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Abstract

This paper concernsmultivalued multithresholdfunctions,{0, 1, . . . , k}-valued func-
tions onRn that may be considered as generalizations of (linear) threshold functions, or
as discretized versions of artificial neurons. Such functions have arisen in the context of
multiple-valued logic and artificial neural networks. For any fixedk, we present two proce-
dures which, given a set of points labelled with the values of some (unknown) multivalued
multithreshold function, will produce such a function that achieves the same classifica-
tions on the points. (That is, we present ‘consistent hypothesis finders’.) One of these is
based on linear programming, and the other on an ‘incremental’ procedure suggested by
Obradovíc and Parberry. In standard probabilistic models of learning, it is natural to ask
for some information about how many labelled data points should be used as the basis for
valid inference about the function that is labelling the data. We investigate this question for
the class of multivalued multithreshold functions. Finally, we examinemultithreshold func-
tions, a class of{0, 1}-valued functions related to the multivalued multithreshold functions.
We give a simple description of an algorithm based on a procedure suggested by Takiyama,
and we raise some open questions on the effectiveness of this algorithm, and, generally, on
the complexity of finding consistent hypotheses for samples of multithreshold functions.
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1 Introduction

This paper concernsmultivalued multithresholdfunctions,{0, 1, . . . , k}-valued functions onRn

that may be considered as generalizations of the (linear) threshold functions, or as discretized
versions of artificial neurons. (Such functions have arisen in the context of multiple-valued
logic and artificial neural networks; see [22, 17], for example.)

A consistent hypothesis finderfor a set of functions is an algorithm that, on being presented with
a set of points, each labelled with the value of some (unknown) function from the class, will
produce (a representation of) some function in the class that achieves the same classifications on
the points. For the class of multivalued multithreshold functions (for any fixedk), we present
two consistent hypothesis finders: one is based on linear programming, and the other is an
‘incremental’ method arising from a procedure suggested by Obradović and Parberry [22].

In standard probabilistic models of learning, it is useful to have bounds on thesample complexity
of learning a setH of functions: that is, to know something about how many labelled data
points should be used as the basis for valid inference about an unknown functiont ∈ H that is
labelling the data. We obtain an upper bound on the sample complexity of learning multivalued
multithreshold functions.

Finally, we examinemultithreshold functions, a class of{0, 1}-valued functions related to the
multivalued multithreshold functions. We give a simple description of an algorithm based on
a procedure suggested by Takiyama [26], and we raise some open questions on the effective-
ness of this algorithm, and, generally, on the complexity of finding a multithreshold function
consistent with a sample of such a function.

2 Multivalued multithreshold functions

Fork ∈ N, let [k] denote the set{0, 1, . . . , k}. A [k]-valued multithreshold function (or, briefly,
k-MTF) is a functionf : Rn → [k] defined as follows: there areweightsw1, w2, . . . , wn

and thresholdsθ1 ≤ θ2 ≤ . . . ≤ θk such that, forx = (x1, x2, . . . , xn) ∈ Rn, if we define
S = {0} ∪ {r :

∑n
i=1 wixi ≥ θr} , thenf(x) = min S, the least element ofS.
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It is useful to think of these functions geometrically. Any such function corresponds tok par-
allel hyperplanes dividingRn into k + 1 regions. If we traverse the regions in one of the two
directions normal to the hyperplanes, the classifications given to points in the regions between
the hyperplanes increase successively from0 to k (with classification0 to those below the first
hyperplane, and classificationk to those above thekth hyperplane, and with points lying on the
hyperplanes being given the classifications of the region just being entered).

One reason for being interested in these functions is that they can be regarded as discretized
(or finite-precision) versions of monotonic neural network activation functions. They have also
proven to be of interest in multiple-valued logic. Obradović and Parberry [22], and Ngom
et al. [17, 18, 19] examined special types of multivalued multithreshold functions, where the
domain of the functions was taken to be[k]n, rather thanRn as here. That is, they considered
the(k + 1)-ary functions [22] or(k + 1)-valued logic functions[17] corresponding tok-MTFs.

