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Abstract

A wheel in a graph G(V, E) is an induced subgraph consisting of an odd hole and an additional
node connected to all nodes of the hole. In this paper, we study the wheels of the column intersection
graph of the OLS polytope (PI). These structures induce valid inequalities for this polytope, which
are facet defining for its set packing relaxation. Our work builds on simple structural properties of
wheels which are used to categorise them into a number of collectively exhaustive classes. Each such
class gives rise to a set of valid inequalities for PI . Moreover, this classification allows us to estimate
the cardinality of the whole wheel class as well as to derive a recognition algorithm for the circulant
matrices corresponding to wheels of a particular type.

In a forthcoming paper, we show for some of the wheel classes presented here that they give rise
to facet-defining inequalities for PI .
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1 The problem

Consider four disjoint n-sets, namely I, J , K, L, and a mapping w : I×J×K×L −→ R. The Orthogonal
Latin Squares (OLS) problem, formulated as a 0− 1 minimisation program, is the following:

min
∑

{wijkl · xijkl : i ∈ I, j ∈ J, k ∈ K, l ∈ L}
s.t.
∑

{xijkl : i ∈ I, j ∈ J} = 1,∀k ∈ K, l ∈ L, (1a)
∑

{xijkl : j ∈ J, k ∈ K} = 1,∀i ∈ I, l ∈ L, (1b)
∑

{xijkl : i ∈ I, k ∈ K} = 1, ∀j ∈ J, l ∈ L, (1c)
∑

{xijkl : k ∈ K, l ∈ L} = 1, ∀i ∈ I, j ∈ J, (1d)
∑

{xijkl : i ∈ I, l ∈ L} = 1, ∀j ∈ J, k ∈ K, (1e)
∑

{xijkl : j ∈ J, l ∈ L} = 1, ∀i ∈ I, k ∈ K, (1f)

xijkl ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (1g)

This formulation is due to D. Gale (in [10]). Alternative formulations of the problem are presented in [1].
Let A denote the coefficient matrix of the constraint sets (1a), . . . , (1f). Also let P = {x ∈ Rn4

:
Ax = e, x ≥ 0}, where e = (1, . . . , 1)T ∈ Rn4

. Then, PI = conv{x ∈ {0, 1}n4
: x ∈ P} is the Orthogonal

Latin Squares polytope of order n. We briefly introduce some definitions. A Latin square, of order n, is
a n × n square matrix where each value 1, . . . , n appears exactly once in each row and column. Given
two Latin squares, let L denote the set of pairs, where each pair consists of the elements of the first and
the second square lying in the same row and column. Then, the two Latin squares are called orthogonal
(equivalently, form an OLS structure or a pair of OLS) if and only if L ={(1, 1), . . . , (n, n)}. Sets of k

Latin squares (k > 2) are called mutually orthogonal (MOLS) if and only if they are pairwise orthogonal.
Thus, the OLS problem can be generalized to the k-MOLS problem. In this context, the OLS problem
is the 2-MOLS problem.

The 1−1 correspondence between Orthogonal Latin squares and points of PI becomes apparent if, for
the OLS structure, we consider the set I as the row set, J as the column set, K (L) as the set of elements
of the first (second) square. Evidently the roles of the sets are conventional, therefore interchangeable.
Polytope PI is a special case of the set partitioning polytope defined as PSPP = conv{x ∈ {0, 1}m : Dx =
e}, where D is a 0−1 matrix and e is a vector of ones of the appropriate size. If we substitute “ = ” with
“ ≤ ”, we obtain the set packing relaxation of PSPP , denoted as P̃SPP . Thus, the set packing relaxation
of PI is defined as P̃I = conv{x ∈ {0, 1}n4

: Ax ≤ e}. Observe that PI ⊂ P̃I .
Orthogonal Latin squares and related structures bear a long history in the literature of combinatorics.

Their relation to finite algebra and to the theory of hypercubes, affine and projective planes along with

2



the large number of applications in various fields, like (t,m,s)-nets, block designs and optimal codes, has
motivated a vast amount of research. The reader may find an extensive discussion of the subject in [11, 15].
Nevertheless, only a limited part of the literature addresses the facial structure of PI and its relaxations
(see [2]). A recent classification ([16]), establishing that the Latin Square problem and the k-MOLS
problem, where k ≤ n − 1 ([11, Theorem 5.1.5]), form the class of assignment problems of the second
order (equivalently the class of planar assignment problems), provides further incentives for pursuing
the study of PI . This classification reveals the relation of PI to other assignment polytopes. These are
primarily the Latin square polytope and secondarily the polytopes of the assignment problems of the
first order (equivalently the polytopes of axial assignment problems). For the Latin square polytope, a
class of facets is presented in [12] and another in [3]. For PI , all classes of clique facets are presented
in [2] together with the corresponding separation procedures. The dimension of all the polytopes of the
planar assignment problems is established in [16]. Among the axial assignment polytopes, the three-index
assignment polytope has been substantially studied ([4, 5, 13, 18]). A non-trivial class of facets for all
axial assignment polytopes is presented in [16].

In the current work, we study the subgraphs of the column intersection graph of the A matrix called
wheels. These structures induce inequalities which are facet defining for P̃I and valid for PI (see [14, p.
300]). Formal definitions are given in section 2. Properties leading to a concise characterisation of wheel
structures are exhibited in sections 3 and 4. A classification scheme, encompassing all wheel structures,
is presented in section 5. Finally, a recognition algorithm is given in section 6.

2 Basic definitions and conventions

We recall a number of definitions introduced in [2]. The columns of the A matrix are indexed by the
tuples (i, j, k, l). Therefore, the index set of the columns of A is defined as C = I × J ×K × L. For the
rows of A, observe that each of the constraint sets (1a), . . . , (1g) is indexed by the product of two of the
sets I, J,K, L. For example, the index set of (1a) is K × L. Hence, the index set for the rows of A is
R = (K × L) ∪ (I × L) ∪ (J × L) ∪ (I × J) ∪ (J ×K) ∪ (I ×K). For c ∈ C, let ac denote a column of
A. The column intersection graph of A, denoted as GA(C, EC), has a node c for every column ac ∈ A

and an edge (c, d) ∈ EC (d ∈ C) corresponding to columns ac, ad with ac · ad ≥ 1. Note that if c, d

have two indices in common (|c ∩ d| = 2), then ac · ad = 1, whereas if c, d have three indices in common
(|c ∩ d| = 3), then ac · ad = 3.

Let Mi (i ∈ {1, . . . , 4}) denote any of the sets I, J,K,L. This definition allows us to refer to these sets
in an abstract and general mode. For c ∈ C, let mi(c) denote the index of the set Mi at node c. The sets
Mi,Mj (i 6= j, i, j ∈ {1, 2, 3, 4}) define the double set Mi ⊗Mj = (Mi ×Mj) ∪ (Mj ×Mi). By definition,
Mi ⊗Mj ≡ Mj ⊗Mi. For c, d ∈ C such that |c ∩ d| = 2, the edge (c, d) is said to be based on a double
set, for example M1 ⊗ M2, if and only if m1(c) = m1(d), m2(c) = m2(d) and mt(c) 6= mt(d), t = 3, 4.
Equivalently, the ground set of the edge (c, d) is M1 ⊗M2. In this case, we write c ∩ d ∈ M1 ⊗M2.
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Example 1 Let c = (1, 1, 1, 1), d = (1, 1, 2, 2) and M1 = I, M2 = J . Clearly, m1(c) = m1(d) = 1 and
c ∩ d ∈ M1 ⊗M2.

All these conventions are extended in the case where nodes c and d have three indices in common.
For example, assume that the common indices belong to the sets M1,M2, M3. Then, the edge (c, d)
is based on the triple set which is associated to these three single sets. To avoid a lengthy notation,
we denote a triple set again with the use of operator ⊗. This operator is used in a slightly different
context than in the double set case. Thus, if the triple set consists of sets M1,M2,M3, it is denoted as
M1 ⊗M2 ⊗M3 ≡ (M1 ⊗M2) ∪ (M2 ⊗M3) ∪ (M1 ⊗M3). Hence, each triple set is simply the union of
three double sets. These double sets are called components of the triple set.

Occasionally, an edge based on a double (triple) set will be referred to as a double (triple) link.
Equivalently, in the first case we have a double-set edge whereas in the second case a triple-set edge.

Remark 2 There are six distinct double sets. Each of the four single sets appears in exactly three of the
double sets. There are four distinct triple sets. Each of the double sets appears in exactly two triple sets.
Two triple sets have exactly one common component, i.e. double set. Two triple sets differ in exactly
one single set.

For H ⊂ C, the subgraph of GA, induced by H, is naturally defined as the graph formed by all nodes
of subset H and all edges of EC , which connect any two nodes in H. Let us define certain types of
subgraphs of GA(C, EC).

Definition 3 A node set H ⊂ C such that |H| = 2p + 1 for some positive integer p ≥ 2, induces an
odd hole in GA(C,EC) if and only if H can be ordered into a sequence {c0, . . . , c2p} such that for all
cs, ct ∈ H

|cs ∩ ct| =
{

2 or 3 if t = s± 1mod 2p + 1
0 or 1 otherwise

The above definition implies that two nodes of H are joined by an edge if and only if they are ordered
consequently in the circular sequence {c0, . . . , c2p}, i.e. the hole has no chords. The cardinality of the
set H, denoted as q, is called the size of the odd hole (q = 2p + 1). In general, inequalities arising
from maximally lifted odd holes are known to be facet-inducing for P̃SPP ([17]). Wheels are essentially
a special type of lifted odd holes. Specifically for GA(C, EC), wheels are defined as follows.

Definition 4 For c ∈ C, let H(c) denote the node set of an odd hole of GA(C,EC), such that c /∈ H(c)
and |c ∩ cs| ≥ 2 for every cs ∈ H(c). Then, the node set Wc = {c}∪H(c) induces a wheel in GA(C, EC).

Where appropriate, the node set of a wheel will be denoted as W p
c , so that notation includes a reference

to the size of the wheel. Node c is called the hub of the wheel. The node set H(c) constitutes the rim of
the wheel. Edges connecting the nodes of H(c) are called rim edges, while edges (c, cs), for cs ∈ H(c),
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Figure 1a: Double-set spokes only Figure 1b: Double- and triple-set spokes

are called spokes. Let ESH(c) , EH(c) denote the sets of spokes and rim edges, respectively. The set of the
edges of the wheel is defined as EWc = ESH(c) ∪EH(c). The set H(c) can be further partitioned into two
subsets, namely H1(c), H2(c). All the nodes incident to a double-set (triple-set) spoke belong to H1(c)
(H2(c)). Two wheels of size five (p = 2) are illustrated in Figures 1a, 1b, where the ground sets of the
spokes are also depicted. Observe that, for the wheel of Figure 1a, H2(c) = ∅.

We introduce a number of elaborate definitions, which will facilitate the discussion of the forthcoming
section. Two rim nodes are called adjacent if they are incident to the same rim edge. Similarly, two
spokes are adjacent if they are incident to adjacent rim nodes. A spoke is adjacent to a rim edge if they
are both incident to the same rim node. Therefore, two adjacent spokes have a common adjacent rim
edge. Let c1, c2 ∈ H(c) be two adjacent nodes of the rim. If follows that nodes c1, c2 together with the
hub (c) induce a 3-clique, normally denoted as K3. To refer to the specific K3, we write K3(c1, c2). The
edges of this structure are the two spokes (c, c1), (c, c2) and the rim edge (c1, c2). Depending on the
ground sets of the spokes, we distinguish 3-cliques of types 1, 2, 3 and 4, hereafter denoted as K1

3 ,K2
3 ,K3

3

and K4
3 , respectively. The first two types denote K3 structures where both spokes are based on double

sets. If both spokes are based on the same double set, the structure is K1
3 ; otherwise, it is K2

3 . Type K3
3

implies that the one of the two spokes is based on a double set and the other on a triple set. Finally,
K4

3 consists of two spokes both based on triple sets. A double set appearing at the ground sets of both
spokes of a K3 (even as a component of a triple set), is called the ground set of the K3. By definition,
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the ground set of K1
3 is the double set of its spokes, whereas no ground set can be defined for K2

3 . In
Section 4, we define more clearly the ground sets for K3

3 and K4
3 .

In general, the ground set of a structure being an edge or a K3 is denoted as g(structure). Function
g receives a structure as input and returns its ground set. In the case that the structure has no ground
set, it returns ∅.

Example 5 Let c1, c2 ∈ C be two adjacent rim nodes such that c ∩ c1, c ∩ c2 ∈ M1 ⊗M2. The fact that
K1

3 (c1, c2) is based on M1⊗M2 is denoted as g(K1
3 (c1, c2)) = M1⊗M2. Notice that g((c, c2)) = M1⊗M2

and c ∩ c2 ∈ M1 ⊗M2 are equivalent expressions, denoting that the spoke (c, c2) is based on the double
set M1 ⊗M2.

The set of 3-cliques of type t (1 ≤ t ≤ 4) for the wheel induced by Wc, is denoted as Wc(Kt
3). Hence, the

set of all K3 in a wheel is defined as Wc(K3) =
⋃4

t=1 Wc(Kt
3). For the wheel of Figure 1b, Wc(K1

3 ) = ∅,
Wc(K2

3 ) = {K3(c3, c4), K3(c4, c0), K3(c0, c1)}, Wc(K3
3 ) = {K3(c1, c2), K3(c2, c3)}, Wc(K4

3 ) = ∅. The
notion of adjacency can be extended to 3-cliques. Hence, two K3 are called adjacent if they share a
common spoke. In this case, we say that they are 0-distant. In general, two K3 are t-distant if there exist
t (0 ≤ t ≤ 2p − 1) K3 structures between them. Note that the notion of distance assumes a direction
according to which the wheel is examined (e.g. clockwise).

A wheel of OLS can be represented as sequence of the ground sets of its spokes. These sequences are
cyclic, therefore it is of no importance which ground is first. To avoid repetition, a double set enclosed
in square brackets represents two adjacent spokes, both based on it, i.e. a K1

3 structure. According to
this notation, the wheels of Figures 1a and 1b are presented as:

(1a) (M2 ⊗M3)− [M1 ⊗M2]− (M1 ⊗M3)− (M3 ⊗M4)

(1b) (M3 ⊗M4)− (M2 ⊗M3)− (M1 ⊗M2 ⊗M3)− (M1 ⊗M2)− (M1 ⊗M4)

For the rest of the paper the hub of a wheel will be denoted as c (c ∈ C).

