
A Second Threshold for the Hard-core Model
on a Bethe Lattice

Graham R. Brightwell ∗

Department of Mathematics
London School of Economics

Houghton St.
London WC2A 2AE England

Peter Winkler†

Bell Labs 2C-365
Lucent Technologies
700 Mountain Ave.

Murray Hill, NJ 07974 U.S.A.

March 4, 2003

CDAM Research Report LSE-CDAM-2003-05

Abstract

We determine the approximate value of a critical activity for the hard-core model
on the Bethe lattice, which determines whether the unique simple invariant Gibbs
measure is extremal. This “recovery threshold” turns out to be different both from
the threshold for unique Gibbs measure and (in contrast to the Ising model) from the
threshold for recovery of root information purely from statistical information about
distant sites.

1 Summary

The hard-core model on a Bethe lattice—a.k.a. random independent sets in a Cayley tree—
is arguably the best-understood model of combinatorial phase transition, and the best-
understood of any model of phase transition other than the Ising model. For all activities, it
has just one simple1 invariant Gibbs measure µ, which can be obtained by taking a branching
random walk on a certain two-node graph. Its critical activity λ1 for having just one Gibbs
measure of any description is known exactly (apparently first computed by Kelly [5], in the
context of call blocking in communications networks).

∗Author’s net address: g.r.brightwell@lse.ac.uk
†Author’s net address: pw@lucent.com. Supported in part by a grant from the U.S. Office of Naval

research.
1see below for definition
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However, there is a second transition that until now has been something of an enigma.
The issue is whether the measure µ is extremal, that is, not expressible as a convex combi-
nation of distinct Gibbs measures.

It is trivial that µ is extremal below the unique-Gibbs-measure critical activity λ1, and
also known that µ fails to be extremal above the “census threshold”, which determines when
non-vanishing information about whether the root of the tree is occupied may be obtained
from the number, i.e., the “census”, of occupied sites at some great distance from the root.
For both the Ising and hard-core models, and indeed practically all models on the Bethe
lattice, the census threshold is easily computed by comparing the square of the branching
number of the tree with the second eigenvalue of a natural Markov chain. It follows from a
result of Mossel [7] that there is a threshold value λ2: µ is extremal for activities λ < λ2 and
non-extremal for λ > λ2.

For µ to be non-extremal, it is sufficient (and necessary) that non-vanishing information
about whether the root is occupied can be recovered, with positive probability, from the full
configuration of distant sites generated by a sample from µ. For the Ising model (see e.g.,
[3]) recovery is possible only above the census threshold.

For the hard-core model, however, it was previously not known whether µ is extremal
anywhere above the unique-Gibbs-measure threshold; on the other hand, no technique was
known for recovery below the census threshold.

We show that the “recovery threshold” λ2 is always strictly above the unique-Gibbs-
measure threshold λ1 and, for a Bethe lattice with branching number k ≥ 29, λ2 lies strictly
below the census threshold. We leave open the curious possibility that the recovery and
census thresholds are the same for some small values of k.

We have learned that our upper bound result has been proved independently by Y. Suhov
and U.A. Rozikov [9]. Also, Svante Janson [4] has shown us an alternative method, using the
Hellinger integral, of proving almost the same upper bound on λ2; intriguingly, his method
also fails to separate the recovery and census thresholds for small k.

2 Introduction

Let Tk denote the infinite (k+1)-regular tree: Tk is variously referred to as the Bethe lattice
or Cayley tree. We think of Tk as having a specified root vertex r, and we often describe
the tree by saying that each vertex has k “children”. Technically, the root itself has k+1
children; this is not usually important, and we shall normally ignore it.

The hard-core model is a model for “random independent sets” in Tk. There is a positive
parameter λ of the model, called the activity. In this setting, a Gibbs measure (for λ) is
a probability measure µ on the space of independent sets I in Tk, satisfying the following
condition: for any finite set U of vertices of Tk, and almost every independent set I0, the
probability that I = I0, conditioned on I\U = I0\U , is proportional to λ|I0∩U |. In fact, it
suffices to check this condition in the case when U consists of a single vertex u: the non-
trivial case is when none of the neighbors of u is in I0, and the condition then states that
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Pr(u ∈ I | I\{u} = I0\{u}) = λ/(λ+1).