3 Finding a consistent multivalued multithreshold function

Suppose we are given a sequence(x1, x2, . . . , xm) of m points ofRn, each of which has been la-
belled with the corresponding valuest(xi) of some[k]-valued multithreshold functiont (giving
us asample((x1, t(x1)), . . . , (xm, t(xm)) of t). Without knowing precisely thetarget function
t, we might want to construct ak-MTF consistentwith t on the sample; that is, to produce ak-
MTF h such thath(xi) = t(xi) for i = 1, 2, . . . ,m. A procedure achieving this will be referred
to as aconsistent hypothesis finder. This is a natural and central problem in machine learning
and data-mining, where one seeks ahypothesisthat is anexplanationof the classified data set,
and potentially a good predictor of the classifications of other, as yet unseen, points from the
same corpus of data.

3.1 Using linear programming

One approach to finding ak-MTF consistent with a samples of points labelled by ak-MTF
is to use linear programming. Suppose that, in the sample,mi points have classificationi (for
0 ≤ i ≤ k) and denote these points byx

(i)
1 , x

(i)
2 , . . . , x

(i)
mi. Consider the following linear program,

in which there aren + k + 1 real variables:wi for 1 ≤ i ≤ n, θj for 1 ≤ j ≤ k, andy. Here,
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w = (w1, w2, . . . , wn) and, fora, b ∈ Rn, 〈a, b〉 denotes the inner productaT b =
∑n

i=1 aibi.

Maximizey subject to the constraints
〈w, x

(i)
j 〉 − θi − y ≥ 0

θi+1 − 〈w, x
(i)
j 〉 − y ≥ 0

θ1 − 〈w, x
(0)
j 〉 − y ≥ 0

〈w, x
(k)
j 〉 − y ≥ 0

wl ≥ −1

−wl ≥ −1

θl ≥ −1

−θl ≥ −1

y ≥ 0,

wherel ranges from1 to k, i ranges from1 to k − 1 and, for each fixedi (for the inequalities
involving x

(i)
j ), j ranges from1 to mi. There arem + 2n + 2k constraints in total. Given

that the sample is labelled according to the values of somek-MTF t, the program is feasible
and has a positive solution. Note that the first four sets of inequalities require a weight vector
w and threshold vectorθ such that the resultingk-MTF correctly classifies thexi and such
that, additionally, the inner products ‘clear’ the required threshold by at least the amounty.
Now, all of this is possible for some positivey, given the existence oft and the finiteness of
s. Furthermore, the next four inequalities make the feasible region bounded, and, by scaling
weight and threshold vectors, if necessary, it can be seen thatt has a realizable weight vector
and threshold vector satisfying these bounds. By solving this linear program, a consistentk-
MTF can therefore be obtained, and so we have a consistent hypothesis finder. This method
can be made to run in polynomial time in the logarithmic cost model by using, for instance,
Karmarkar’s algorithm [11]. In particular, if the sample pointsxi are restricted to domain[k]n,
then the running time of the algorithm is bounded by a polynomial inm(n + 1), the size of the
sample.

3.2 An incremental procedure

Obradovíc and Parberry [22] proposed an incremental algorithm for ‘learning’k-MTFs on the
basis of a given sample of such a function. A slightly modified version of this algorithm was
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presented in [17]. These algorithms are generalizations of the well-known and well-studied
perceptron learning algorithm (details of which may be found in [25, 2]), which corresponds to
the special case in whichk = 1.

The algorithm in [22] maintains acurrent weight vectorw = (w1, w2, . . . , wn) and threshold
vectorθ = (θ1, θ2, . . . , θk), whereθ1 ≤ θ2 ≤ · · · ≤ θk. Together, these represent acurrent
hypothesisMTF h . On presentation of an examplex ∈ [k]n together with its classification
t(x), if h(x) = t(x) the algorithm does nothing, while ifh(x) 6= t(x) then the algorithm
slighly altersw and one of theθi. The algorithm is, in this sense,incremental. Obradovíc and
Parberry established a result along the lines of the classical ‘perceptron convergence theorem’,
by proving that on any (possibly infinite) sequence of examples from[k]n, each classified by
somek-MTF, t, there is an absolute bound on the number of mistakes (and hence updates) the
algorithm can make (this bound depending ont). To prove this, they invoked the classical result
for the perceptron.