3 Wheels with
∣∣H2(c)

∣∣ = 0

This section examines wheels of OLS whose spokes are based exclusively on double sets. Hence, H(c) =
H1(c), i.e. wheels of this class include only K1

3 and K2
3 structures. Equivalently, Wc(K3) = Wc(K1

3 ) ∪
Wc(K2

3 ) for all wheels examined in this section. We initiate the description of this class by presenting
a number of elementary properties and their corollaries. The following discussion shows that the major
aspects characterising a wheel are the number of distinct K1

3 structures, the number of rim edges that
are triple links and the number of distinct double sets appearing at its spokes. Moreover, this section
establishes an upper bound on the wheel size and provides necessary and sufficient conditions for the
existence of particular wheels.
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Certain statements are presented without proofs, exactly because they constitute direct implications
of previously exhibited results.

Lemma 6 Let cs, ct ∈ H(c) with s 6= t and such that c ∩ cs ∈ M1 ⊗M2 and c ∩ ct ∈ M1 ⊗M2. Then
c ∩ cs = c ∩ ct.

Proof. By inspection.

Proposition 7 Two spokes based on the same double set must be adjacent. At most two spokes can be
based on the same double set.

Proof. Let cs, ct ∈ H(c). Assume that c ∩ cs, c ∩ ct ∈ M1 ⊗M2. According to Lem. 6, |cs ∩ ct| ≥ 2.
Hence, if nodes cs, ct are not adjacent there exists a chord. Similarly, if there exists cr ∈ H(c), such that
c ∩ cr ∈ M1 ⊗M2, at least one chord is bound to be formed for p ≥ 2.

Two corollaries of Prop. 7 are the following.

Corollary 8 Two K1
3 are at least 1-distant. If they are exactly 1-distant then they are both adjacent to

the same K2
3 .

Corollary 9 Wheels with
∣∣H2(c)

∣∣ = 0 include at least three consecutive spokes, each based on a distinct
double set.

Proof. Since the number of spokes is odd, at least one double set appears at a single spoke, whose
two adjacent spokes must be based on different double sets.

An analogous argument shows the following.

Corollary 10 For
∣∣H2(c)

∣∣ = 0, p ≤ 5.

Proof. There are six distinct double sets (Rem. 2) and at most two spokes can be based on each one
(Prop. 7). By definition, the number of spokes is odd, implying 2p + 1 ≤ 11 or p ≤ 5.

Proposition 11 The double sets of two adjacent spokes have at least one common set.

Proof. Let cs, ct be two rim adjacent nodes. Let, for example, c ∩ cs ∈ M1 ⊗M2, c ∩ ct ∈ M3 ⊗M4.
Hence, m1(cs) = m1(c) 6= m1(ct), m2(cs) = m2(c) 6= m2(ct), m3(cs) 6= m3(c) = m3(ct) and m4(cs) 6=
m4(c) = m4(ct). As a result, |cs ∩ ct| = 0 and (cs, ct) /∈ EC , i.e. a contradiction.

The above proposition provides further implications regarding the structure of a wheel.

Corollary 12 The two spokes of K2
3 are based on double sets with one set common and one set different.

Corollary 13 The ground sets of two 1-distant K1
3 have a common single set.
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Corollary 14 There are 12 distinct K2
3 configurations with respect to the double sets of the two spokes.

Proof. Follows directly from Rem. 2 and Cor. 12.

Proposition 15 The ground set of the rim edge of a K1
3 is either the double set of the two spokes or a

triple set which has the double set of the two spokes as component.

Proof. Assume K1
3 (cs, ct) such that c ∩ cs, c ∩ ct ∈ M1 ⊗M2. In other words, nodes c, cs, ct share

common values for the indices of the sets M1, M2. If m3(cs) = m3(ct) or m4(cs) = m4(ct)) then
cs ∩ ct ∈ M1 ⊗M2 ⊗M3 or M1 ⊗M2 ⊗M4, respectively.

Proposition 16 The ground set of the rim edge of a K2
3 is a double set consisting of the common set of

the double sets of the two spokes and the set not appearing at the double sets of the spokes.

Proof. Assume K2
3 (cs, ct) such that c ∩ cs ∈ M1 ⊗ M2, c ∩ ct ∈ M1 ⊗ M3. This implies m1(cs) =

m1(c) = m1(ct), m2(cs) = m2(c) 6= m2(ct), m3(cs) 6= m3(c) = m3(ct). Hence, nodes cs, ct have one index
in common (for the set M1) and two indices different (for the sets M2,M3). By assumption, (cs, ct) ∈ EC ,
implying that m4(cs) = m4(ct). Thus, cs ∩ ct ∈ M1 ⊗M4. Observe that m4(c) 6= m4(cs),m4(ct).

The next statement is a direct consequence of Props. (15) and (16).

Corollary 17 The double set of a rim edge has at least one set in common with each of its adjacent
spokes.

Proposition 18 All sets appear in the distinct double sets of three consecutive spokes.

Proof. Let cs, ct, cr denote three consecutive rim nodes such that the double sets of (c, cs), (c, ct), (c, cr)
are distinct. Assume the three double sets are formed by only three single sets. Observe that the three
double sets cannot have a common single set. On the other hand, due to Prop. 11, the double sets of
(c, cs), (c, ct) must have a common single set. The same is true for (c, ct), (c, cr). Without loss of gener-
ality, consider the configuration c ∩ cs ∈ M1 ⊗M2, c ∩ ct ∈ M2 ⊗M3, c ∩ cr ∈ M1 ⊗M3. By Prop. 16,
cs ∩ ct ∈ M2 ⊗M4, ct ∩ cr ∈ M3 ⊗M4. Hence, m4(cs) = m4(cr). In addition, m1(cs) = m1(c) = m1(cr).
Therefore, |cs ∩ cr| = 2, implying that a chord is formed between nodes cs and cr.

Proposition 19 If the double sets of two adjacent rim edges have a common set then this set also appears
at the double set of their adjacent spoke.

Proof. Let cs, ct, cr denote three consecutive rim nodes and assume that cs ∩ ct ∈ M1⊗M2, ct ∩ cr ∈
M2⊗M3. If set M2 does not appear at the double set of (c, ct), there are three choices for this double set
viz., M3 ⊗M4, M1 ⊗M4, M1 ⊗M3. The case of M3 ⊗M4 (M1 ⊗M4) is excluded because, by Props. 15,
16, there exists no double set for the spoke (c, cs) ((c, cr)) such that the rim edge (cs, ct) ((cs, ct)) is based
on M1 ⊗M2 (M2 ⊗M3). If (c, ct) is based on M1 ⊗M3 then, according to Props. 15, 16, the double sets
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of edges (c, cs) and (c, cr) are M1 ⊗M4 and M3 ⊗M4. But then m4(cs) = m4(c) = m4(cr), which, in
conjuction with m2(cs) = m2(cr), implies the existence of a chord between nodes cs and cr.

Evidently, the number of K1
3 structures is a central aspect of a wheel. The next proposition establishes

tight bounds on this number.

Proposition 20 For
∣∣H2(c)

∣∣ = 0,

p− 1 ≤
∣∣W p

c (K1
3 )

∣∣ ≤ p, for 2 ≤ p ≤ 4,
∣∣W 5

c (K1
3 )

∣∣ = 5

Proof. For 2 ≤ p ≤ 5, the upper bound on
∣∣W p

c (K1
3 )

∣∣ follows from the fact that a wheel consists of
2p + 1 K3. According to Cor. 8, there are two K2

3 adjacent to each K1
3 . Hence, there can be at most p

K1
3 . The lower bound will be examined for each case individually.
Assume a wheel consisting of five spokes (p = 2), each based on a distinct double set (

∣∣W 2
c (K1

3 )
∣∣ = 0).

Without loss of generality, we can fix the double sets of two adjacent spokes by arbitrarily choosing two
double sets with one set in common (Prop. 11). The choices for the remaining spokes are limited. Thus,
it is easy to see that no combination of the remaining double sets can produce a valid configuration due
to violation of Props. 11 and/or 18. Therefore,

∣∣W 2
c (K1

3 )
∣∣ ≥ 1.

For p = 3 observe that we cannot have
∣∣W p

c (K1
3 )

∣∣ = 0, since that would imply a wheel with more
than seven spokes, each based on a distinct double set. Let

∣∣W 3
c (K1

3 )
∣∣ = 1. In this case, assume that the

double set of the spokes of the unique K1
3 is M1⊗M2. The double sets of the two spokes adjacent to K1

3

are formed by

(i) either one of the sets M1,M2 and the sets M3,M4,

(ii) or one of the sets M3,M4 and the sets M1,M2,

(iii) or the sets M1,M2 and the sets M3,M4 in such a way that the two double sets do not have a
common set.

For case (i), assume that the double sets form the sequence (M1 ⊗M3) − [M1 ⊗M2] − (M1 ⊗M4).
According to Prop. 18, M4 is one of the sets forming the double set of the second spoke adjacent to
(M1 ⊗M3). The only valid choice for the double set of this spoke is M3 ⊗M4 (M1 ⊗M4 and M2 ⊗M4

are excluded due to Props. 7 and 11 respectively). Similarly, M3 is one of the sets forming the double
set of the other adjacent spoke to (M1 ⊗M4). Again the only choice for the double set of this choice is
M3 ⊗M4. However, due to Prop. 7, these two spokes must be adjacent, thus contradicting the fact that
p = 3.

For case (ii), assume that the double sets form the sequence (M1 ⊗M3) − [M1 ⊗M2] − (M2 ⊗M3).
Prop. 18 implies that the set M4 must appear at the double sets of the two spokes adjacent to this
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structure. No matter which of the double sets, composed of M4, will be used for these two spokes, the
remaining double sets for the seventh spoke will always violate Prop. 18. Hence, this case is also infeasible.

For case (iii), assume that the double sets form the sequence (M1 ⊗M3)− [M1 ⊗M2]− (M2 ⊗M4).
By Prop. 18, the double set of the second spoke adjacent to (M1⊗M3) must contain the set M4. For the
same reason, the second spoke adjacent to (M2 ⊗M4) must contain the set M3. Whatever the choice of
these two double sets, the last spoke to be added for completing the wheel must be based on M1 ⊗M2,
which contradicts Prop. 7. Thus,

∣∣W 3
c (K1

3 )
∣∣ ≥ 2.

For p = 4 (p = 5), if
∣∣W p

c (K1
3 )

∣∣ ≤ 2 (
∣∣W 5

c (K1
3 )

∣∣ ≤ 4), we need more than six sets to cover all the
spokes of a wheel of size 9 (11). Thus,

∣∣W 4
c (K1

3 )
∣∣ ≥ 3 and

∣∣W 5
c (K1

3 )
∣∣ ≥ 5. It follows that

∣∣W 5
c (K1

3 )
∣∣ = 5.

Two important implications of the previous proposition as examined in the following lemmas.

Lemma 21 Let Dp denote the number of distinct double sets of the spokes of a wheel. For
∣∣H2(c)

∣∣ = 0,

p + 1 ≤ Dp ≤ min{6, p + 2}, 2 ≤ p ≤ 5

Proof. Observe that Dp = 2p + 1 − ∣∣W p
c (K1

3 )
∣∣. Substituting from the inequalities of Prop. 20, we

obtain the result.

Lemma 22 Let Up denote the number of spokes not belonging to a K1
3 . For

∣∣H2(c)
∣∣ = 0,

Up =

{
1 or 3, for 2 ≤ p ≤ 4
1, for p = 5

Proof. Observe that Up = 2p+1− 2
∣∣W p

c (K1
3 )

∣∣. Substituting
∣∣W p

c (K1
3 )

∣∣ by its bounds obtained from
Prop. 20 yields the result.

Let us now focus on the conditions determining whether a rim edge can be a triple link.

Proposition 23 Consider a configuration of four consecutive spokes such that the two middle spokes
form a K1

3 . Then:

(a) the ground set of the rim edge of a K1
3 is a double set if four sets appear in the double sets of the

four consecutive spokes.

(b) the ground set of the rim edge of a K1
3 can be a triple set only if three single sets appear in the double

sets of the four consecutive spokes. The triple set consists of these three sets.

Proof. Let cs, ct, cr, cu be four consecutive rim nodes such that K1
3 (ct, cr). Consequently, we have

K2
3 (cs, ct), K2

3 (cr, cu). Assume that c ∩ ct, c ∩ cr ∈ M1 ⊗M2.
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(a) If (ct, cr) is based on the triple set then this is either M1 ⊗M2 ⊗M3, or M1 ⊗M2 ⊗M4. There are
two cases if four single sets appear in the four double sets:

Case i: The same set appears in all double sets.

Assume that c∩ cs ∈ M1⊗M3, c∩ cu ∈ M1⊗M4. Then, cs∩ ct ∈ M1⊗M4, cr ∩ cu ∈ M1⊗M3

(Prop. (16)). If ct ∩ cr ∈ M1 ⊗M2 ⊗M3 then ct ∩ cu ∈ M1 ⊗M3. If ct ∩ cr ∈ M1 ⊗M2 ⊗M4

then cs ∩ cr ∈ M1 ⊗M4.

Case ii: No single set appears in all double sets.

Assume that c∩ cs ∈ M1⊗M3, c∩ cu ∈ M2⊗M4. Then, cs∩ ct ∈ M1⊗M4, cr ∩ cu ∈ M2⊗M3

(Prop. (16)). If ct ∩ cr ∈ M1 ⊗M2 ⊗M3 then ct ∩ cu ∈ M2 ⊗M3. If ct ∩ cr ∈ M1 ⊗M2 ⊗M4

then cs ∩ cr ∈ M1 ⊗M4

It follows that (ct, cr) cannot be based on a triple set, since this would imply the existence of a
chord between either cs, cr or ct, cu.

(b) As shown in (a), if the double sets of the four spokes consist of all the four sets, the rim edge of
the K1

3 (ct, cr) is based on a double set. Consider, alternatively, that only three sets appear in the
double sets of the four spokes. Without loss of generality, let c∩ cs ∈ M1 ⊗M3, c∩ cu ∈ M2 ⊗M3.
According to Prop. (16), cs ∩ ct ∈ M1 ⊗M4, cr ∩ cu ∈ M2 ⊗M4. Hence, (ct, cr) can be based on
the triple set M1 ⊗M2 ⊗M3 without any of the chords (cs, cr), (ct, cu) being formed.

Proposition 24 Consider two 1-distant K1
3 . The rim edge of only one of them can be based on a triple

set.

Proof. Assume that the first K1
3 is based on M1 ⊗M2 and the second on M1 ⊗M3. The rim edge

of the K2
3 adjacent to these two K1

3 is based on M1 ⊗ M4 (Prop. 16). If the rim edges of the two K1
3

were both based on a triple set, this set could only be M1 ⊗M2 ⊗M3. If not, we would have a triple set
consisting of M4, in which case a chord would be formed. Then, the double set of the spoke adjacent to
the first K1

3 , which does not belong to the second K1
3 , can only be M2 ⊗M3 (Prop. 23). By the same

argument, the spoke which is adjacent to the second K1
3 , but does not belong to the first K1

3 , is based
on M2 ⊗M3. By Prop. 7, the two spokes must be adjacent, therefore inducing a wheel of even size.

