, 4, 7, 8} and

g =
1 2 4

3

then, provided k is large enough, the semistandard tableau associated with F = F (X, g)

is

F ∗ =

0 0 0 · · · 0 1 3 5 6 9

2 4 8

7

.

Since (X, g) 7→ F is a bijection, we can take as basis elements of Y t the elements

bX,g =
1

(k − b)!
etF (X, g).

When F = F (X, g) we have VF = X and the restriction of F to VF is g−1
X , so the results

in Section 6 imply that

bX,g =
∑

γ

sign(γ)
∑

ω

[X | tγωg−1
X ],

where the sums are taken over γ ∈ Cπk and ω ∈ Rπ. Thus bX,g is a linear combination of

terms of the form [X | tγωg−1
X ].
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The effect of SM on a typical element [X | c], can be computed as follows:

SM [X | c] = SM


 ∑

β∈{X|c}
β


 =

∑

β∈{X|c}
SM(β) =

∑

β∈{X|c}

∑

α∈{M1|βµ}
α.

By rearranging the double sum and applying another sieve argument, we can obtain

[BKR, Theorem 5] a linear combination of elements of the form [Y | d]. We shall need

the explicit form of this result.

Lemma 10 A term [Y | d] occurs in SM [X | c] if and only if

(i) µ−1(X ∩M2) ⊆ Y ⊆ M1, and

(ii) d(Y ) ⊆ c(X), and whenever (y, x) ∈ M , then d(y) = c(x).

If the conditions (i) and (ii) are satisfied the coefficient of [Y | d] is

(−1)|Y |−|X∩M2| q(|X ∪M2|),

where q(s) is the ‘falling factorial’ (k − s)b−s = (k − s)(k − s− 1) . . . (k − b + 1).

2

Note that condition (ii) is equivalent to saying that there is an injection θ : Y → X

such that d = cθ, and θ(y) = µ(y) whenever µ(y) ∈ X. It follows that SM [X | tγωg−1
X ] is

a linear combination of terms [Y | tγωg−1
X θ], where |Y | ≤ |X|. Since SM leaves invariant

each subspace Y t, when we extend by linearity to SM(bX,g), all terms with |Y | < |X|
disappear (a fact which can also be proved directly [10, Theorem 3.10]). This fact is the

justification for using the Specht basis elements bX,g, rather than the elements [X | c], as

was done previously [3].

When ` = |π| there is a natural action of Sym` on the elements eg, where g is any

bijective π-tableau on {1, 2, . . . , `}, defined by σ∗eg = eσg. Young’s natural representation

of Sym` associated with π is obtained by expressing eσg in terms of the standard basis

[11, p.74]:

σ ∗ eg = eσg =
∑

h

Rπ
hg(σ) eh (g standard).

Lemma 11 Given |π|-subsets Y, X of V satisfying condition (i) of Lemma 10, let Θ

denote the set of bijections Y → X such that θ(y) = µ(y) whenever µ(y) ∈ X. For any

standard π-tableau g on {1, 2, . . . , `}, let

Φ(g) =
∑

γ

sign(γ)
∑

ω

[Y | tγωg−1
Y ].
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Then ∑

θ∈Θ

Φ(θ−1gX) =
∑

h

∑
σ

Rπ
hg(σ

−1)Φ(h).

The sums on the right-hand side are taken over standard π-tableaux h, and σ ∈ Sym` such

that σ(i) = j whenever (yi, xj) ∈ M .

Proof: We may suppose that Y and X are ordered according the natural order of V .

Then we can associate with a bijection θ : Y → X a permutation σ ∈ Sym`, such that

σ(i) = j ⇐⇒ θ(yi) = xj.

Note that under this correspondence θ−1gX and (σ−1g)Y define the same π-tableau on

Y . Also, taking the sum over bijections θ ∈ Θ is equivalent to taking the sum over

permutations σ ∈ Sym` such that σ(i) = j whenever (yi, xj) ∈ M . Thus

∑

θ∈Θ

Φ(θ−1gX) =
∑

σ

Φ(σ−1g) = σ−1 ∗ Φ(g).

Now σ operates on Φ(g) as it does on eg, so

σ−1 ∗ Φ(g) =
∑

h

Rπ
hg(σ

−1)Φ(h),

as claimed. 2

Theorem 12 Suppose the action of SM on an element bX,g of the basis of Y t ⊆ Wπ is

given by

SM(bX,g) =
∑

Y,h

p(Y, h; X, g)bY,h.

Then

p(Y, h; X, g) = (−1)|π|C(Y,X)
∑

Rπ
hg(σ

−1)

where

C(Y,X) = 0 unless µ−1(X ∩M2) ⊆ Y ⊆ M1, in which case

C(Y, X) = (−1)|X∩M2|q(|X ∪M2|);

the sum is taken over all σ ∈ Sym` such that σ(i) = j whenever (yi, xj) ∈ M ;

Rπ is Young’s natural representation of Sym` associated with π.