As a consequence of the finiteness result of Obradović and Parberry, the incremental procedure
can be used to construct a consistent hypothesis finder in the case where all the examples belong
to [k]n. For, given a finite samples = ((x1, t(x1), . . . , (xm, t(xm)), we can cycle through these
labelled examples repeatedly until no further updates will occur, at which point the current
hypothesis must be consistent with the sample. We will give a direct proof that, more generally,
this procedure for finding a consistentk-MTF works when the examples can be inRn and are
not restricted to be in[k]n (which, as already mentioned, was the focus in [22, 17]). First, we
describe the consistent hypothesis finder in pseudo-code.

Algorithm L: Incremental consistent hypothesis finder fork-MLTs.

Input: Sample s = ((x1, t(x1), . . . , (xm, t(xm)) of k-MLT t.
Output: Weights w1, . . . , wn and thresholds θ1 ≤ · · · ≤ θk

for all i, set wi := 0
for all l, set θl := 0
repeat until no updates needed in a complete cycle through s
for i := 1 to m do

let h be the current hypothesis, represented by w and θ
if v = h(xi) 6= t(xi) then

let ∆ = t(xi)− h(xi) = t(xi)− v
if ∆ < 0 then
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update the weights and thresholds as follows
θv ← θv + 1
θl ← θl for l 6= v (i.e., no change)
w ← w − xi

if ∆ > 0 then
update the weights and thresholds as follows
θv+1 ← θv+1 − 1
θl ← θl for l 6= v + 1 (i.e., no change)
w ← w + xi

return w1, w2, . . . , wn and θ1, . . . , θk.
end

Thek-MTF corresponding to the weights and thresholds output by the algorithm is called the
output hypothesisof the algorithm, and is denotedL(s).

Ngomet al. [17] considered a slight variant of the procedure suggested by Obradović and Par-
berry. (The problem they considered was slightly more general too: they were interested in
incrementally learning ‘permutably homogeneous perceptrons’, of whichk-MTFs are a spe-
cial type.) Following their variation of [22], an alternative consistent hypothesis finder can be
devised that has the following update rule:

if v = h(xi) 6= t(xi) then
let ∆ = t(xi)− h(xi) = t(xi)− v
if ∆ < 0 then

update the weights and thresholds as follows
θv ← θv + ∆ = θv − |∆|
θl ← θl for l 6= v (i.e., no change)
w ← w −∆xi = w + |∆|xi

if ∆ > 0 then
update the weights and thresholds as follows
θv+1 ← θv+1 −∆
θl ← θl for l 6= v + 1 (i.e., no change)
w ← w + ∆xi

Thus, in this case, the extent by which the weights and thresholds are changed depends on
how farh(xi) is from t(xi) and not merely on the ‘sign’ of the difference. A further possible
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modification is to have a ‘learning rate’ (possibly changing in time) multiplying the additive
changes.

Obradovíc and Parberry [22] also investigated the performance of an alternative procedure in
which weights and thresholds are updatedmultiplicativelyrather thanadditively, following Lit-
tlestone’s ‘Winnow’ generalization of the standard perceptron learning algorithm [14]. (Indeed,
this is the primary focus of their paper.) They show that this multiplicative algorithm is in many
cases better than the additive one, in that the bound on the number of updates required can be
significantly smaller. This multiplicative algorithm can also, in an analogous way, be turned
into a consistent hypothesis finder.

Theorem 3.1 Given any samples of ak-MTF, the incremental consistent hypothesis finder for
k-MLTs will terminate to produce an output hypothesisL(s) consistent withs. Furthermore, if
the examplesxi in the sample satisfy‖xi‖ ≤ R and if thek-MTF t by which the sample points
are labelled is represented by weight vectorW and threshold vectorΘ with the property that
‖W‖2 + ‖Θ‖2 = 1 and noxi lies on any of thek hyperplanes defined byw andθ, then the total
number of updates (and hence cycles) required byL is at most(R2 + 1)/γ2 where

γ = min{|〈W, xi〉 −Θl| : 1 ≤ i ≤ m, 1 ≤ l ≤ k} > 0.