Before proceeding, let us summarise the last two propositions.

Remark 25 Two necessary conditions for the rim edge of a K1
3 to be based on a triple set are:

(a) The double sets of the adjacent (to the K1
3) spokes and the double set of K1

3 must be composed of
three sets (Prop. 23).

11



(b) If there exists another K1
3 , 1-distant from the K1

3 in question, then it must have a rim edge based on
a double set (Prop. 24).

The following result is the counterpart of Prop. 20, regarding triple links of the rim.

Proposition 26 Let Tp denote the number of rim edges based on triple sets. For
∣∣H2(c)

∣∣ = 0,

0 ≤ Tp ≤ min{3, p− 1}, 2 ≤ p ≤ 5

Proof. The lower bound is trivial. Concerning the upper bound for p ≤ 4, consider a wheel with∣∣W p
c (K1

3 )
∣∣ = p − 1. This is the wheel with the maximum possible number of K1

3 which are at least
2-distant from each other. For each of these wheels, the rim edges of their K1

3 can be based on triple sets
since both conditions of Props. 23 and 24 can be made satisfiable. For p = 5, the five K1

3 are all adjacent,
therefore at most three of them are 2-distant, implying T5 = 3 (Prop. 24).

Observe that, for 2 ≤ p ≤ 4, the upper bound on Tp is obtained for |W p
c | = p− 1.

Corollary 27 For
∣∣H2(c)

∣∣ = 0, if
∣∣W p

c (K1
3 )

∣∣ = p then Tp ≤ p− 2.

Proof. If there are p K1
3 in a wheel, they are bound to be consecutive, i.e. 1-distant. According to

Prop. 24, for each pair of consecutive K1
3 we can have only one rim edge based on a triple set. Hence,

for p ≥ 4, Tp ≤ p − 2 and for 2 ≤ p ≤ 3, Tp ≤ p − 1. We will show that this bound cannot be obtained
for the latter case.

For p = 2, assume a wheel having two K1
3 , one based on M1 ⊗M2 and the other on M2 ⊗M3. Then,

the double set of the fifth spoke must contain M4 (Prop. 18). This makes impossible the existence of a
triple-set rim edge for either K1

3 (Prop. 23).
Before examining the case for p = 3, we prove an intermediate lemma.

Lemma 28 For
∣∣H2(c)

∣∣ = 0, each triple set appearing at a rim edge is distinct.

Proof. For p = 2, we have already shown that we cannot have a wheel with two rim edges based
on triple sets. For p ≥ 3, suppose that there are two rim edges based on the same triple set. Assume
that the triple set is M1 ⊗M2 ⊗M3. According to Prop. 23, for this triple link, a series of four spokes is
required, all of them based on the three double sets which are components of the above triple set. Hence,
for the two triple-set rim edges we need two such four-spoke structures. It is easy to see that this cannot
be done because then Prop. 7 would be violated for at least one double set.

(Back to the proof of Cor. 27) For p = 3, if
∣∣W 3

c (K1
3 )

∣∣ = 3, then the wheel contains a spoke having
a uniquely appearing double set. In order to have two rim edges, each based on a distinct triple set
(Lem. 28), then these must appear at the two K1

3 adjacent to that spoke (Prop. 24). Assume that the
double set of this spoke is M1 ⊗ M2. Due to Prop. 23 these sets must have M1 ⊗ M2 as component.
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According to Rem. 2, these triple sets are M1⊗M2⊗M3 and M1⊗M2⊗M4. This implies the sequence
(M1 ⊗ M2) − [M2 ⊗ M3] − (M1 ⊗ M3) − (M1 ⊗ M4) − [M2 ⊗ M4], contradicting our assumption that∣∣W 3

c (K1
3 )

∣∣ = 3.

Theorem 29 For
∣∣H2(c)

∣∣ = 0, a wheel of size 2p + 1 exists if and only if n ≥ max{3, p}.

Proof. We show that there exists no wheel of size 2p + 1 with n < max{3, p} and afterwards we
exhibit wheels having n = max{3, p}. First, we need to prove two intermediate results.

Lemma 30 Let cs, ct ∈ H(c). Then mi(cs) = mi(ct) (for some i ∈ {1, . . . , 4}), if and only if either
mi(cs) = mi(c) and mi(ct) = mi(c), or cs, ct are adjacent.

Proof. The “if” part is trivial. For the “only if” part, assume that cs, ct are not adjacent and
mi(cs) = mi(ct), with mi(cs), mi(ct) 6= mi(c). By hypothesis, the double sets of (c, cs), (c, ct) have a single
set in common. Hence, there exists Mj (i 6= j and i, j ∈ {1, ..., 4}), such that mj(cs),mj(ct) = mj(c).
Thus (cs ∩ ct) ∈ Mi ×Mj , which implies the existence of chord (cs, ct).

Lemma 31 Four consecutive spokes require n ≥ 3.

Proof. Let c1, c2, c3, c4 denote four consecutive rim nodes.
First assume that K3(c2, c3) is of type 1. We will show that the lower bound on n is not affected by

whether (c2, c3) is based on a triple set. Assume that |c2 ∩ c3| = 3. It follows that we need at least three
distinct values for the index of the fourth set; one for each of the nodes c2, c3 and c. The same is true for
the case of |c2 ∩ c3| = 2, where we require three distinct values for the indices of at least two sets. In an
analogous fashion, if K3(c2, c3) is of type 2, requires n ≥ 3.

(Back to the proof of Thm. 29) For p = 2, 3 the result holds by Lem. 31.
Let ct, ct+1 ∈ H(c), such that K2

3 (ct, ct+1). Consider the set Ĥ ⊂ H(c) such that Ĥ = {ct} ∪
{ct+1+2r (mod n) ∈ H(c) : r = 0, . . . , p−1}. Therefore,

∣∣∣Ĥ
∣∣∣ = p+1. Observe that none of the nodes of the

set Ĥ is adjacent with another node in Ĥ, except for ct, ct+1. Notice that nodes ct and ct+1 are chosen
in such a way that c ∩ ct 6= c ∩ ct+1. If QĤ denotes the set of the double sets of the spokes (c, q) for all
q ∈ Ĥ, then

∣∣QĤ

∣∣ = p + 1. For the case of p = 4,
∣∣QĤ

∣∣ = 5. We observe that, for any collection of five
distinct double sets, there are exactly two single sets each appearing at exactly two out of five double
sets. Without loss of generality assume that M4 is one of these two sets. As a result, there are exactly
three spokes, whose rim nodes belong to Ĥ, that are based on double sets not containing M4. The rim
nodes of these three spokes have distinct values for index m4 ∈ M4 since either

(a) no two of those are adjacent (Lem. 31), or

(b) two of them are adjacent, but with a different value for index m4, while the third is not adjacent to
any of these two; in this case, by Lem. 31, this third node requires a value for m4 different from any
of the other two.
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0c c

21 MM ⊗

32 MM ⊗

41 MM ⊗42 MM ⊗

1c

5c

2c 3c

4c

0c
31 MM ⊗

)( 321 MMM ⊗⊗

Figure 2: A structure of three K1
3 consisting three sets.

On the other hand, since these three nodes are incident to spokes that are based on double sets not
containing M4, the value of m4 at the hub is different from any of the values of m4 at the three spokes.
Thus, for p = 4 we need four distinct values for at least one of the indices, i.e. n ≥ 4.

For p = 5, we consider two cases with respect to whether the double sets of the three consecutive K1
3

structures consist of three or four single sets.

Case (i): Assume that the three single sets are M1, M2,M3. The structure is shown in Figure 2 (the
double set of a K1

3 appears exactly once in the figure). Regardless of whether the edge (c3, c4) is
based on a double or a triple set, we need at least five distinct values for the index of the set M4,
namely for nodes c, c0, c1, c3, c5.

Case (ii): If the wheel embeds no structure of the type described in Case (i), then the double sets of
the distinct spokes in the two 0-distant K2

3 do not have a set in common (spokes (c, c1), (c, c10) in
Figure 3). The only wheel configuration for this case is illustrated in Figure 3, where the spoke
with the unique double set (M2⊗M3) is (c, c0). Observe that even if we consider the two rim edges
(c1, c2) and (c9, c10) based on triple sets, we need at least five distinct values for the indices of the
sets M2,M3.

To show that the lower bound max{3, p} is attainable, we exhibit in Table 1, wheels for p = 2, 3, 4, 5.
For all wheels, the hub is (n, n, n, n), whereas the rim nodes are illustrated as cyclic sequences of tuples.
The proof is now complete.
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32 MM ⊗
0c

8c

2c

6c

c

4c

1c 3c

5c

7c

9c

10c
43 MM ⊗

42 MM ⊗

41 MM ⊗

31 MM ⊗
21 MM ⊗

Figure 3: A wheel where any sequence of three K1
3 consists of four sets.

Table 1: Wheels with n = max{3, p}
p Rim nodes
2 (i0, n, n, l1)− (n, n, k0, l1)− (n, n, k1, l0)− (n, j0, n, l0)− (i0, j0, n, n)

3
(i0, n, k0, n)− (i0, n, n, l1)− (n, n, k1, l1)− (n, n, k1, l0)−
(n, j1, n, l0)− (n; j0, n, l1)− (n, j0, k0, n)

4 (i1, n, n, l1)− (n, n, k0, l1)− (n, n, k1, l0)− (n, j1, n, l0)− (n, j0, n, l2)−
(i2, j0, n, n)− (i0, j2, n, n)− (i0, n, k2, n)− (i1, n, k2, n)

5
(i1, n, n, l1)− (n, n, k2, l1)− (n, n, k2, l0)− (n, j2, n, l0)−
(n, j0, n, l2)− (n, j0, k0, n)− (n, j1, k0, n)− (i2, j1, n, n)−
(i0, j3, n, n)− (i0, n, k1, n)− (i1, n, k1, n)
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Note that it is not necessary to have the maximum possible number of triple links in order to achieve
the lower bound for n. For example, the wheel illustrated in Table 1, for p = 4, has exactly one triple
link (edge ((i0, n, k2, n), (i1, n, k2, n))), although there exist wheels of the same size with three triple links
(Prop. 26). This completes the characterisation of wheels having no spokes based on a triple set. Next
section discusses the properties of the remaining wheel classes.

4 Wheels with
∣∣H2(c)

∣∣ ≥ 1

Wheels of this class have spokes based on double as well as on triple sets. Their main properties analysed
are analogous to the properties discussed in the previous sections. We first characterise the spokes.

Lemma 32 Two spokes, each based on a triple set, must be adjacent.

Proof. Let cs, ct ∈ H2(c). Then the spokes (c, cs), (c, ct) have at least one double set in common
(Rem. 2). It follows that, unless nodes cs and ct are adjacent, a chord will be formed.

Corollary 33
∣∣H2(c)

∣∣ ≤ 2.

Proof. For p ≥ 2, if more than three spokes are based on triple sets, not all of them can be adjacent,
as required by Lem. 32.

The above corollary allows to distinguish between wheels with
∣∣H2(c)

∣∣ = 1 and those with
∣∣H2(c)

∣∣ = 2.
If

∣∣H2(c)
∣∣ = 1, then

∣∣Wc(K3
3 )

∣∣ = 2. The two K3
3 are 0-distant and share the spoke based on the triple

set. On the other hand, if
∣∣H2(c)

∣∣ = 2, then
∣∣Wc(K3

3 )
∣∣ = 2,

∣∣Wc(K4
3 )

∣∣ = 1. The two K3
3 are 1-distant

each including a different triple-set spoke.

Proposition 34 The double set of a spoke participating on a K3
3 , is a component of the triple set of the

other spoke of K3
3 .

Proof. Let cs, ct ∈ H2(c) be two rim adjacent nodes such that spokes (c, cs) and (c, ct)) are based
on a double and triple set, respectively. Clearly, cs, ct induce a K3

3 . Assume that c ∩ cs ∈ M1 ⊗M4 and
c ∩ cs ∈ M1 ⊗M2 ⊗M3, i.e. the double set of the one spokes is not part of the triple set of the other.
Then, cs, ct have exactly one index in common, namely m1(c) = m1(cs) = m1(ct). Hence, the two nodes
are not connected, which is a contradiction.

We say that K3
3 is based on the double set, which is the ground set of the one spoke and the component

of the triple set of the other. Similarly, K4
3 is based on the double set, which is the common component

of the two triple sets (Rem. 2).

Proposition 35 The triple set of a spoke is unique with respect to other triple sets of the spokes of the
same wheel. Equivalently, the triple sets of the two spokes of a K4

3 are distinct.
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Proof. Let cs, ct ∈ H2(c) such that (c ∩ cs), (c ∩ ct) ∈ M1 ⊗M2 ⊗M3. By Lem. 32, the two spokes
are adjacent. Let cr denote the second rim node adjacent to ct. The spoke (c, cr) is based on a double set
(Cor. 33). Thus, the nodes ct, cr induce a K3

3 . The double set of (c, cr) must be one of the three double
sets composing M1 ⊗M2 ⊗M3. Hence, cr has two indices in common to cs implying the existence of the
chord (cs, cr).

The following proposition unifies results accomplished for all K3 structures. Its implications allow us
to better characterise the adjacency of different K3 in a wheel.

Proposition 36 The double set of a K1
3 , (K3

3), (K4
3) does not appear at any other spoke not belonging

to the same K1
3 , (K3

3), (K4
3).

Corollary 37 For
∣∣H2(c)

∣∣ = 1, a K3
3 is adjacent to the second K3

3 and one K2
3 . For

∣∣H2(c)
∣∣ = 2, a K3

3

is adjacent to the K4
3 and a K2

3 .

Proposition 38 For each triple-set spoke, one of the double sets forming it does not appear at any other
spoke of the wheel. This is the double set not appearing at the other spokes of the two adjacent K3

containing it.

Proof. Let cs ∈ H2(c). If
∣∣H2(c)

∣∣ = 1 then the triple-set spoke (c, cs) belongs to two 0-distant K3
3 ,

each based on a distinct double set. These double sets are among the components of the triple set of the
spoke (c, cs) (Props. 34, 36). The third double set cannot appear at any other spoke of the wheel because
there will be a chord connecting the node incident to it and cs. In a similar manner, we prove the case
of

∣∣H2(c)
∣∣ = 2.

The first significant property to be established is the maximum size of wheels with triple-set spokes.