Proof: We have

SM(bX,g) =
∑

γ

sign(γ)
∑

ω

SM [X | tγωg−1
X ]

=
∑

γ

sign(γ)
∑

ω

∑

Y,θ

(−1)|Y |−|X∩M2|q(|X ∪M2|) [Y | tγωg−1
X θ],
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where the last sum is taken over Y and θ such that the conditions of Lemma 10 are

satisfied.

Changing the order of summation, and writing C(Y, X) as in the statement of the

theorem, we obtain the expression

(−1)|π|
∑
Y

C(Y,X)
∑

θ∈Θ

∑
γ

sign(γ)
∑

ω

[Y | tγωg−1
X θ].

Now it follows from Lemma 11 that

∑

θ

∑
γ

sign(γ)
∑

ω

[Y | tγωg−1
X θ]

=
∑

h

∑
σ

Rπ
hg(σ

−1)
∑

γ

sign(γ)
∑

ω

[Y | tγωh−1
Y ]

=
∑

h

∑
σ

Rπ
hg(σ

−1) bY,h,

so we have the required result. 2

The theorem means that we can consider P π
M as a block matrix with submatrices

UY X , where Y, X are |π|-subsets of V . This submatrix is zero unless Y , X, and M satisfy

condition (i) of Lemma 10, in which case UY X has the form

± q(|X ∩M2|)
∑

Rπ(σ)t.

This is the ‘collapsed’ matrix [3], obtained previously by very roundabout arguments.

9 Conclusion

Using the methods described above, the terms involved in the formula for P (Bn(b, L), k),

(Theorem 7), can be calculated explicitly and completely for small values of b, and for

all L. It may be worth remarking that although the case b = 2 was done by ad hoc

methods in 1972, the analogous results for b = 3 were not obtained until 1999. Thus the

present state of affairs is a significant improvement. For example, in the case when L is

the identity linking set, the result for b = 4 is given in [3], and larger values of b have

been dealt with by Chang [6, 7].

For each π with |π| ≤ b the polynomials mπ(k) are given explicitly by a simple

formula (Lemma 4). The polynomials occurring as entries of the matrix P π
M can be

computed once and for all; essentially there is only one calculation for each value of |M |
satisfying |π| ≤ |M | ≤ b. Once the catalogue of P π

M has been compiled, the matrices

Nπ
L can be obtained by the sieve formula (Lemma 9) for all linking sets L. The trace

of (Nπ
L)n is then given by the solution of a linear recursion in n with coefficients that
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are polynomials in k (essentially this is Newton’s formula applied to the characteristic

polynomial). In very favourable cases the eigenvalues of Nπ
L are themselves polynomials

in k, and the trace of (Nπ
L)n is simply the sum of their nth powers.

What can be said about larger values of b, and what happens as b → ∞? For

some partitions π, general results can be obtained. In [3] the terms corresponding to the

1-dimensional representations, π = (`) and π = (1`), are obtained explicitly for the case

when L is the identity linking set, and for all b. More generally, the arrangement of the

terms according to levels ` = |π| has the property that the terms corresponding to the

smallest values of ` are in fact the leading terms in the chromatic polynomial. However

large b is, the partitions with 0 ≤ ` ≤ r determine all the terms of P (Bn(b, L), k) with

degree from bn down to (b− r)n + 1. Such observations can be used to obtain bounds on

the absolute values of the roots of the chromatic polynomials.

References

1 Beraha S., Kahane J., Weiss N.J. Limits of zeros of recursively defined families

of polynomials. Studies in Foundations and Combinatorics, Advances in Math.,

Supplementary Studies 1 (1978) 213-232.

2 Biggs, N.L. Colouring square lattice graphs Bull. London Math. Soc. 7 (1977)

54-56.

3 Biggs N.L. Chromatic polynomials and representations of the symmetric group.

Linear Algebra and its Applications 356 (2002) 3-26.

4 Biggs N.L. Equimodular Curves. Discrete Mathematics 259 (2002) 37-57.

5 Biggs N.L., Klin M.H., Reinfeld P. Algebraic Methods for Chromatic Polynomials.

To appear in the European Journal of Combinatorics.

6 Chang S.C. Chromatic Polynomials for Lattice Strips with Cyclic Boundary

Conditions. Physica A, 296 (2001) 495-522.

7 Chang S.C. Exact Chromatic Polynomials of Toroidal Chains of Complete Graphs.

arXiv: math-ph/0111028v1 16 Nov 2001.

8 James G.D. The Representation Theory of the Symmetric Groups. (1978) Lecture

Notes in Mathematics 682, Springer Verlag, Berlin.

9 Macdonald I.G. Symmetric Functions and Hall Polynomials. Second Edition

(1995) Clarendon Press, Oxford.

10 Reinfeld P. Algebraic Methods for Chromatic Polynomials. PhD thesis, University

of London, 2002.

11 Sagan B.E. The Symmetric Group. (2001) Springer-Verlag New York, Inc., New

York.

19