Proof: The proof is a variant of the proof of the perceptron convergence theorem [25, 20, 21, 2].
Clearly, since the sample is finite, there will be a weight vectorW and a threshold vectorΘ
representingt such that no point of the sample lies on any of thek hyperplanes (because there
is flexibility to perturb the thresholds). By scaling the weights and thresholds if necessary, we
can further assume that‖W‖2 + ‖Θ‖2 = 1. Let W andΘ be a fixed choice of such vectors.
Denote byw(u) andθ(u) the weight and threshold vectors afteru updates have been made,
and let the components of these bewi(u) andθl(u). (Note thatw(0) andθ(0) are the all-zero
vectors.) For somex in the sample, theuth update rule takes the form

w(u) = w(u− 1) + δx

θl(u) = θl(u− 1)− δ.

Here,δ is 1 or −1, according to whethert(x) > h(x) or t(x) < h(x), respectively; andl is,
correspondingly,v + 1 or v, wherev = h(x) andh is the current hypothesis (represented by
w(u− 1) andθ(u− 1)). Let N(u) be defined as

N(u) = 〈(W, Θ), (w(u), θ(u)〉 = 〈W, w(u)〉+ 〈Θ, θ(u)〉.
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Then,
N(u)−N(u− 1) = 〈W, δx〉 −Θlδ = δ(〈W, x〉 −Θl).

Now, if δ = 1, thenl = v + 1 and, sincev = h(x) < t(x), we havet(x) ≥ v + 1 and so
〈W, x〉 ≥ Θv+1 + γ, as a consequence of whichδ(〈W, x〉 − Θv+1) ≥ γ. If, however,δ = −1,
thenl = v andt(x) < h(x) = v, so that〈W, x〉 < Θv − γ and henceδ(〈W, x〉 −Θv+1). In both
cases, therefore,N(u)−N(u− 1) ≥ γ. It follows thatN(u) ≥ N(0) + γu = γu.

Now let
L(u) = ‖(w(u), θ(u))‖2 = ‖w(u)‖2 + ‖θ(u)‖2.

From the fact thatN(u) = 〈w,w(u)〉 + 〈θ, θ(u)〉 ≥ uγ, together with the Cauchy-Schwarz
inequality and the fact that‖(W, Θ)‖ = 1, we have

L(u) = ‖w(u)‖2 + ‖θ(u)‖2

= ‖(w(u), θ(u))‖2

= ‖(w(u), θ(u))‖2‖(W, Θ)‖2

≥ (〈(w(u), θ(u)), (W, Θ)〉)2

= (N(u))2

≥ (γu)2.

But, if el denotes the vector withlth entry equal to1 and all other entries0, then

L(u) = ‖w(u)‖2 + ‖θ(u)‖2

= ‖w(u− 1) + δx‖2 + ‖θ(u− 1)− δel‖2

= ‖w(u− 1)‖2 + ‖θ(u− 1)‖2 + δ2‖x‖2 + δ2 + 2δ〈w(u− 1), x〉 − 2δ〈θ(u− 1), el〉
≤ L(u− 1) + (R2 + 1) + 2δ (〈w(u− 1), x〉 − θl(u− 1)) .

Because of the update rule, eitherv = h(x) > t(x), in which case

δ < 0, l = v, and〈w(u− 1), x〉 > θv(u− 1);

or v = h(x) < t(x), and

δ > 0, l = v + 1, and〈w(u− 1), x〉 < θv+1(u− 1).