Proposition 39
p ≤ 4, for

∣∣H2(c)
∣∣ = 1

p = 2, for
∣∣H2(c)

∣∣ = 2

Proof. For
∣∣H2(c)

∣∣ = 1, there are two 0-distant K3
3 . These require exactly three double sets, none of

which appears at any other spoke of the wheel (Props. 36, 38). Hence, only three double sets can appear
at the remaining spokes. Given that a double set appears at no more than two spokes (Prop. 7), there
can exist at most six spokes in addition to the three forming the two 0-distant K3

3 . Hence, p ≤ 4.
For

∣∣H2(c)
∣∣ = 2, there are four spokes forming two 1-distant K3

3 and one K4
3 . We need two double

sets for the two K3
3 and one double set for the K4

3 . All these double sets cannot appear at any other
spoke of the wheel (Prop. 36). For each of the two triple sets, there is a double set that cannot be used at
any other spoke due to Prop. 38. Hence, only one double set remains available for any additional spoke.
Because the wheel must be of odd size, p = 2.

Next, we exhibit properties of rim edges.

17



Lemma 40 The rim edge of a K3
3 is based either

(a) on the ground set of the K3
3 , or

(b) on a triple set consisting of the two sets of the ground set of the K3
3 and the set not appearing at the

ground set of any of the spokes of K3
3 .

Proof. Let cs ∈ H1(c), ct ∈ H2(c), such that c∩cs ∈ M1⊗M2, c∩ct ∈ M1⊗M2⊗M3. It follows that
m1(cs) = m1(c) = m1(ct), m2(cs) = m2(c) = m2(ct) and m3(cs) 6= m3(c) = m3(ct). If m4(cs) 6= m4(ct)
we obtain case (a); otherwise, we have case (b).

Lemma 41 The rim edge of a K4
3 is based on the ground set of K4

3 .

Proof. Let cs, ct ∈ H2(c). Obviously, the two indices of the double set of the K3
3 have identical

values at nodes c, cs, ct. The third index appears in one of cs, ct and also in c. Similarly, the fourth index
is the second of nodes cs, ct and again in c. Thus, (c1, c2) is based on the double set of the K3

3 .

Lemma 42 For
∣∣H2(c)

∣∣ = 1, the rim edge of only one of the two 0-distant K3
3 can be based on a triple

set.

Proof. The rim edges of the two 0-distant K3
3 are adjacent edges of an odd hole. It is easy to see

that any two adjacent edges of an odd hole being based on triple sets implies the existence of a chord.

Proposition 43 Consider the K2
3 adjacent to a K3

3 (Cor. 37). Then, the spoke of K2
3 not belonging to

K3
3 , is based on a double set consisting of one of the sets forming the ground set of K3

3 and the set not
present at the triple set of the corresponding spoke of K3

3 .

Proof. Let cs, ct, cr be three consecutive nodes of the rim such that cs, ct ∈ H1(c) and cr ∈ H2(c).
Assume that c ∩ ct ∈ M1 ⊗M2 and c ∩ cr ∈ M1 ⊗M2 ⊗M3. Hence, nodes cs, ct induce a K2

3 (Cor. 37)
The double set of (c, cs) must have one set in common with M1⊗M2 (Prop. 11). Assume that this set is
M1. The second set of the double set cannot be M3 because then a chord (cs, cr) would be formed. The
only remaining option is M4.

The following corollaries explore further structural issues.

Corollary 44 If there exists a K1
3 which is 1-distant from a K3

3 , then its double set consists of one of
the sets forming the ground set of K3

3 and the set not present at the triple set of the corresponding spoke
of K3

3 .

Proof. The 1-distant K1
3 is adjacent to a K2

3 which is adjacent to the K3
3 . By Prop. 43, the double

set of the spoke of K2
3 , not belonging to K3

3 has this property. This spoke belongs to K1
3 as well, therefore

the second spoke of K1
3 also has this property.
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Corollary 45 If there exists a K1
3 , which is 1-distant from a K3

3 whose rim edge is based on a triple set,
then its rim edge can be based only on the same triple set as the rim edge of K3

3 .

Proof. Let c0, c1, c2, c3 be four consecutive rim nodes such that c0, c1, c2 ∈ H1(c), c3 ∈ H2(c) and
K1

3 (c0, c1). Suppose that c∩c3 ∈ M1⊗M2⊗M3, c∩c2 ∈ M1⊗M2. Then, c∩c1 ∈ M1⊗M4 (Cor. 37) and
c∩ c0 ∈ M1⊗M4 (Cor. 44). If (c2, c3) is based on a triple set, then this set is M1⊗M2⊗M4 (Prop. 40).
The ground set of (c1, c2) is M1 ⊗M3. The ground set of (c0, c1) consists of the sets M1,M4 and, if it
is a triple set, M2. Observe that the third set cannot be M3 because then we would have two adjacent
edges of an odd hole based on a double and a triple set having this double set as component. It is not
difficult to show that in such a case a chord is formed.

At this point, we can provide characterisation results analogous to those of the previous section. The
number of K1

3 structures is evidently a significant factor in our classification. The same holds for the
number of triple-set rim edges.

Proposition 46 For
∣∣H2(c)

∣∣ = 1,

p− 2 ≤
∣∣W p

c (K1
3 )

∣∣ ≤ p− 1, for p = {2, 3},
∣∣W 4

c (K1
3 )

∣∣ = 3

Proof.
∣∣H2(c)

∣∣ = 1 implies two 0-distant K3
3 . As observed in the proof of Prop. 39, the three sets

appearing in this configuration cannot appear at any other spoke of the wheel (Props. 36, 38). For each
of the remaining double sets we can have two spokes, yielding

∣∣W p
c (K1

3 )
∣∣ ≤ p − 1, for p ∈ {2, 3, 4}. For

p = 4, this inequality is satisfied as equality. This is because the only way to have a wheel of size 9,
for

∣∣H2(c)
∣∣ = 1, is to have two spokes based on each of the three remaining double sets. For p = 3, we

have three double sets to cover four spokes, thus
∣∣W 3

c (K1
3 )

∣∣ ≥ 1. For p = 2, we can have a wheel with∣∣W 2
c (K1

3 )
∣∣ = 0, for example:

(M1 ⊗M2)− (M1 ⊗M2 ⊗M3)− (M2 ⊗M3)− (M3 ⊗M4)− (M1 ⊗M4)

Proposition 47 For
∣∣H2(c)

∣∣ = 1, 0 ≤ Tp ≤ p− 1.

Proof. The lower bound is trivial. For the upper bound, we consider wheels with
∣∣W p

c (K1
3 )

∣∣ = p− 1.
Given that the rim edge of only one of the two K3

3 can be based on a triple edge, it remains to show that
the rim edges of at most p− 2 K1

3 can be based on a triple set.
For p = 2, assume that the two 0-distant K3

3 consists of the sequence (M1⊗M2)− (M1⊗M2⊗M3)−
(M2 ⊗M3). By Prop. 43, set M4 must appear at the double sets of the two remaining spokes. In the
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case that these two spokes form a K1
3 , its rim edge cannot be based on a triple set because then there

will be four consecutive spokes with all four sets appearing in their double sets (Prop. 23).
For p = 3, we can have at most two K1

3 , which are 1-distant. According to Prop. 24, only the rim
edge of one of the two K1

3 can be based on a triple set. For p = 4, we can have at most three consecutive
K1

3 . Via the same argument, the rim edge of only two of these three K1
3 can be based on a triple set.

Lemma 48 Let Dp be defined as in Lem. 21. By convention, the triple set of the spoke incident to a
node belonging to H2(c) increases Dp by 3. For

∣∣H2(c)
∣∣ = 1:

p + 2 ≤ Dp ≤ min{6, p + 3}, 2 ≤ p ≤ 4

Proof. There are three distinct double sets to be used for the spokes of the two 0-distant K3
3 .

Additionally for

p = 2 : we can have one or two distinct double sets for the two remaining spokes. In total, 4 ≤ D2 ≤ 5.

p = 3 : we can have two or three distinct double sets for the four remaining spokes. In total, 5 ≤ D3 ≤ 6.

p = 4 : all three sets are used for the six remaining spokes. Thus, D4 = 6.

Lemma 49 For
∣∣H2(c)

∣∣ = 2, we have
∣∣W 2

c (K1
3 )

∣∣ = 0 and 0 ≤ T2 ≤ 2, where T2 is defined as in Prop. 26.

Proof. For
∣∣H2(c)

∣∣ = 2, there are only wheels of size 5 (Prop. 39). Each of these wheels includes
two 1-distant K3

3 and one K4
3 adjacent to the two K3

3 . Thus,
∣∣W 2

c (K1
3 )

∣∣ = 0. It follows that only the rim
edges of the two K3

3 structures can be based on triple sets. Therefore, 0 ≤ T2 ≤ 2.
The final aspect to be addressed is the minimum value of n required for wheels with

∣∣H2(c)
∣∣ = 1.

Theorem 50 For
∣∣H2(c)

∣∣ = 1, a wheel of size 2p + 1 exists if and only if n ≥ max{3, p}.

Proof. To show that no wheel exists for n < max{3, p}, we first prove the following lemma.

Lemma 51 Two 0-distant K3
3 imply n ≥ 3.

Proof. Let cs, ct, cr denote three consecutive rim nodes such that cs, cr ∈ H1(c) and ct ∈ H2(c). The
edge (c, ct) is based on a triple set. Thus, the value of the index of the fourth set in ct is different from
the value of the same index in c. This index value is also different in the nodes cs, cr and the hub because
the double sets of the spokes (c, cs) and (c, cr) are components of the triple set of (c, ct). On the other
hand, observe that this index can have the same value as in ct in only one of nodes cs, cr. Thus, we need
at least three distinct values for this index, i.e. one for c, one for cs, ct (ct, cr) and one for cr (cs).
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Table 2: Wheels with n = max{3, p} for H2(c) = 1
p Rim nodes
2 (i0, n, n, l0)− (n, n, n, l0)− (n, n, k0, l1)− (i1, n, k0, n)− (i0, n, k1, n)

3 (n, j0, n, l0)− (n, n, n, l0)− (n, n, k0, l1)− (i0, n, k0, n)−
(i0, j1, n, n)− (n; j1, k1, n)− (n, j0, k1, n)

4
(n, n, k0, l0)− (n, n, n, l0)− (i2, n, n, l1)− (i2, j1, n, n)−
(i0, j1, n, n)− (i0, n, k2, n)− (i1, n, k1, n)− (n, j0, k1, n)− (n, j0, k0, n)

(Back to the proof of Thm. 50) Lem. 51 proves the result for p = 2, 3. For p = 4, we use exactly the
same method as in the corresponding case in the proof of Thm. 29, with the additional restriction that t

should be chosen in a way that the node belonging to H2(c) is not included in Ĥ.
In Table 2 we illustrate wheels for p = 2, 3, 4 with n = 3, 3, 4, respectively.

Lemma 52 For
∣∣H2(c)

∣∣ = 2, a wheel of size 5 exists if and only if n ≥ 2.

Proof. We need at least n > 1 in order for a wheel to exist. For
∣∣H2(c)

∣∣ = 2 we have p = 2 (Prop. 39).
The following wheel has

∣∣H2(c)
∣∣ = 2, p = 2 and n = 2.

(n, n, k0, l0)− (n, n, k0, n)− (i0, n, n, n)− (i0, j0, n, n)− (n, j0, n, l0)

This completes the structural properties of wheels. Apart from providing a concise description, these
results are critical for the classification scheme and the recognition algorithm presented next.

5 Classification

In Sections 3, 4, we have explicitly categorised wheels into three main families, one for each of the values
of

∣∣H2(c)
∣∣ (

∣∣H2(c)
∣∣ ∈ {0, 1, 2}). However, the recognition of classes of wheel-induced inequalities requires

a more elaborate classification scheme. This scheme, apart from the values of
∣∣H2(c)

∣∣ and p, takes also
into account structures based on ground sets. These are, primarily, the 3-cliques of the four types as
well as their compositions and, secondarily, the rim edges. In general, for each t(t ∈ {1, 2, 3, 4}), the
cardinality of the set Wc(Kt

3) as well as the relative placement of its members within the wheel yields
the specific characteristics of each class. For each such class, we can further derive subclasses depending
on the set of values of parameter Tp.

As shown previously, the value of
∣∣H2(c)

∣∣ determines the range of values for p (Cor. 10, Prop. 39),
|Wc(Kt

3)| , t ∈ {1, . . . , 4}, (Props. 20, 46 and Lem. 49) and, consequently, the relative positions of K3
3 , K4

3

(Cor. 37) if they exist. Hence, given the values of
∣∣H2(c)

∣∣ and p, we are interested in compositions of K1
3 ,

K2
3 that essentially define a wheel class. Observe that the roles of K1

3 , K2
3 are complementary, implying
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that it is adequate for our classification scheme to be solely based on K1
3 . Therefore, apart of the value

of
∣∣Wc(K1

3 )
∣∣, we are interested on the positions that K1

3 occupy within the wheel. This is quantified by
the parameter seq(K1

3 ), denoting the largest number of consecutive K1
3 . Clearly, seq(K1

3 ) ≤
∣∣Wc(K1

3 )
∣∣,

equality holding only if all K1
3 are consecutive.

The compositions of K1
3 and the way they interrelate to K3 of other types, within a wheel structure,

are explored through the notion of a 3-sequence. In general terms, a 3-sequence is a composite structure
consisting of a consecutive occurrence of three structures based on ground sets. We are specifically
interested on 3-sequences involving K1

3 . Our classification is derived from two 3-sequence configurations.
The first configuration consists of three consecutive K1

3 , to be denoted as K1
3 −K1

3 −K1
3 . Observe that,

if
∣∣H2(c)

∣∣ = 0, this structure requires p ≥ 3, since every two consecutive K1
3 are 1-distant, while the

structure intervening between the two K1
3 is a K2

3 (Cor. 8). The second configuration consists of a K1
3

with its two adjacent spokes both based on double sets. Two K2
3 are formed, each sharing a spoke with

the particular K1
3 . Hence, this structure is denoted as a K2

3 −K1
3 −K2

3 .
Both 3-sequences are related to three double sets. For K1

3−K1
3−K1

3 , we have one double set for each of
K1

3 . For K2
3−K1

3−K2
3 , the three double sets are the double set of the first spoke not belonging to K1

3 , the
double set of K1

3 and the double set of the second spoke not belonging to K1
3 . Thus, both configurations

result in a 3-sequence of double sets. We distinguish three distinct types called 3, 4a and 4b. Type 3
implies that the three double sets are composed of three single sets (e.g. M1⊗M2−M1⊗M3−M2⊗M3).
Type 4 implies that the three double sets are composed of four sets. 4a implies that one of the single sets
appear in every double set (e.g. M1 ⊗M2 −M1 ⊗M3 −M1 ⊗M4). Exactly the opposite is implied by
4b (e.g. M1 ⊗M2 −M2 ⊗M3 −M3 ⊗M4). Observe that each configuration [K1

3 −K1
3 −K1

3 , t] embeds a
configuration [K2

3 −K1
3 −K2

3 , t], t ∈ {3, 4a, 4b}.
The concepts discussed above are encoded into the class identity string, uniquely associated with each

class. This string has the format

∣∣H2(c)
∣∣− p− ∣∣Wc(K1

3 )
∣∣− seq(K1

3 )− (3, 4a, 4b)K1
3−K1

3−K1
3 − (3, 4a, 4b)K2

3−K1
3−K2

3

where (3, 4a, 4b) denotes the number of 3-sequences of type 3, 4a, 4b, respectively, for K1
3 −K1

3 −K1
3 and

K2
3 −K1

3 −K2
3 . In this string, the parameters appear in decreasing order with respect to their importance

concerning class categorisation.
The values of the parameters composing the class identity string, for all distinct wheel classes, are

illustrated in Table 3. For reference, each class is assigned a number. The following theorem establishes
that our classification is complete.