There are results asserting the existence of Gibbs measures, even in much more general
settings; here we are in the fortunate position of being able to construct one. Given any
positive activity λ, let w be the unique positive root of λ = w(1+w)k. We construct a measure
µ on the set of independent sets in Tk via the following recursive procedure. First we put
the root into our independent set I with probability w/(1+2w). If we put any vertex into
I, then perforce none of its children is in I. If a vertex is not in I, then each of its children
is put in I with probability w/(1+w), all choices made independently. It is straightforward
to check that this does give a Gibbs measure for the given activity λ. See [1] for proofs of
these facts in a more general hard-constraint setting.

An alternative way to view this measure is to think of a “branching random walk” on the
two-node graph H in which node 0, of weight 1, has a loop and node 1, of weight w, does not.
At each time-step, each existing particle splits into k particles, and then each new particle
takes a step of a random walk on this graph, with transition probabilities given by the node
weights. If we follow any particular branch, we are simply observing a node-weighted random
walk, and the probability that our particle is at the unlooped node—corresponding to the
point of the tree being in the independent set—is the stationary probability π1 = w/(1+2w).

We reserve the symbol µ for this measure, which plays a special role as it is the unique
“simple invariant Gibbs measure”, for all values of λ. A measure on independent sets in Tk

is simple if, for any site u ∈ Tk the distributions of

I ∩ C1(u), . . . , I ∩ Ck+1(u)

are mutually independent given I ∩ {u}, where the Ci(u) are the connected components of
Tk \ {u}. A measure is invariant if every measurable set of independent sets has the same
measure after being shifted by an automorphism of Tk.

Kelly [5] showed that, for λ ≤ λ1 = kk/(k−1)k+1, µ is in fact the only Gibbs measure,
whereas for λ above this threshold there are other Gibbs measures as well. Specifically,
above the threshold there are two “simple semi-invariant” Gibbs measures, one where an
independent set contains a greater preponderance of sites at even distance from the root,
and the other favoring the sites at odd distance. These two measures are always extremal,
i.e., they cannot be written as a convex combination of two other Gibbs measures. Above
the threshold, there is in fact a large variety of other extremal Gibbs measures; for a start,
it is easy to construct one which favors odd sites down one branch from the root, and even
sites down the other branches.

Above the threshold λ1, the original Gibbs measure µ is still present, and Yuri Suhov [10]
has raised the question of when it is extremal. Similar questions have been studied for other
models—see, for instance, Mossel’s survey [8]—and it seems strange that for the hard-core
model the question has been neglected up to now.

As we shall show more precisely later, the question of whether µ is extremal can be
reformulated along the following lines: suppose we take a sample from µ, look only at the
configuration on the vertices at distance d from the root, and then use this information to
guess whether the root is occupied (i.e., in the independent set) or not: can we succeed with
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probability bounded above what we can achieve by guessing at random? Mossel’s papers
contain many alternative formulations, and different contexts in which this type of problem
arises.

One possible strategy is to argue as follows: if the root is occupied, there is a tendency
for sites at odd distance from the root to be unoccupied, and sites at even distance to be
occupied. If the fraction of vertices at (say) large even distance that are occupied is greater
than π1, we should guess that the root is occupied, and if the fraction is smaller than π1 then
we should guess the root is unoccupied. This argument was used by Kesten and Stigum [6]
to prove a result which, for this problem, implies that µ is non-extremal whenever η2

2k < 1,
where η2 is the second largest eigenvalue of the transition matrix of the random walk. We
have η2 = −w/(w+1) so, as was observed by Suhov, µ is non-extremal for w > 1/(

√
k − 1).

This is called the census threshold; see, for instance, Mossel [7, 8] for more details.

Usually, as above, it is more natural to think of w as being the parameter for this question.
In terms of w, the threshold for uniqueness of the Gibbs measure is w = 1/(k−1).

We define the recovery threshold to be the infimum of the set of values w such that the
simple invariant Gibbs measure µ with parameter w is non-extremal. A result of Mossel,
Proposition 12 of [7], shows that µ is non-extremal for any w above the recovery threshold.

The results we have seen so far show that the recovery threshold lies in the closed interval
between 1/(k−1) and 1/(

√
k− 1). We are able to narrow this range considerably, and show

that the recovery threshold lies between (ln k − 2 ln ln k)/k and—for k sufficiently large—
(ln k + ln ln k + 1 + ε)/k, where ε is any fixed positive constant. Our methods do not suffice
to separate the recovery threshold and the census threshold for k ≤ 28.