So, in both cases,δ (〈w(u− 1), x〉 − θl(u− 1)) < 0, and henceL(u) ≤ L(u − 1) + (R2 + 1)
and soL(u) ≤ L(0) + (R2 + 1)u = (R2 + 1)u. It follows that

(γu)2 ≤ L(u) ≤ (R2 + 1)u
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and sou ≤ (R2 + 1)/γ2, completing the proof. ut

Note that the upper bound given in Theorem 3.1 on the number of updates depends both ont and
on the precise points in the sample (through the dependence onγ). For the standard perceptron
(the casek = 1), the case in which only Boolean points (that is, points of{0, 1}n) have been
considered has been of particular interest historically. A counterpart to this in the casek > 1
is to consider only points of[k]n (as in [22, 17]). With this restriction to a finite domain, for a
given t, the parameterγ can of course be bounded below independently of the sample. Thus,
one can bound the number of updates (and hence cycles) independently of the sample. It is,
however, well-known (in the casek = 1) that this bound can be exponential inn; see [15, 5],
for instance.

This consistent hypothesis finder has an appealing on-line, incremental character, but (unlike
the method based on linear programming) it is not efficient. Even when the sample points
are restricted to{0, 1}n, the time taken to produce a hypothesis finder will not generally be
polynomial inm(n + 1), the size of the input. For, whenk = 1, the algorithm is equivalent to
the consistent hypothesis finder based on the standard perceptron learning algorithm, and this
is known not to be efficient [5]. (There is a Boolean threshold functiont and a setS of n + 1
examples with the property that the only threshold function consistent witht on S is t itself
and, moreover, the ratio of the largest to the smallest weight in any weight vector representing
t is exponential inn. On presentation of the sample corresponding toS andt, the algorithm
will necessarily make an exponential number of updates to achieve the exponential separation
between the largest and smallest weights for most choices of initial weights and thresholds.)

4 Learning multivalued multithreshold functions

We now discuss thesample complexityof learningk-MTFs in a[k]-valued version of the basic
PAC model of learning [28, 7, 3, 13, 6]. (Extensions to more general models such as the[k]-
valued versions of ‘agnostic PAC learning’ [12, 2] could also be given, but for brevity we
consider only the case corresponding to the basic PAC model.)

LetH be a set of functions fromRn to [k] and suppose that there is some probability distribution
P on the domainRn. In the ‘PAC’ model of learning [28, 7], it is assumed that alearning
algorithmL receives a sequence ofm points ofRn, each drawn independently according toP ,
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and is also given the values of sometarget functiont ∈ H on these points. Thus, the input
to the learning algorithm is asamples = ((x1, t(x1)), . . . , (xm, t(xm))), for somem; and this
sample is randomly drawn, in the sense that(x1, . . . , xm) is distributed according to the product
probability distributionPm. On the basis of a sample, the algorithm outputs a (representation
of a) hypothesish = L(s) ∈ H. Loosely speaking, the learning algorithm is regarded as being
successful (that is, it is aPAC learning algorithm) if, without knowing the target function or
the distribution, a guarantee can be given that, provided the sample is long enough, then, with
high probability, the output hypothesish = L(s) closely approximates tot. Formally, theerror
of h with respect tot andP is erP (h, t) = P ({x : h(x) 6= t(x)}), and we say thatL is a PAC
learning algorithm if there is a functionm0 : (0, 1) × (0, 1) → R such that for anyt ∈ H and
any probability distributionP onRn, if m > m0(δ, ε) then, with probability at least1− δ (with
respect to the product distributionPm that governsx = (x1, x2, . . . , xm)), a samples is such
thaterP (L(s), t) < ε. That is,

m > m0(δ, ε) =⇒ Prob (erP (L(s), t) ≥ ε) < δ.

Note thatm0 is independent oft andP . A bound on the functionm0 is known as asample
complexity bound.

We now use results from computational (or statistical) learning theory. For this, we define the
growth functionof a set of functionsH mapping fromRn to {0, 1}. Let ΠH : N→ N be given
by

ΠH(m) = max{|H|S| : S ⊆ X, |S| = m},

whereH|S denotesH restricted to domainS. Note thatΠH(m) ≤ 2m for all m. Following [30,
29], Blumeret al.[7] proved the following bound for the case in whichH maps into{0, 1} (that
is, k = 1), and in whichL is a consistent hypothesis finder:

Prob (erP (L(s), t) ≥ ε) < 2 ΠH(2m) 2−εm/2.