Theorem 53 All wheel classes of the GA(C, EC) are illustrated in Table 3.

Proof. The distinct wheel classes are revealed through considering the different values of the param-
eters embedded in the class identity string, in the order from left to right. All assumptions on the double
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Table 3: The Wheel classes of GA(C, EC).
Num.

∣∣H2(c)
∣∣ p

∣∣W p
c (K1

3 )
∣∣ seq(K1

3 ) K1
3 −K1

3 −K1
3 K2

3 −K1
3 −K2

3

3 4a 4b 3 4a 4b

1 0 2 2 2 0 0 0 0 2 0
2 0 2 1 1 0 0 0 1 0 0
3 0 2 1 1 0 0 0 0 0 1
4 0 3 3 3 0 0 1 1 1 1
5 0 3 3 3 0 0 1 0 0 3
6 0 3 3 3 1 0 0 1 0 2
7 0 3 2 2 0 0 0 1 1 0
8 0 3 2 1 0 0 0 2 0 0
9 0 3 2 1 0 0 0 1 0 1
10 0 4 4 4 0 0 2 2 0 2
11 0 4 4 4 0 1 1 1 1 2
12 0 4 4 4 1 1 0 2 1 1
13 0 4 4 4 1 1 0 1 2 1
14 0 4 3 3 0 0 1 2 0 1
15 0 4 3 2 0 0 0 2 1 0
16 0 4 3 1 0 0 0 2 0 1
17 0 4 3 1 0 0 0 3 0 0
18 0 5 5 5 1 1 1 2 1 2
19 0 5 5 5 0 2 1 2 2 1
20 0 5 5 5 1 2 0 3 2 0
21 0 5 5 5 2 0 1 2 2 1
22 1 2 1 1 0 0 0 0 1 0
23 1 2 0 0 0 0 0 0 0 0
24 1 3 2 2 0 0 0 0 0 2
25 1 3 2 2 0 0 0 1 0 1
26 1 3 1 1 0 0 0 1 0 0
27 1 4 3 3 0 1 0 1 1 1
28 1 4 3 3 0 1 0 2 1 0
29 2 2 0 0 0 0 0 0 0 0
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sets of the spokes are done without loss of generality.
H2(c) = 0.

p = 2.
For all subcases, assume K1

3 (c0, c1) and g(K1
3 (c0, c1)) = M1 ⊗M2.∣∣W 2

c (K1
3 )

∣∣ = 2.

The two K1
3 are consecutive. Assume K1

3 (c2, c3). Let M1 be the common set among the
double sets of K1

3 (c0, c1), K1
3 (c2, c3) (Cor. 13) by assuming g(K1

3 (c2, c3)) = M1 ⊗M3. Then, the double
set of (c, c4) must also contain the set M1. In the opposite case, c∩ c4 ∈ M3⊗M4 (Prop. 11) which then
causes violation of Prop. 18 for (c, c3), (c, c4), (c, c0). Hence if one of the sets of g((c, c4)) is M1, then the
other must be M4 (Prop. 18).∣∣W 2

c (K1
3 )

∣∣ = 1.

Observe that a configuration [K2
3 − K1

3 − K2
3 , 4a] is impossible. To prove that, consider

c ∩ c4 ∈ M1 ⊗M3, c ∩ c2 ∈ M1 ⊗M4. None of the double sets containing M1 can be used for the spoke
(c, c3); double sets M1⊗M3, M1⊗M4 are excluded because we require one K1

3 and M1⊗M2 is excluded
due to Prop. 7. The only possible double set for this spoke is M3 ⊗M4 (Prop. 11). But then Prop. 18
is violated for (c, c2), (c, c3), (c, c4). Configurations [K2

3 −K1
3 −K2

3 , 3], [K2
3 −K1

3 −K2
3 , 4b] yield classes

num. 2,3.
p = 3.

For all subcases, assume K1
3 (c0, c1) with ground set M1 ⊗M3.∣∣W 3

c (K1
3 )

∣∣ = 3.

Evidently all K1
3 must be consecutive. Thus, assume K1

3 (c2, c3), K1
3 (c4, c5) with g(K1

3 (c2, c3)) =
M1 ⊗M2 (g(K1

3 (c0, c1)), g(K1
3 (c2, c3)) must have one set in common (Cor. 13)). A configuration [K1

3 −
K1

3 −K1
3 , 4a] is impossible. To see that, assume such a configuration, i.e. g(K1

3 (c4, c5)) = M1⊗M4. The
set M1 cannot appear at g((c, c6)). This is because all the double sets involving M1 have been used for
two spokes each (Prop. 7). This implies that g((c, c6)) = M3⊗M4 (Prop. 11), which contradicts Prop. 18
for (c, c5), (c, c6), (c, c0).

A configuration [K1
3 − K1

3 − K1
3 , 4b] is formed if g(K1

3 (c4, c5)) = M2 ⊗ M4. This structure embeds
[K2

3 (c1, c2)−K1
3 (c2, c3)−K2

3 (c3, c4), 4b].Two more [K2
3−K1

3−K2
3 ] are formed, i.e. K2

3 (c3, c4)−K1
3 (c4, c5)−

K2
3 (c5, c6), K2

3 (c6, c0)−K1
3 (c0, c1)−K2

3 (c1, c2). If c ∩ c6 ∈ M1 ⊗M4(M2 ⊗M3) then the first is of type
3(4a) and the second is of type 4a(3). In both cases we have class num. 4. If c ∩ c6 ∈ M3 ⊗M4 then the
two [K2

3 −K1
3 −K2

3 ] are both of type 3 (class num. 5).
If g(K1

3 (c4, c5)) = M2 ⊗ M3 then [K1
3 (c0, c1), K1

3 (c2, c3), K1
3 (c4, c5), 3]. Observe that spoke (c, c6)

must be based on the double set M3 ⊗ M4, because the use of any other available double set will
contradict Prop. 18. Thus, c ∩ c6 ∈ M3 ⊗ M4 implies [K2

3 (c6, c1) − K1
3 (c0, c1) − K2

3 (c1, c2), 4b] and
[K2

3 (c3, c4)−K1
3 (c4, c5)−K2

3 (c5, c6), 4b] (class num. 6).∣∣W 3
c (K1

3 )
∣∣ = 2.

Either the two K1
3 are 1-distant (Case 1), or 2-distant (Case 2).

24



Case 1:
Assume, again, g(K1

3 (c2, c3)) = M1 ⊗ M2. The wheel cannot have a configuration
[K2

3 −K1
3 −K2

3 , 4b]. To see that, assume such a configuration by considering c ∩ c6 ∈ M3 ⊗M4 which
yields [K2

3 (c6, c0)−K1
3 (c0, c1)−K2

3 (c1, c2), 4b]. The remaining double sets, to be used for the two spokes
(c, c4), (c, c5), are M1 ⊗ M4, M2 ⊗ M4, M2 ⊗ M3. All combinations yield the contradiction of either
Prop. 11 or Prop. 18 involving one of (or both) the above spokes and its (their) other adjacent spokes.

If c ∩ c6 ∈ M1 ⊗M4 then [K2
3 (c6, c0)−K1

3 (c0, c1)−K2
3 (c1, c2), 4a]. Three double sets are candidates

for spokes (c, c4), (c, c5), i.e. M2⊗M4, M2⊗M3, M3⊗M4. Observe that c∩ c4 /∈ M3⊗M4 (the opposite
contradicts Prop. 11 (c, c3), (c, c4)) and c∩c4 /∈ M2⊗M4 (the opposite yields a [K2

3 −K1
3 −K2

3 , 4b], which
has been proven infeasible). Thus, c ∩ c4 ∈ M2 ⊗M3. This implies c ∩ c5 ∈ M2 ⊗M4 yielding the class
num. 7. The same class is derived if we assume c ∩ c6 ∈ M2 ⊗M3 (symmetric case).

Case 2:
Assume K1

3 (c3, c4). First, we will prove that [K1
3 (c0, c1) − (c, c2) −K1

3 (c3, c4), 4a]. Ev-
idently K1

3 (c0, c1)− (c, c2)−K1
3 (c3, c4) cannot be of type 3, because that would contradict Prop. 18 for

(c, c1), (c, c2), (c, c3). To see that type 4b is also excluded, assume c ∩ c2 ∈ M2 ⊗M3 and g(K1
3 (c3, c4)) =

M2 ⊗M4. The double sets for the remaining two spokes (c, c5), (c, c6) are M1 ⊗M2,M1 ⊗M4,M3 ⊗M4.
These two spokes are adjacent, hence the only valid combinations of double sets are either M1 ⊗
M2,M1 ⊗ M4 or M1 ⊗ M4,M3 ⊗ M4. For each pair, no matter which double set is assigned to which
spoke, a contradiction for Prop. 18 occurs, involving either the spokes (c, c4), (c, c5), (c, c6) or the spokes
(c, c5), (c, c6), (c, c0).

To implement [K1
3 (c0, c1)−(c, c2)−K1

3 (c3, c4), 4a], let c∩c2 ∈ M1⊗M2 and g(K1
3 (c3, c4)) = M1⊗M4.

Prop. 11, for spokes (c, c4), (c, c5), implies c ∩ c5 /∈ M2 ⊗M3. Prop. 11, for spokes (c, c5), (c, c6), implies
c∩ c6 /∈ M2⊗M4. If c∩ c5 ∈ M2⊗M4 and c∩ c6 ∈ M2⊗M3 then [K2

3 (c6, c0)−K1
3 (c0, c1)−K2

3 (c1, c2), 3],
[K2

3 (c2, c3)−K1
3 (c3, c4)−K2

3 (c4, c5), 3] (class num. 8). If c ∩ c5 ∈ M2 ⊗M4 and c ∩ c6 ∈ M3 ⊗M4 then
[K2

3 (c6, c0)−K1
3 (c0, c1)−K2

3 (c1, c2), 4b], [K2
3 (c2, c3)−K1

3 (c3, c4)−K2
3 (c4, c5), 3] (class num. 9).

p = 4.

For all subcases assume K1
3 (c0, c1) with g(K1

3 (c0, c1)) = M1 ⊗M2.∣∣W 4
c (K1

3 )
∣∣ = 4.

All K1
3 are consecutive. Thus, assume K1

3 (c2, c3), K1
3 (c4, c5), K1

3 (c6, c7). There are two
K1

3 −K1
3 −K1

3 structures having two K1
3 in common. It is trivial to show that the two 3-sequences cannot

be both of type 3 or 4a. Also it is impossible to have one structure of type 4b and the other of type 3.
To see that this is so, create such a configuration by assuming, for example, g(K1

3 (c2, c3)) = M2 ⊗M3,
g(K1

3 (c4, c5)) = M3 ⊗M4, g(K1
3 (c6, c7)) = M2 ⊗M4. This is infeasible because a) if c ∩ c8 ∈ M1 ⊗M3

yields a contradiction of Prop. 11 for (c, c7), (c, c8) and b) if c ∩ c8 ∈ M1 ⊗M4 yields a contradiction of
Prop. 18 for (c, c7), (c, c8), (c, c0).

The remaining cases are: (a) one of the 3-sequences is of type 4b and the other can either be of type
4b or 4a, (b) one of the 3-sequences is of type 3 and the other is of type 4a.
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Case (a) is implemented if we assume g(K1
3 (c2, c3)) = M1 ⊗ M3, g(K1

3 (c4, c5)) = M3 ⊗ M4. Then,
[K1

3 (c0, c1) − K1
3 (c2, c3) − K1

3 (c4, c5), 4b]. Further, if g(K1
3 (c6, c7)) = M2 ⊗ M4, then [K1

3 (c2, c3) −
K1

3 (c4, c5)−K1
3 (c6, c7), 4b]. Observe that c∩c8 ∈ M2⊗M3 because the alternative choice (c∩c8 ∈ M1⊗M4)

yields a contradiction of Prop. 18 for (c, c7), (c, c8)(c, c0). The resulting class is num. 10. Alternatively, if
g(K1

3 (c6, c7)) = M2⊗M3 , then [K1
3 (c2, c3)−K1

3 (c4, c5)−K1
3 (c6, c7), 4a]. Observe that c∩ c8 ∈ M2⊗M4

because the alternative choice (c∩c8 ∈ M1⊗M4) yields a contradiction of Prop. 11 for spokes (c, c7), (c, c8).
The resulting class is num. 11.

Case (b) is implemented if we assume g(K1
3 (c2, c3)) = M1⊗M3, g(K1

3 (c4, c5)) = M2⊗M3, g(K1
3 (c6, c7)) =

M3⊗M4. Then, [K1
3 (c0, c1)−K1

3 (c2, c3)−K1
3 (c4, c5), 3], [K1

3 (c2, c3)−K1
3 (c4, c5)−K1

3 (c6, c7), 4a]. Observe
that c∩ c8 ∈ M2 ⊗M4 since c∩ c8 ∈ M1 ⊗M4 yields a contradiction of Prop. 18 for (c, c7), (c, c8), (c, c0).
The resulting class is num. 12.

Class num. 13 is produced if K1
3 (c2, c3),K1

3 (c4, c5) exchange double sets, i.e. g(K1
3 (c2, c3)) = M2⊗M3

and g(K1
3 (c4, c5)) = M1 ⊗M3. Again, [K1

3 (c0, c1)−K1
3 (c2, c3)−K1

3 (c4, c5), 3], [K1
3 (c2, c3)−K1

3 (c4, c5)−
K1

3 (c6, c7), 4a].∣∣W 4
c (K1

3 )
∣∣ = 3.

The three K1
3 are either all consecutive (seq(K1

3 ) = 3), or two of them are 1-distant from
each other and the third is more than 1-distant from any of the two (seq(K1

3 ) = 2), or all of them are
more than 1-distant from each other (seq(K1

3 ) = 1). We consider each case separately.
seq(K1

3 ) = 3.
Assume K1

3 (c2, c3), K1
3 (c4, c5). Two double sets will be used for these K1

3 . Three double sets
remain each to be assigned the spokes (c, c6), (c, c7), (c, c8).