Even for large k, the gap between our bounds is a significant one. If we translate the
bounds into bounds on the threshold activity λ2(k) for recovery, we see that

1

ln k
(1 + o(1)) ≤ λ2(k) ≤ ln2 k(1 + o(1)) .

We have no idea whether λ2(k) is increasing or decreasing in k, or whether µ is extremal in
the appealing special case λ = 1.

The hard-core model is the most basic “hard-constraint” model, and the Bethe lattice is
a particularly convenient graph on which to study it. The simplicity of this model allows
for a much more precise analysis than is available in general. It is noteworthy that there are
still some interesting open questions about this model.

3 Extremality and Information

From now on, we think of the “random” independent set I sampled from µ as a function
ϕ : Tk → {0, 1}, with ϕ(u) = 1 corresponding to the vertex u being in I.

The purpose of this section is to make the connection between extremality of µ and the
notion that non-vanishing information about whether the root is occupied can be recovered
from the restriction of ϕ to vertices at arbitrarily large distances from the root.
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More concretely, we show that µ is extremal if and only if the difference of the expectations
of two particular random variables tends to zero. The random variables in question are A0(d)
and A1(d), defined as follows: we sample a hard-core configuration ϕ on Tk from µ. We
then observe the values of ϕ at the sites at distance d from the root r, “erase” the rest
of the values, and compute the a posteriori probability a that ϕ(r) = 0 (i.e., the root was
unoccupied). Then A0(d) is the (random) value of a conditioned on the process actually
having begun with ϕ(r) = 0; A1(d) is defined in the same way, starting with ϕ(r) = 1.

The intuition is that, if A0(d) > A1(d), this represents information suggesting that the
root actually was unoccupied in the sample ϕ. If EA0(d) and EA1(d) remain bounded away
from each other as d →∞, we can interpret this as saying that information about the root
is retained in the vertices at arbitrarily distance d from r.

Let X be the event that ϕ(r) = 0, so that X has a priori probability π0 = (1+w)/(1+2w).
Let Yd be the (random) configuration found on the sites at distance d from r. Then

EA0(d) = EYd|X Pr(X|Yd = y) =
∑

y

Pr(X|Yd = y) Pr(Yd = y|X),

where the second expectation, and the sum, are taken over all possible values y of Yd,
working in the probability space arising from conditioning on X.

The following result does not require any special properties of our setting. Similar re-
sults have no doubt appeared elsewhere; we include a proof—which is essentially just an
application of the Cauchy-Schwarz inequality—for completeness.

Lemma 3.1. EA0(d) ≥ π0 ≥ EA1(d), with equality if and only if Yd is independent of X.

Proof. We have
0 ≤ EYd

(Pr(X|Yd = y)− π0)
2

=
∑

y

Pr(Yd = y)(Pr(X|Yd = y)− π0)
2

=
∑

y

Pr(X|Yd = y) Pr(X ∧Yd = y)− 2π0

∑
y

Pr(X ∧Yd = y) + π2
0

∑
y

Pr(Yd = y)

=
∑

y

[Pr(X|Yd = y) Pr(Yd = y|X) Pr(X)]− 2π2
0 + π2

0

= π0EA0(d)− π2
0 = π0(EA0(d)− π0) .

So indeed EA0(d) ≥ π0, equality requiring that Pr(X|Yd = y) = π0 for all possible y. Also

EA1(d) = EYd|X Pr(X|Yd = y) = 1− EYd|X Pr(X|Yd = y) ≤ 1− (1− π0) = π0 ,

as required.

The random variables A0(d), A1(d) and A(d) := EYd
Pr(X|Yd = y) = π0A0(d) + (1 −

π0)A1(d) are backwards martingales; that is, the expectation of each is its value at d−1.
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The “Backwards Martingale Convergence Theorem” (see e.g. [2]) tells us that in a sample ϕ
from µ each almost surely has a limit, which we denote by A0, A1 and A respectively.

Since A0(d) → A0 a.s., and the A0(d) are uniformly bounded, we also have A0(d) → A0

in expectation. By Lemma 3.1, if EA0(d) − EA1(d) → 0, then also EA0(d) − π0 → 0, i.e.,
A0(d) converges to the constant π0 in expectation, and thus A0 = π0. Under this hypothesis,
we can also conclude that A1 and A are equal to π0. As we now show, this is exactly what
we need to conclude that µ is extremal.