We claim that [K1
3 (c0, c1)−K1

3 (c2, c3)−K1
3 (c4, c5), 3] is impossible. This is implemented if g(K1

3 (c2, c3)) =
M1⊗M3 and g(K1

3 (c4, c5)) = M2⊗M3. The remaining double sets are M1⊗M4,M2⊗M4,M3⊗M4. Ob-
serve that c∩c6 /∈ M1⊗M4 (Prop. 11 for (c, c5), (c, c6)) and c∩c8 /∈ M3⊗M4 (Prop. 11 for (c, c8), (c, c0)).
All other possible assignments of double sets to spokes yield a contradiction of Prop. 18 either for spokes
(c, c6), (c, c7), (c, c8) or (c, c7), (c, c8), (c, c0).

It is also impossible to have [K1
3 (c0, c1)−K1

3 (c2, c3)−K1
3 (c4, c5), 4a]. To see that, create a 3-sequence

of this type by assuming that g(K1
3 (c2, c3)) = M1 ⊗M3 and g(K1

3 (c4, c5)) = M1 ⊗M4. The remaining
double sets are M2⊗M3,M2⊗M4,M3⊗M4, to be assigned each to one of three consecutive spokes. This
contradicts Prop. 18.

Next, assume g(K1
3 (c2, c3)) = M1 ⊗ M3, g(K1

3 (c4, c5)) = M3 ⊗ M4. This produces [K1
3 (c0, c1) −

K1
3 (c2, c3)−K1

3 (c4, c5), 4b]. The remaining double sets are M1 ⊗M4,M2 ⊗M3,M2 ⊗M4. Observe that
the first two sets do not have a common single set, hence they cannot be assigned to adjacent spokes.
Thus, c∩ c7 ∈ M2 ⊗M4. Also, c∩ c6 ∈ M2 ⊗M3 contradicts Prop. 18 for (c, c5), (c, c6), (c, c7). Similarly,
c∩ c8 ∈ M1⊗M4 contradicts Prop. 18 for (c, c7), (c, c8), (c, c0). Thus, we can only have c∩ c6 ∈ M1⊗M4,
c ∩ c8 ∈ M2 ⊗M3 resulting in class num. 14.

seq(K1
3 ) = 2.
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Such a configuration is formed if we assume K1
3 (c2, c3) and K1

3 (c5, c6). Observe that the
double sets of K1

3 (c0, c1), K1
3 (c2, c3) must have one set in common (Cor. 13). So, let g(K1

3 (c2, c3)) =
M1⊗M3. The 3-sequence K1

3 (c2, c3)− (c, c4)−K1
3 (c5, c6) cannot be of type 3 (contradiction of Prop. 18

for spokes (c, c3), (c, c4), (c, c5)). It cannot be of type 4a either. To see that, create such a configuration,
i.e. assume c∩ c4 ∈ M2⊗M3 (M3⊗M4) and g(K1

3 (c5, c6)) = M3⊗M4 (M2⊗M3). Then, the remaining
double sets for the two last spokes are M1 ⊗M4, M2 ⊗M4. This yields a contradiction of Prop. 18 for
spokes (c, c7), (c, c8), (c, c0).

To find out if [K1
3 (c2, c3)− (c, c4)−K1

3 (c5, c6), 4b], we examine the following alternatives, each imple-
menting such a configuration.

(a) If c ∩ c4 ∈ M1 ⊗M4, then we must have g(K1
3 (c5, c6)) = M2 ⊗M4. The remaining double sets

for the adjacent spokes (c, c7), (c, c8) are M2 ⊗M3, M3 ⊗M4. This yields a contradiction of Prop. 18 for
(c, c6), (c, c7), (c, c8).

(b) If c ∩ c4 ∈ M3 ⊗M4, then we must have g(K1
3 (c5, c6)) = M2 ⊗M4. The remaining double sets for

the two adjacent spokes (c, c7), (c, c8) are M1 ⊗M4 and M2 ⊗M3. This contradicts Prop. 11.
(c)If c∩ c4 ∈ M2⊗M3, then we must have g(K1

3 (c5, c6)) = M2⊗M4. Consequently, c∩ c7 ∈ M3⊗M4,
c∩c8 ∈ M1⊗M4. Assigning the two last double sets to the spokes in reverse order, yields a contradiction
of Prop. 11 for spokes (c, c8)(c, c0). The wheel produced belongs to class num.15.

seq(K1
3 ) = 1.

Each K1
3 is exactly 2-distant from the other two. Thus, assume K1

3 (c3, c4) and K1
3 (c6, c7). To

see that it is impossible to have [K1
3 (c0, c1)−K1

3 (c3, c4)−K1
3 (c6, c7), 4a], assume g(K1

3 (c3, c4)) = M1⊗M3,
g(K1

3 (c6, c7)) = M1⊗M4, which implements a configuration of such a type. Then, any assignment of the
remaining double sets M2⊗M3, M2⊗M4, M3⊗M4 to the spokes (c, c2), (c, c5), (c, c8) contradicts either
Prop. 11 or 18.

Next, assume g(K1
3 (c3, c4)) = M2⊗M4, g(K1

3 (c6, c7)) = M3⊗M4, yielding [K1
3 (c0, c1)−K1

3 (c3, c4)−
K1

3 (c6, c7), 4b]. There are three double sets for the remaining spokes, namely M1⊗M3, M1⊗M4, M2⊗M3.
c ∩ c5 must be based on M1 ⊗ M4 because if c ∩ c5 ∈ M2 ⊗ M3 spokes (c, c4), (c, c5), (c, c6) contradict
Prop. 18. Alternatively, if c∩c5 ∈ M1⊗M3 then the double sets of adjacent spokes (c, c4), (c, c5) contradict
Prop. 11. For analogous reasons, c ∩ c2 ∈ M2 ⊗M3, implying c ∩ c8 ∈ M1 ⊗M3. The resulting class is
num. 16.

Lastly, assume g(K1
3 (c3, c4)) = M2⊗M3, g(K1

3 (c6, c7)) = M1⊗M3, yielding [K1
3 (c0, c1)−K1

3 (c3, c4)−
K1

3 (c6, c7), 3]. The double sets of the spokes (c, c2), (c, c5), (c, c8) are uniquely defined as M2 ⊗ M4,
M3 ⊗ M4, M1 ⊗ M4, respectively (class num. 17). Observe that any other assignment will cause a
violation of either Prop. 11, or Prop. 18.

p = 5.

All five K1
3 are consecutive. Thus, assume K1

3 (c0, c1), K1
3 (c2, c3), K1

3 (c4, c5), K1
3 (c6, c7),

K1
3 (c8, c9), form three distinct 3-sequences, each having two K1

3 in common from the next.
First, we prove that these 3-sequences cannot all be of the same type (Claim 1). This is obvious for
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type 3. Type 4a is also excluded because each 3-sequence of this type presupposes the appearance of a
single set in three double sets. Consequently, for three such sequences we need three single sets, each to
appear on a triple of double sets. Observe that, for any 5 -set of double sets, there are two single sets
appearing in three double sets.

Next, assume that one of the 3-sequences is of type 4b. For example, let K1
3 (c0, c1), K1

3 (c2, c3),
K1

3 (c4, c5) be based on M1 ⊗M2, M2 ⊗M3, M3 ⊗M4, respectively. To form a second 3-sequence of the
same type K1

3 (c6, c7) should be based either on M1 ⊗M4 or M1 ⊗M3. In the first case, the remaining
double sets are M2 ⊗M4 and M1 ⊗M3. One of these sets must be assigned to (c, c9) and the other to
(c, c10), yielding a contradiction of Prop. 11. An analogous situation occurs in the second case. Therefore,
because a configuration of two 3-sequences of type 4b with two common K1

3 is infeasible, it is impossible
to have three 3-sequences, with two K1

3 in common, of type 4b. The proof of Claim 1 is now complete.
Further, we will show that among the three 3-sequences, there cannot be two of the type 4b (Claim

2). In the proof of Claim 1, we have shown that among five consecutive double sets there cannot be two
3-sequences of type 4b with two K1

3 in common. To see that we can neither have two 3-sequences of type
4b with one K1

3 in common, assume g(K1
3 (c0, c1)) = M1⊗M2, g(K1

3 (c2, c3)) = M2⊗M3, g(K1
3 (c4, c5)) =

M3 ⊗M4. Hence, [K1
3 (c0, c1),K1

3 (c2, c3), K1
3 (c4, c5), 4b]. Then, K1

3 (c6, c7) is based either on M1 ⊗M3, or
on M1 ⊗ M4, or on M2 ⊗ M4. In the first case, we have [K1

3 (c2, c3),K1
3 (c4, c5),K1

3 (c6, c7), 4a], so that
[K1

3 (c4, c5),K1
3 (c6, c7),K1

3 (c8, c9), 4b] occurs only if g(K1
3 (c8, c9)) = M1⊗M2 or g(K1

3 (c8, c9)) = M2⊗M3.
In both cases, these double sets constitute the ground sets of other K1

3 , which contradicts Prop. 7. In
the second case, we have [K1

3 (c2, c3),K1
3 (c4, c5),K1

3 (c6, c7), 4b], which was proven infeasible above. In the
third case, [K1

3 (c2, c3), K1
3 (c4, c5),K1

3 (c6, c7), 3]. Then, for K1
3 (c4, c5), K1

3 (c6, c7),K1
3 (c8, c9) to be of type

4a or 4b, M1 must appear in g(K1
3 (c8, c9)). If g(K1

3 (c8, c9)) = M1 ⊗ M2 then there is a contradiction
of Prop. 7, since this double set has also been used for K1

3 (c0, c1). If g(K1
3 (c8, c9)) = M1 ⊗ M3 then

there is a contradiction of Prop. 11 for spokes (c, c7), (c, c8). Finally, if g(K1
3 (c8, c9)) = M1 ⊗M4, then

[K1
3 (c4, c5),K1

3 (c6, c7),K1
3 (c8, c9), 4a]. The proof of Claim 2 is now complete.

Our last claim is that if there are two [K1
3 −K1

3 −K1
3 , 3], then the third 3-sequence cannot be of type

4a (Claim 3). It is easy to see that we cannot have two [K1
3−K1

3−K1
3 , 3], with two K1

3 in common. Thus,
consider a configuration, of five consecutive K1

3 , embedding two [K1
3−K1

3−K1
3 , 3] with one K1

3 in common
and a [K1

3 −K1
3 −K1

3 , 4a]. Such a configuration is implemented if we assume g(K1
3 (c0, c1)) = M1 ⊗M2,

g(K1
3 (c2, c3)) = M2⊗M3, g(K1

3 (c4, c5)) = M1⊗M3, g(K1
3 (c6, c7)) = M3⊗M4, g(K1

3 (c8, c9)) = M1⊗M4.
This implies that c ∩ c10 ∈ M3 ⊗M4, which contradicts Prop. 18 for spokes (c, c9), (c, c10), (c, c0).

There are four distinct configurations of the five K1
3 not contradicting Claims 1-3. Each of these forms
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a different wheel class (class nums. 18-21). A representative from each class is presented below.

[M1 ⊗M2]− [M1 ⊗M3]− [M1 ⊗M4]− [M3 ⊗M4]− [M2 ⊗M3]− (M2 ⊗M4)

[M1 ⊗M2]− [M1 ⊗M3]− [M1 ⊗M4]− [M2 ⊗M4]− [M3 ⊗M4]− (M2 ⊗M3)

[M1 ⊗M2]− [M1 ⊗M3]− [M1 ⊗M4]− [M3 ⊗M4]− [M2 ⊗M4]− (M2 ⊗M3)

[M1 ⊗M2]− [M2 ⊗M3]− [M1 ⊗M4]− [M2 ⊗M4]− [M3 ⊗M4]− (M1 ⊗M4)

∣∣H2(c)
∣∣ = 1.

For all subcases of this case, assume that c∩c0 ∈ M1⊗M2, c∩c1 ∈ M1⊗M2⊗M3, c∩c2 ∈ M2⊗M3.
Thus, g(K3

3 (c0, c1)) = M1⊗M2, g(K3
3 (c1, c2)) = M2⊗M3. The double sets M1⊗M4, M2⊗M4, M3⊗M4

are left for the remaining spokes (Props. 36, 38).
p = 2.

There can be either one or none K1
3 (Prop. 46).∣∣W 2

c (K1
3 )

∣∣ = 1
We must have K1

3 (c3, c4) (Cor. 37). It is impossible to have [K2
3 (c2, c3) − K1

3 (c3, c4) −
K2

3 (c4, c0), 3]. This is because the double sets of (c, c0), (c, c2) are two of the components of the triple set
(c, c1) and the third component cannot appear as a double set of any other spoke (Prop. 38). In order
for the 3-sequence above to be either of type 4a or 4b, the set M4 must appear at g(K1

3 (c3, c4)). Only
M2 ⊗M4 is a valid choice, because all alternatives lead to a contradiction of Prop. 11 either for spokes
(c, c0), (c, c4) or for (c, c2), (c, c3). The resulting class is num. 22.∣∣W 2

c (K1
3 )

∣∣ = 0
The available double sets for spokes (c, c3), (c, c4) are M1⊗M4, M2⊗M4, M3⊗M4. Observe

that if either c ∩ c3 ∈ M1 ⊗ M4, or c ∩ c4 ∈ M3 ⊗ M4, there is a contradiction of Prop. 11 for spokes
(c, c2), (c, c3) and (c, c4), (c, c0), respectively. Also observe that if c∩c3 ∈ M2⊗M4, and c∩c4 ∈ M1⊗M4,
there is a contradiction of Prop. 18 for spokes (c, c3),(c, c4), (c, c0), whereas if c ∩ c3 ∈ M3 ⊗ M4, and
c ∩ c4 ∈ M2 ⊗ M4, there is a contradiction of Prop. 18 for spokes (c, c2),(c, c3),(c, c4). Hence, c ∩ c3 ∈
M3 ⊗M4 and c ∩ c4 ∈ M1 ⊗M4 (class num. 23).

p = 3.∣∣W 3
c (K1

3 )
∣∣ = 2

We must have K1
3 (c3, c4), K1

3 (c5, c6). Observe that g(K1
3 (c3, c4)) = M1 ⊗ M4 leads to a

contradiction of Prop. 11 for spokes (c, c2), (c, c3). For the same reason, g(K1
3 (c5, c6)) 6= M3⊗M4. Thus,

the possible double sets for K1
3 (c3, c4), K1

3 (c5, c6) are either M3 ⊗M4, M1 ⊗M4, or M2 ⊗M4, M1 ⊗M4,
or M3 ⊗M4, M2 ⊗M4, respectively. In the first case, two [K2

3 −K1
3 −K2

3 , 4b] are formed (class num.24).
The second and the third case are symmetric, both yielding the class num 25.∣∣W 3

c (K1
3 )

∣∣ = 1
First we claim that, the one K1

3 must be 1-distant from one of the two K3
3 . To do this, we
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consider the alternative which is that the K1
3 is exactly 2-distant from each of the K3

3 . Thus, assume
K1

3 (c4, c5). Because the available double sets all involve the set M4, we have [K2
3 (c3, c4) −K1

3 (c4, c5) −
K1

3 (c5, c6), 4a]. Then, c∩c3 /∈ M1⊗M4 because the opposite contradicts Prop. 11. For analogous reasons,
c∩c6 /∈ M3⊗M4. If c∩c3 ∈ M3⊗M4, then the double sets of K1

3 (c4, c5), and (c, c6) are M1⊗M4, M2⊗M4,
not necessarily in this order. This yields a contradiction of Prop. 18 for spokes (c, c5), (c, c6), (c, c0). If
c∩ c3 ∈ M2⊗M4 then K1

3 (c4, c5) must be based on M3⊗M4 (remember that c∩ c6 /∈ M3⊗M4), yielding
a contradiction of Prop. 18 for spokes (c, c2), (c, c3), (c, c4). The proof of our claim is complete.