Lemma 3.2. The measure µ is extremal if and only if A is constant.

Proof. If A is not constant then there is a constant c such that the event W :=“A > c”
has non-trivial probability. This event W is a tail event (does not depend on any finite
part of ϕ) and thus µ|W and µ|W are (evidently different) Gibbs measures. Since µ =
Pr(W ) · µ|W + (1− Pr(W )) · µ|W , µ is not extremal.

On the other hand, suppose A is constant, say equal to π, and fix some distance d. Let
U be the set of sites of Tk at distance d from the root r, and, for u ∈ U , let Tk(u) be the
subtree of Tk, rooted at u, obtained by deleting the edge from u on its unique path to r.
Let Vd′(u) be the sites in Tk(u) at some very large distance d′ from u. If ϕ is chosen from
µ then given ϕ ¹ U , ϕ ¹ Vd′(u) is independent for each u ∈ U . Also, as d′ → ∞, for each
u ∈ U the probability that u is unoccupied—given the occupancies of its d′-descendants—
tends to π. It follows that the occupancies of sites at distance d+d′ from r generate a
conditional distribution of ϕ on the d-neighborhood of r which is, with probability as high
as is desired, within arbitrarily small total variation distance of that obtained by occupying
each site in U independently with probability 1−π. But then µ must be extremal, because
if µ = pσ + (1−p)τ for some p ∈ (0, 1) where σ and τ are different Gibbs measures, then σ
and τ differ on the d-neighborhood of r for some d.

4 The Lower Bound

We now show that A0(d)−A1(d) does indeed approach 0 in expectation when w is sufficiently
small, concluding that µ is extremal in this regime. We assume throughout that k is fixed,
and ϕ is a configuration chosen from µ on the tree Tk. We will be interested in the restriction
of ϕ to the finite tree Tk

d consisting of all sites within distance d of the root r. For a site u
in Tk

d, let Tk
d(u) denote the tree rooted at u obtained by deleting the edge incident to u on

the unique path from u to r.

We begin by fixing an arbitrary configuration y on the leaves of Tk
d. For a site u of

Tk
d, let yu be the restriction of y to the leaves of Tk

d(u), that is, to the remote descendants
of u. Let q0(u) = q0(u; yu) := Pr(yu|ϕ(u) = 0), q1(u) = q1(u; yu) := Pr(yu|ϕ(u) = 1),
and q(u) = q(u; yu) := q0(u; yu)/q1(u; yu) (the last expression taking the value +∞ in the
extended reals when q1(u; yu) = 0).
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Thus the a posteriori probability a(u) = a(u; yu) that ϕ(u) = 0 is just

π0q0(u; yu)

π0q0(u; yu) + π1q1(u; yu)
=

1

1 + π1

π0q(u;yu)

=
1

1 + w
(1+w)q(u;yu)

.

If u has children u1, . . . , uk then clearly

q1(u) =
k∏

j=1

q0(uj)

and

q0(u) =
k∏

j=1

(
1

1+w
q0(uj) +

w

1+w
q1(uj)

)

so that

q(u) =

(
1

1+w

)k k∏
j=1

(
1 +

w

q(uj)

)
.

It is convenient to introduce the function

b(u) = b(u; yu) =
1+w/q(u; yu)

1+w
,

so that the recursion for q translates to

b(u) =
1 + w/

∏
j b(uj)

1+w
,

while

a(u) =
1

w
1+w

+ b(u)
.

Proving that a(u) approaches π0 = (1+w)/(1+2w) as the depth increases is thus equivalent
to proving that b(u) approaches 1.

We now define random variables B0(u), B1(u) by B0(u) := b(u; Yu) where Yu is the
(random) restriction of ϕ to Tk

d(u) given ϕ(u) = 0, and B1(u) is the same given ϕ(u) = 1.
Note that the subscripts are not playing the same role for these random variables that they
did for the probabilities q0 and q1.

The relationship between a(u) and b(u) translates to relationships between the corre-
sponding random variables:

A0(u) =
1

w
1+w

+ B0(u)
; A1(u) =

1
w

1+w
+ B1(u)

.