Consider that K1
3 is 1-distant from one K3

3 . Thus, assume K1
3 (c3, c4). Then, g(K1

3 (c3, c4)) 6= M1⊗M4

because the opposite contradicts Prop. 11 for (c, c2), (c, c3). Also, g(K1
3 (c3, c4)) 6= M3⊗M4. The opposite

implies that M1 ⊗M4, M2 ⊗M4 are left to be assigned to spokes (c, c5), (c, c6). Irrespectively of which
double set is assigned to which spoke, there is a contradiction of Prop. 18 for (c, c5), (c, c6), (c, c0). The
only feasible assignment is g(K1

3 (c3, c4)) = M2 ⊗M4, g((c, c5)) = M3 ⊗M4 and g((c, c6)) = M1 ⊗M4,
yielding class num. 26.

p = 4.

The three consecutive K1
3 , are of type 4a (the set M4 is common to all three double sets),

that is [K1
3 (c3, c4) − K1

3 (c5, c6) − K1
3 (c7, c8), 4a], g(K1

3 (c3, c4)) 6= M1 ⊗ M4. The opposite contradicts
Prop. 11 for (c, c2), (c, c3). For analogous reasons, g(K1

3 (c7, c8)) 6= M3⊗M4. If g(K1
3 (c3, c4)) = M2⊗M4,

then g(K1
3 (c5, c6)) = M3 ⊗M4 and g(K1

3 (c7, c8)) = M1 ⊗M4, yielding class num. 27. The same class is
produced if g(K1

3 (c3, c4)) = M3⊗M4, g(K1
3 (c5, c6)) = M1⊗M4 and g(K1

3 (c7, c8)) = M2⊗M4. However,
if g(K1

3 (c3, c4)) = M3⊗M4, g(K1
3 (c5, c6)) = M2⊗M4 and g(K1

3 (c7, c8)) = M1⊗M4 then we end up with
class num. 28.

∣∣H2(c)
∣∣ = 2.

By Prop. 39, p = 2. Assume K3
3 (c0, c1), K4

3 (c1, c2), K3
3 (c2, c3) and that c ∩ c1 ∈ M1 ⊗M2 ⊗M3,

c∩ c1 ∈ M1 ⊗M2 ⊗M4. Observe that c∩ c0, c∩ c3 /∈ M1 ⊗M2 (Prop. 36). We claim that (a) the double
sets of (c, c0) (c, c3) should have no set in common, and (b) the double set of the spoke (c, c4) is the
double set having no set in common with the double set of K4

3 , which in our case is M3 ⊗M4.
To show (a) assume that c∩ c0 ∈ M1 ⊗M3 and c∩ c3 ∈ M1 ⊗M4. Then, due to Prop. 18, the double

set of (c, c4) must include M2. However, if c ∩ c4 ∈ M1 ⊗M2, there is a contradiction of Prop. 36, else if
c∩c4 ∈ M2⊗M3, we have a contradiction of Prop. 11 for spokes (c, c3) and (c, c4), else if c∩c4 ∈ M2⊗M4

yields a contradiction of Prop. 11 for spokes (c, c0) and (c, c4). This completes the proof of (a). Assume
c∩ c0 ∈ M1⊗M3 and c∩ c3 ∈ M2⊗M4. Then, due to Prop. 18 for (c, c0), (c, c4), (c, c3), the spoke (c, c4)
must be based on M3 ⊗M4. This proves (b) and yields class num. 29.

Note that some of the classes illustrated in Table 3 can be further divided into subclasses with respect
to the number of triple-set rim edges. For each wheel class with

∣∣H2(c)
∣∣ = 0, the number of possible

triple-set rim edges can be calculated, mainly, with the use of Rem. 25, Props. 23, 24, 26, Cor. 27, Lem. 28.
The corresponding information for wheel classes having

∣∣H2(c)
∣∣ ≥ 1 is included, mainly, in Lems. 40, 41,
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42, 49, Prop. 47, and Cor. 45.
Another important issue is that of the cardinality of the set of wheels of GA(C, EC). Obviously, the

cardinality of the largest class determines the order of the size. It is easy to see that the classes of wheels
of the largest size, i.e.

∣∣H2(c)
∣∣ = 0, p = 5, contain most members. This is formally described in the proof

of the following theorem.

Theorem 54 The cardinality of the set of wheels of OLS is of O(n20).

Proof. There are |C| = n4 options for the hub of a wheel. For a certain hub, at least two indices for
each rim node are determined. Observe that for wheels having

∣∣H2(c)
∣∣ = 0, exactly two indices of each

node are not determined by the hub. On the other hand, for
∣∣H2(c)

∣∣ ≥ 1, there exists at least one node
having one index not determined by the hub. For each p, this observation implies that the number of
wheels having

∣∣H2(c)
∣∣ = 0 is larger than the one of wheels with

∣∣H2(c)
∣∣ ≥ 1. Recall also the fact that the

wheels of the largest size belong exclusively to this family (
∣∣H2(c)

∣∣ = 0). Hence, we can only consider
the cardinality of the family having

∣∣H2(c)
∣∣ = 0, in order to establish the size of the whole set of wheels

in GA(C,EC).
Hence, for wheels having

∣∣H2(c)
∣∣ = 0, the options for the two indices of a rim node depend on whether

the node belongs to a K1
3 . Observe that up to 7 indices are required from each set. To see that, consider

set M1, and a wheel of size 11. All three double sets, namely M1 ⊗M2, M1 ⊗M3, M1 ⊗M4 appear at
the spokes and at least two of them appear twice. Therefore, at least 5 nodes of the rim have value n

for index m1. Hence, there are at most 6 nodes, where index m1 has value different from n. As a result,
at most 7 values of index m1 are required for a wheel of size 11. The argument can be repeated for each
of the indices m2,m3,m4 and also for wheels of smaller size. There are n options for selecting the value
of index m1 for the hub, n− 1 options for selecting the value of index m1 for the first node encountered
in the rim, which has index m1 different from n, and so on. It follows that there are O(n) options for
selecting each value of index m1, the same being true for all other indices.

Two nodes inducing a K2
3 , are bound to have one index in common with value different from n

(Prop. 16). Assuming a direction for examining the nodes of the rim, each node has O(n) options for one
of its indices, if it is part of a K2

3 structure. However, if it induces a K1
3 , it has O(n) options for each

of its two indices, which is not equal to n, provided that the rim edge connecting it to its successor is
not based on a triple set. If this rim edge is a triple link, the node has O(n) options for only one of its
indices. By restricting our analysis to wheels with no triple links, such a node has O(n) · O(n) options
for its indices. Its successor has again O(n) options for one of its indices, since it is the first of two
nodes inducing a K2

3 (Cor. 8). It follows that there are bO(n)c3 options for each pair of nodes inducing
a K1

3 . There are
∣∣W p

c (K1
3 )

∣∣ such pairs and Up = 2p + 1− 2
∣∣W p

c (K1
3 )

∣∣ nodes not belonging to such a pair
(Lem. 22). Therefore, the number of rims of size 2p + 1, which include |W p

c | K1
3 structures, is:

bO(n)c3|W p
c (K1

3 )| · bO(n)c2p+1−2|W p
c (K1

3 )| = bO(n)c2p+1+|W p
c (K1

3 )| = O(n2p+1+|W p
c (K1

3 )|)
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Given that there exist n4 options for the hub, the number of wheels of size 2p+1 is: O(n2p+1+|W p
c (K1

3 )|)·
n4 = O(n2p+5+|W p

c (K1
3 )|). Since

∣∣W p
c (K1

3 )
∣∣ ≤ p (Prop. 20), the function 2p + 5 +

∣∣W p
c (K1

3 )
∣∣ is strictly

increasing with respect to p. Both p and
∣∣W p

c (K1
3 )

∣∣ achieve their maximum value for 11-wheels, namely
p = 5,

∣∣W p
c (K1

3 )
∣∣ = 5 (Prop. 20). Therefore, the number of wheels of size 11 dominates the number of

wheels of smaller size. Substituting the values of p,
∣∣W p

c (K1
3 )

∣∣ in the above expression yields the result.

6 Circulants and Recognition

Having classified the wheels of GA(C,EC), we focus on the recognition issue. Since wheels can be regarded
as special cases of lifted odd holes, it is important to devise a mechanism for distinguishing the two. To
achieve this, we establish an association of odd-holes and rims of wheels with row sets of matrix A. Based
on this association, we propose an algorithm that determines whether a particular submatrix of A gives
rise to an odd-hole, which can constitute the rim of a wheel.

For any Q ⊆ R and T ⊆ C, let AT
Q denote the submatrix of A with rows and columns indexed by Q

and T , respectively. Let QMi×Mj = Q ∩ (Mi ×Mj), for (i 6= j, i, j ∈ {1, . . . , 4}). Finally, let C2
k denote

the circulant matrix of order k with two ones in each row and column and zero everywhere else. For any
node set H (H ⊂ C) inducing an odd hole.

Proposition 55 Let H denote the node set of odd hole of GA(C, EC), where |H| = 2p+1. If the number
of triple-set edges of the odd hole is TP , then AH has 3Tp distinct row sets Q, |Q| = 2p + 1, such that

1. AH
Q = C2

2p+1 up to row and column permutations,

2. for Mi,Mj , (i 6= j, i, j ∈ {1, 2, 3, 4}), 0 ≤
∣∣QMi×Mj

∣∣ ≤ p

3. the rows of AH
R\Q either are distinct copies of rows of C2

2p+1 corresponding to edges based on triple
sets, or else contain at most one 1.

Proof. The rows of AH correspond to the edges connecting each node of H with other nodes of H

and nodes of C \H. The nodes of H correspond to the columns of AH , whereas there are no columns
in AH for the nodes of C \H. Thus, the rows of AH have either two or one 1. It is not difficult to see
that when two nodes of H are connected by an edge based on a double set, this edge is represented by a
single row in AH . In contrast, when based on a triple set, the edge is represented by three rows of AH .
Therefore, the set of rows of AH that contain two 1s corresponding to the edges connecting c0 and c1, c1

and c2, . . . , c2p and c0, form a set of cardinality 2p + 1 + 2Tp, where Tp is the number of edges based on
a triple set. This set contains exactly 3Tp further subsets Q of cardinality 2p + 1 obtained by selecting
a single row (out of the three) for each edge based on a triple set and one row for each edge based on a
double set. Each such subset forms a square submatrix AH

Q of order 2p + 1 that has exactly two 1s in
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every row and column, hence becoming C2
2p+1 after the necessary row and column permutations. This

proves (1).
For (2), it is trivial that

∣∣QMi×Mj

∣∣ ≥ 0. To show that
∣∣QMi×Mj

∣∣ ≤ p, assume
∣∣QMi×Mj

∣∣ = p + 1.
This means that there are p + 1 edges of the odd hole based on Mi ⊗Mj . Consequently, two adjacent
edges are based on the double set Mi ⊗Mj . This contradicts to the hypothesis, since it implies a chord
connecting the two nodes that are incident to these edges.

To prove (3), consider that each row of AH has either one or two 1s. Since AH
Q for a given set Q ⊂ R

contains only rows that have exactly two 1s, all rows containing a single 1 belong to AH
R\Q. Further, for

every edge based on a triple set, there are three rows in AH containing two 1s in the same columns. In
other words, for each triple-set edge there are three similar rows, only one of which is included in AH

Q .
The remaining two are included in AH

R\Q.
Obviously, Prop. 55 is true when H = H(c), i.e. H is the node set of a rim of a wheel. However,

we can achieve a slightly better upper bound on the value of
∣∣QMi×Mj

∣∣, for the case of a wheel with∣∣H2(c)
∣∣ = 0.

Lemma 56 Let H be the node set of a rim (H = H(c)). If
∣∣H2(c)

∣∣ = 0 then
∣∣QMi×Mj

∣∣ ≤ min{3, p}.

Proof. To show that, for wheels with
∣∣H2(c)

∣∣ = 0, 3 is an upper bound on
∣∣QMi×Mj

∣∣, assume i = 1
and j = 2. In the case that the rim edges are based on double sets, it is easy to show that there can be
at most three rim edges based on M1 ⊗M2. This holds because there are exactly three K3 having a rim
edge based on M1 ⊗M2. These are: a K1

3 such that g(K1
3 ) = M1 ⊗M2, a K2

3 with spokes based on the
double sets (M1⊗M3), (M1⊗M4) and a K2

3 with spokes based on the double sets (M2⊗M3), (M2⊗M4)
(Prop. 16).