The branching random walk construction of ϕ again enables us to express B0(u) and
B1(u) recursively, as follows:

B1(u) =
1

1+w

(
1 +

w∏k
j=1 B0(uj)

)
,
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where the random variables B0(uj) are independent, and

B0(u) =
1

1+w

(
1 +

w∏k
j=1 B∗(uj)

)

where B∗(uj) = B0(uj) with probability 1/(1+w), and B∗(uj) = B1(uj) with probability
w/(1+w), independently for each j.

We now introduce a coupling of B0(u) and B1(u) for which always B0(u) ≤ B1(u).
Working in from the leaves, we generate at each site two full configurations beyond that
site, one with the site occupied and the other unoccupied. When we come to u, we take
for its “occupied” configuration the union of the “unoccupied” configurations of its children.
For the unoccupied configuration, we take each child independently, choosing its occupied
configuration with probability w/(w+1) and its unoccupied configuration otherwise. At
each site we do get faithful copies of two samples from µ, each conditioned on a different
state of the site. To check that indeed B0(u) ≤ B1(u) we return to the recursion above,
noting that B∗(u) is sandwiched between B0(u) and B1(u) at each site. From now on we use
this coupling implicitly, so we think of the Bi(u) as random variables defined on the same
probability space, so in particular B1(u)−B0(u) is a non-negative random variable for each
u.

Note that if u is not a leaf, B0(u) ≥ 1/(1+w); and thus similarly for B∗(u).

Our overall aim is to show that E(A0(u) −A1(u)) tends to 0 as the distance from u to
the leaves tends to infinity. Note that

E(A0(u)−A1(u)) = E

(
B1(u)−B0(u)(

w
1+w

+ B0(u)
) (

w
1+w

+ B1(u)
)
)
≤ E(B1(u)−B0(u)) ,

where we used that B1(u) ≥ B0(u) ≥ 1/(1+w).

Therefore it suffices to show that E(B1(u)−B0(u)) tends to 0 as the distance from u to
the leaves tends to infinity. Our plan is to show that, for suitably small w,

E(B1(u)−B0(u)) ≤ ρE(B1(u1)−B0(u1)) ,

for u1 a child of u and ρ < 1; this will clearly imply the required result.

We have:

E(B1(u)−B0(u)) =
w

1+w
E

(
1∏k

j=1 B0(uj)
− 1∏k

j=1 B∗(uj)

)

≤ w

1+w

[
E

(
1∏k

j=1 B0(uj)
− 1

B∗(u1)
∏k

j=2 B0(uj)

)
+ · · ·+

E

(
1∏k−1

j=1 B∗(uj)B0(uk)
− 1∏k

j=1 B∗(uj)

)]
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=
w

1+w

[
E

(
B∗(u1)−B0(u1)

B∗(u1)
∏k

j=1 B0(uj)

)
+ · · ·+ E

(
B∗(uk)−B0(uk)∏k
j=1 B∗(uj)B0(uk)

)]
.

Now since each numerator is a non-negative random variable, and all the denominators are
bounded below by 1/(1+w)k+1, the above is bounded by

w

1+w
(1+w)k+1

[
E(B∗(u1)−B0(u1)) + · · ·+ E(B∗(uk)−B0(uk))

]

= w(1+w)kk
w

1 + w
E(B1(u1)−B0(u1)) .

If we can arrange for w2(1+w)k−1k = ρ < 1, then we have

E(B1(u)−B0(u)) ≤ ρE(B1(u1)−B0(u1)),

so E(B1(u)−B0(u)) approaches 0 (exponentially fast) as the depth of the tree increases, as
desired. If in particular we take w = (ln k−2 ln ln k)/k, we have (1+w)k−1 < ewk = k/(ln k)2,
and thus

w2(1+w)k−1k <
(ln k)2

k2

k

(ln k)2
k = 1 .

For large k, the above argument suffices to show that the recovery threshold is above the
threshold w = 1/(k−1) for uniqueness of the Gibbs measure—indeed, this works whenever
the value w = 1/(k−1) achieves w2(1+w)k−1k < 1, which is when k ≥ 5.

However, for k = 2, 3, 4, we need a sharper lower bound on B0(u) to beat the unique-
Gibbs-measure threshold. Let bmin := lim inf min(b(u)), the lim inf taken as the depth of
the tree increases, and the min over all possible hard-core configurations; the recursion for b
shows that bmin is the least positive solution of the pair of equations

bmin =
1 + w/bk

max

1+w
: bmax =

1 + w/bk
min

1+w
.

As B0 ≥ bmin−ε for any fixed ε > 0 and sufficiently large depth, from the above development
we see that it suffices to show that

k

(
w

1+w

)2 (
1

bmin

)k+1

< 1 . (1)

For k = 2, we obtain that

bmin =
1

2
(w + w2 −

√
w(w3 + 2w2 + w − 4)) .

and (1) is satisfied for w ≤ 1.0278. Since the unique-Gibbs-measure threshold here is at
w = 1, we see that the recovery threshold is strictly higher. (For comparison, the census
threshold is w = 1/(

√
2− 1) ≈ 2.414.)

For k = 3 and w = 0.541, numerical investigations show that bmin ≥ 0.78, which satis-
fies (1), and for k = 4 and w = 0.381, we get bmin ≥ 0.7889, again satisfying (1). As these
values are above the unique-Gibbs-measure threshold w = 1/(k − 1) in both cases, we have
separated the recovery threshold λ2 from λ1 for all values of k.
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5 Upper Bound

To get our upper bound for λ2, we employ a particular, quite simple, algorithm which recovers
a “parsimonious” solution: in our case, a configuration which has the fewest possible 0-to-0
transitions. The algorithm works in from the leaves, labeling as “unoccupied” any parent
of a child previously labeled “occupied”, and “occupied” any site all of whose children have
been labeled “unoccupied”.

To keep track of the effectiveness of this algorithm we associate with each level of the tree
the probabilities of the two types of labeling errors. To that end let p0(d) be the probability
that a site at distance d from the leaves is labeled unoccupied, conditioned on its actually
being occupied; and the reverse for p1(d). This results in the following recursion:

p0(d+1) = 1− (1− p1(d))k ;

p1(d+1) =

(
w

1+w
p0(d) +

1

1+w
(1− p1(d))

)k

,

where p0(0) = p1(0) = 0. Note that, if there is any fixed point (p0, p1) of these equations
with p0 6= 1 − p1, then (for instance by deliberately altering our initial data at the leaves),
use of the algorithm yields a non-vanishing correlation between the label at the root and the
actual value, so that the simple invariant Gibbs measure µ is not-extremal.

For a general analysis, it is easier to work with the simpler inequalities:

p0(d+1) ≤ kp1(d) ;

p1(d+1) ≤
(

1 + wp0(d)

1+w

)k

.

In particular, suppose that w and k satisfy:

(
1 + 1

k

1+w

)k

≤ 1

wk2
. (2)

Then always p1 ≤ 1
wk2 and p0 ≤ 1

wk
. So, if inequality (2) holds and also wk > 2 (say), then

we can recover information about the root from the leaf configuration, so we are below the
recovery threshold.

Inequality (2) holds if ewk2 ≤ (1+w)k, which in turn holds if w ≥ (ln k+ln ln k+1+ε)/k,
for any fixed ε > 0 and sufficiently large k. Therefore the ‘critical’ value of w lies below
(ln k + ln ln k + 1 + ε)/k, for any ε > 0. We remark again that this is below the census
threshold, showing that, at least for large k, using this simplistic algorithm is more powerful
than counting the occupied leaves.

The upper bound is similar in form to our lower bound of (ln k−2 ln ln k)/k on the critical
value of w. However, in terms of the critical activity λ2, we get only an upper bound around
(ln k)2 for λ2, as opposed to our lower bound near (ln k)−1. We have no idea whether the
true value of λ2—assuming there is a unique threshold—is increasing or decreasing in k.
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For small k, this approach seems to be surprisingly ineffective. In particular, for k = 2,
the equations defining p0(d+1) and p1(d+1) only have a fixed point (p0, p1) with p0 + p1 < 1
when w ≥ 4. For w < 4, numerical experiments suggest that it is indeed not the case that
p0(d) and p1(d) stay small as d grows. The conclusion would be that census reconstruction
is more powerful than parsimonious reconstruction for small k. For k ≥ 36, the value
w = 1/(

√
k − 1) of the census recovery threshold satisfies (2), so we do have separation

between recovery and census recovery. For k = 29, . . . , 35, numerical investigations reveal
multiple fixed points of the original recursive equations for w = 1/(

√
k−1), so in these cases

too the recovery threshold is below the census threshold.
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