Suppose now that there is a rim edge based on a triple set, which has M1⊗M2 as one of its components.
Clearly, if this is the rim edge of a K1

3 such that g(K1
3 ) = M1 ⊗ M2, the previous case appears. In

the opposite case, we claim that we cannot have two K2
3 , one with spokes based on the double sets

(M1⊗M3), (M1⊗M4) and the other based on (M2⊗M3), (M2⊗M4). Without loss of generality, assume
the sequence (M1 ⊗M4)− [M2 ⊗M4]− (M1 ⊗M2). It is easy to see that the rim edge of the K1

3 can be
based on a triple set induced by the single sets M1,M2,M4. We can see that at most two other rim edges
can be based on M1 ⊗M2, since we can never have a K2

3 with spokes based on (M2 ⊗M3), (M2 ⊗M4)
because M2 ⊗M4 cannot be used for any other spoke (Prop. 36). It is easy to see that the same is true
in the case that M1 ⊗M2 is a component of two triple sets, each appearing at a rim edge of a K1

3 not
based on M1 ⊗M2. As an example, consider the wheel:

(M1 ⊗M4)− [M2 ⊗M4]− [M1 ⊗M2]− [M2 ⊗M3]− (M1 ⊗M3)

Note that no other case exists, since a double set appears as a component (Rem. 2) at no more than two
triple sets. In addition, for

∣∣H2(c)
∣∣ = 0, all triple sets appearing at the rim edges of a wheel are distinct
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(Lem. 28).
Table 4 illustrates wheels for all distinct values of

∣∣H2(c)
∣∣ and p. Notice that the upper bound on

|QI×J | is attained in all these wheels. Again, the hub is node (n, n, n, n). In the case that H = H(c),

Table 4: Wheels for which |QI×J | attains the upper bound illustrated by (2) of prop. 55∣∣H2(c)
∣∣ p Wheel QI×J

0 2
(n, n, k0, l1)− (n, n, k1, l0)− (n, j1, n, l0)− (n, j0, n, l2)
−(n, j0, k0, n) {(n, n), (n, j0)}

0 3
(i1, n, n, l1)− (i0, n, n, l3)− (i0, n, k0, n)− (n, n, k0, l2)
−(n, n, k1, l0)− (n, j0, n, l0)− (n, j0, n, l1)

{(i0, n), (n, n),
(n, j0)}

0 4
(i0, n, k4, n)− (i0, n, n, l1)− (n, n, k1, l1)− (n, n, k1, l0)
−(n, j2, n, l0)− (n, j0, n, l2)− (n, j0, k3, n)− (n, j3, k0, n)
−(i1, n, k0, n)

{(i0, n), (n, n),
(n, j0)}

0 5
(i0, n, k4, n)− (i0, n, n, l1)− (n, n, k2, l1)− (n, n, k3, l0)
−(n, j2, n, l0)− (n, j0, n, l2)− (n, j0, k0, n)− (n, j1, k0, n)
−(i2, j1, n, n)− (i1, j3, n, n)− (i1, n, k1, n)

{(i0, n), (n, n),
(n, j0)}

1 2
(n, n, n, l0)− (n, n, k0, l1)− (i1, n, k0, n)− (i0, n, k1, n)
−(i0, n, n, l0)

{(i0, n), (n, n)}

1 3 (n, n, k1, l1)− (n, n, k1, l0)− (n, j0, n, l0)− (n, j0, n, n)
−(n, j1, k0, n)− (i0, n, k0, n)− (i0, n, n, l1)

{(i0, n), (n, n),
(n, j0)}

1 4
(i0, n, k0, n)− (i0, n, n, n)− (i1, n, n, l2)− (n, j1, n, l2)
−(n, j1, n, l0)− (n, n, k2, l0)− (n, n, k1, l1)− (n, j0, k1, n)
−(n, j0, k0, n)

{(i0, n), (n, n),
(n, j0), (n, j1)}

2 2
(n, j0, n, n)− (n, j0, n, l0)− (n, n, k0, l0)− (i0, n, k0, n)
−(i0, n, n, n) {(i0, n), (n, j0)}

the bounds on the parameter Tp (see Props. 26, 47 and Lem. 49) determine a range of values regarding
the number of distinct circulants. One of these circulants is the primary circulant of the wheel.

Definition 57 A circulant associated with the node set H(c) of a wheel, will be called primary if for
every rim edge based on a triple set, the corresponding row of the circulant is indexed by the double set
constituting the ground set of the K3 this rim edge belongs to.

Recognising whether an odd hole is also the rim of a wheel of GA(C,EC) constitutes the recognition
problem.

Problem 58 Given a circulant of an odd hole of the appropriate size, is it associated to a wheel?

The question posed by Prob. 58 is that of the existence of a hub, for the circulant at hand. The
reference on the size is required because circulants of size greater than eleven are not associated to wheels
of GA(C, EC) (see Cor. 10, Prop. 39). The hub of the wheel can be explicitly identified by the ground
sets of the spokes. In fact, the identification of the hub requires a number of spokes sufficient for each
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single set to appear at least once. Then, the double sets of the remaining spokes need to be identified in
order to produce a certificate that the odd hole is indeed the rim of a wheel with the given hub.

The complication of the recognition problem is that the circulant at hand might include, for some of
the triple-set rim edges, rows of A indexed by any of the double sets forming the corresponding triple
sets. The problem becomes easier if we consider primary circulants. Hence, this section addresses the
following relaxed version of Prob. 58.

Problem 59 Given a circulant of an odd hole of the appropriate size, is it a primary circulant of a wheel
having

∣∣H2(c)
∣∣ = 0?

To answer this question, certain auxiliary results are necessary.

Lemma 60 Let c1, c2 be two adjacent rim nodes such that either K1
3 (c1, c2) or K2

3 (c1, c2). Given g((c, c1))
and g((c1, c2)), g((c, c2)) can be identified.

Proof. Notice first that g((c, c1)), g((c, c2)), g((c1, c2)) must have one set in common (Prop. 11,
Cor. 17). If g((c1, c2)) = g((c, c1)), then the structure is K1

3 (c1, c2), implying g((c, c2)) = g((c, c1)).
Alternatively, suppose that g((c1, c2)) 6= g((c, c1)). Without loss of generality, assume that g((c, c1)) =
M1⊗M3 and g((c1, c2)) = M1⊗M2. It follows that the underlying structure is K2

3 (c1, c2) and g((c, c2)) =
M1 ⊗M4 (Prop. 16).

Corollary 61 For a wheel having
∣∣H2(c)

∣∣ = 0, given the double set of one of its spokes and the primary
circulant, the double sets of the remaining spokes can be identified.

Proof. Wheels having
∣∣H2(c)

∣∣ = 0, include only K1
3 and K2

3 . Hence, starting from a spoke adjacent
to the spoke, whose double set is known, and iteratively applying Lem. 60 yields the result.

Observe that, given the primary circulant and having recognized the double set of at least one spoke,
the above corollary solves Prob. 59. This is because this process reveals the double sets of all spokes.
In this sense, the hub is denitrified and a certificate is produced by verifying that the double set of the
initial spoke is the one recognized. In the case that the double set of the initial spoke is not verified, the
answer to Prob. 59 is negative. The recognition of the ground set of at least one spoke, given the primary
circulant of a wheel having

∣∣H2(c)
∣∣ = 0, is based on the following proposition.

Proposition 62 Consider three consecutive rim edges whose double sets are formed by three sets. Then,
for wheels having

∣∣H2(c)
∣∣ = 0, this structure implies [K2

3 −K1
3 −K2

3 , 3] and vice versa.

Proof. Assume a wheel having
∣∣H2(c)

∣∣ = 0 and let c1, c2, c3, c4 denote four consecutive rim nodes.
Without loss of generality, assume that g((c1, c2)) = M1 ⊗ M3, g((c2, c3)) = M1 ⊗ M2, g((c3, c4)) =
M2 ⊗ M3. Then, the set M1 must appear at g((c, c2)) and M2 at g((c, c3)) (Prop. 19).Also, g((c, c2)),
g((c, c3)) must have one set in common because the spokes (c, c2), (c, c3) are adjacent (Prop. 11). If this
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42 MM ⊗
43 MM ⊗

31 MM ⊗

41 MM ⊗

21 MM ⊗

0c

4c

1c

3c

c

2c

21 MM ⊗21 MM ⊗ 32 MM ⊗

41 MM ⊗
32 MM ⊗

Figure 4: A wheel of class num. 3.

set is M3 (M4), then we have the structure K2
3 (c2, c3) and M3 (M4) must appear at g((c2, c3)) (Prop. 16).

In both cases, our initial assumption that g((c2, c3)) = M1 ⊗M2 is contradicted. Thus, K1
3 (c2, c3) exists

and g((c, c2)) = g((c, c3)) = M1 ⊗M2. By applying Lem. 60, we obtain that g((c, c1)) = M1 ⊗M4 and
g((c, c4)) = M2 ⊗M4.

The inverse part of the proof is trivial.
Hence, if a structure like the one described in Prop. 62 is identified, in the circulant at hand, we can

immediately guess the double sets of four spokes. A look at Table 3, for wheels having
∣∣H2(c)

∣∣ = 0, asserts
that at least one [K2

3 −K1
3 −K2

3 , 3] appears in all wheels except the ones belonging to classes num. 1,
3, 5. However, the wheels of these classes exhibit specific characteristics, which can be used to identify
the ground sets of the spokes. In particular, wheels of classes 3 and 5 have at least one pair of adjacent
rim edges based on ground sets with no set in common (see Figures 4 and 5, respectively). Observe that
each of the edges of such a pair, belongs to a K2

3 and the two K2
3 are 0-distant. Moreover, each such pair

forms a [K2
3 −K2

3 , 4b], i.e. the double sets of the three spokes forming the two K2
3 constitute a 3-sequence

of type 4b. For the wheels of class 3, there exist three distinct [K2
3 −K2

3 , 4b], each two having with one
K2

3 in common, whereas for those of class 5 there exists one such configuration. In the first case, there
exists a K1

3 formed by the first spoke of the first K2
3 and the second spoke of the fourth K2

3 (K1
3 (c4, c0)

in Figure 4). In the second case, one K1
3 is formed, which is exactly 2-distant from the [K2

3 − K2
3 , 4b]

(K1
3 (c4, c5) in Figure 5). Therefore, in both cases, the primary circulant can be used to identify pairs of

adjacent rim edges with ground sets having no set in common. Afterwards, depending on the size of the
circulant, it is possible to identify the rim edge belonging to a K1

3 . Evidently, the double set of that edge
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4c

c

1c 2c

3c

0c

43 MM ⊗

42 MM ⊗

41 MM ⊗ 31 MM ⊗

31 MM ⊗

32 MM ⊗

31 MM ⊗

41 MM ⊗

21 MM ⊗

42 MM ⊗

5c

21 MM ⊗
21 MM ⊗

42 MM ⊗

Figure 5: A wheel of class num. 5.

is the ground set of the two spokes forming the K1
3 .

Finally, the wheels belonging to class num. 1 have the property that the same single set appears in
every double set of the rim edges (wheel of Figure 6). Again this characteristic can be traced from the
primary circulant. In this class, there exist two K1

3 . Observe that the double set of the rim edge of the
K2

3 adjacent to the two K1
3 is the same with the ground set of the spoke adjacent to the pair of spokes,

each belonging to a different K1
3 .

Now we are ready to describe an algorithm for Prob. 59. The input of the algorithm is a circulant (of
odd size less than or equal to 11). The output is the answer to the question posed by the problem. The
algorithm consists of two steps. In the first step an attempt is made to guess the double set of at least one
spoke. This is done initially with the use of Prop. 62. If this fails, we examine the circulant with respect
to the particular characteristics of one of the classes 1, 3, 5. If this fails too, we can assert that this is
not the primary circulant of a wheel with

∣∣H2(c)
∣∣ = 0 and skip the second step. If at Step 1 a double

set is assigned to a spoke, then we proceed to the second step, where we attempt to evaluate all the
double sets of the spokes based on this information (Cor. 61). Observe that we also need to re-evaluate
the double set(s) of the spoke(s) guessed at Step 1. There are two cases where the algorithm returns a
negative answer. The first case occurs during the evaluation of the double sets of the spokes. At this
stage, if we find a spoke and its adjacent rim edge with double sets with no set in common, we cannot
find the double set of the next spoke. This cannot happen for the primary circulant of a wheel with∣∣H2(c)

∣∣ = 0 (Lem. 60). The second case occurs if the re-evaluated double sets do not match the guesses
made at the first step. Again this shows that we are not dealing with the primary circulant of a wheel
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0c
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1c
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c
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31 MM ⊗

41 MM ⊗

21 MM ⊗31 MM ⊗

21 MM ⊗

Figure 6: A wheel of class num. 1.

with
∣∣H2(c)

∣∣ = 0. The algorithm, in pseudocode, is illustrated below. Comments are included in /* */.

Algorithm 63 “Solving Problem 59”
/*STEP 1*/

IF ([K2
3 −K1

3 −K2
3 , 3] is detected)

/*Look for structure of Prop. 62*/
{

Label the nodes as c0, c1, c2, c3, · · · , c2p such that [K2
3 (c0, c1)−K1

3 (c1, c2)−K2
3 (c2, c3), 3];

Let g((c, c1)) = g((c, c2)) = g((c1, c2));
}
ELSE IF ((p = 3) AND ([K2

3 −K2
3 , 4b] is detected))

/*Look for structure of class 5*/
{

Label the nodes as c0, c1, c2, · · · , c6 such that [K2
3 (c0, c1)−K2

3 (c1, c2), 4b];
Let g((c, c4)) = g((c, c5)) = g((c4, c5));

}
ELSE IF ((p = 2) AND ([K2

3 −K2
3 , 4b] is detected))

/*Look for structure of class 3*/
{

Label the nodes as c0, c1, c2, c3, c4 such that [K2
3 (c0, c1)−K2

3 (c1, c2), 4b],
[K2

3 (c1, c2)−K2
3 (c2, c3), 4b], [K2

3 (c2, c3)−K2
3 (c3, c4), 4b];
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Let g((c, c4)) = g((c, c0)) = g((c4, c0));
}
ELSE IF ((p = 2) AND (the same set appears in the ground sets of all rim edges))

/*Look for structure of class 1*/
{

Label the nodes as c0, c1, c2, c3, c4 such that
g((c0, c1)) = g((c3, c4)) and g((c4, c0)) = g((c1, c2));

Let g((c, c0)) = g((c2, c3));
}
ELSE “This is not a primary circulant of a wheel with H2(c) = 0”;
/*STEP 2*/

IF (there is at least one assignment of a double set to a spoke)
{

Attempt to find all double sets of the spokes by iteratively applying Lem. 60;
IF ((this is impossible) OR (the assignment(s) made at Step 1 are not valid))

“This is not a primary circulant of a wheel with H2(c) = 0”;
ELSE

“This is a primary circulant of a wheel with H2(c) = 0”;
}

Lemma 64 Algorithm 63 is of O(p).

Proof. At Step 1, each of the cases, excluding the first, is checked only if the circulant is of the
appropriate size. This yields a constant number of operations for each such case. For the first alternative
we must consider, in the worst case, 2p + 1 triplets of consecutive rim edges. For each such triplet,
depending on the implementation, we need a constant number of operations to decide if we have a
[K2

3 −K1
3 −K2

3 , 3]. Hence, Step 1 requires O(p) operations in the worst case.
At Step 2, the algorithm evaluates the ground sets of 2p + 1 spokes. For each ground set to be

evaluated, we need at most four comparisons to detect the common set of two adjacent spokes or assert
that no such set exists. In the case of a common set, we need one more comparison to evaluate the second
single set which appears in the ground set. Hence, the second step is also performed in O(p) operations.

Notice that, since p ≤ 5, Algorithm 63 essentially runs in a constant number of steps.

7 Conclusions

This paper has presented all classes of wheels of the OLS polytope. The structural properties of the
wheels have been extracted through the study of their components (spokes, rim edges, 3-cliques) based
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on ground sets. Through the relations revealed, we were able to devise a classification useful for deriving
families of valid inequalities. In a forthcoming paper we examine some of these families, showing that
they are facet-defining for PI . The same methodology can be used for the study of more involved wheel
structures like the ones described in [6, 7, 8, 9]. It can also be used for examining wheel-induced subgraphs
of other polytopes.
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