To obtain a sample complexity bound for the case in which the functions map into[k] for k ≥ 2,
we use thegraphsof the functions [16, 7]. Forh ∈ H, let Gh, thegraph ofh, be the function
from Rn × [k] to {0, 1} defined byGh(x, y) = 1 ⇔ h(x) = y and letGH = {Gh : h ∈ H},
the graph spaceof H. It follows from the result of Blumeret al. [7] that if L is a consistent
hypothesis finder forH, then

Prob (erP (L(s), t) ≥ ε) < 2 ΠGH(2m) 2−εm/2.
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It is known [1] that the number of ways in whichm points can be partitioned intok + 1 sets by
k parallel hyperplanes is no more than

n+k−1∑
i=0

(
mk − 1

i

)
,

from which it follows that the number of ways in which a given set ofm points can be classified

by the setH of k-MTFs is no more than2
n+k−1∑

i=0

(
mk − 1

i

)
. This quantity is therefore also an

upper bound on the growth functionΠGH(m) of the graph class. Using these observations, we
obtain the following sample complexity bound for learningk-MTFs.

Theorem 4.1 Suppose thatL is a consistent hypothesis finder for the class of[k]-valued multi-
threshold functions. ThenL is a PAC learning algorithm for the class, and its sample complexity
is bounded above by

m0(δ, ε) =
4

ε

(
(n + k − 1) log2

(
12k

ε

)
+ log2

(
4

δ

))
.

Proof: We have

Prob (erP (L(s), t) ≥ ε) < 2 ΠGH(2m) 2−εm/2

≤ 4
n+k−1∑

i=0

(
2mk − 1

i

)
2−εm/2

< 4

(
2mk

n + k − 1

)n+k−1

2−εm/2,

where (see [7]) the last inequality is valid form ≥ n + k. As in [4], using the fact that for all
0 < α < 1, ln x ≤ αx + ln(1/α) − 1, choosingα = (ε ln 2)/(4ε), and performing some easy
manipulation, we see that the probability is therefore less thanδ if

εm ln 2

4
≥ ln

(
4

δ

)
+ (n + k − 1) ln

(
8k

ε ln 2

)
,

from which the result follows. ut
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From the bound in the proof of this theorem, an equivalent statement can be made concerning
the ‘generalization error’, for a fixed lengthm of sample. Namely, for anyt andP , for m ≥
n + k, and for anyδ ∈ (0, 1), the following holds: with probability at least1 − δ, a random
samples is such that

erP ((L(s, t)) <
2

m

(
(n + k − 1) log2

(
2mk

n + k − 1

)
+ log2

(
8

δ

))
.

5 Multithreshold functions

5.1 Definitions

We now turn our attention to a class of{0, 1}-valued functions defined byk parallel hyper-
planes. We define ak-threshold functionf as follows. There arek parallel hyperplanes, which
divide Rn into k + 1 regions. The function assigns points in the same region the same value,
either0 or 1. Without any loss, we may suppose that the classifications assigned to points in
neighbouring regions are different (for, otherwise, at least one of the hyperplanes is redundant);
thus, the classifications alternate as we traverse the regions in the direction of the normal vector
common to the hyperplanes. Equivalently,f is ak-threshold function if the following holds:
there is a weight-vectorw = (w1, w2, . . . , wn) and a threshold vectorθ = (θ1, θ2, . . . , θk) (with
θ1 ≤ θ2 ≤ · · · ≤ θk) such that, ifI0 = (−∞, θ1), Ik = [θk,∞) and, for1 ≤ s ≤ k − 1,
Is = [θs, θs+1), theneitherf(x) = 1 if and only if 〈w, x〉 ∈ Ij for j even,or f(x) = 1 if and
only if 〈w, x〉 ∈ Ij for j odd.

These functions have been studied in a number of papers, such as [8, 23, 26, 27], for instance.
This method of binary classification is reasonably powerful. In particular, restricting attention
to the Boolean domain{0, 1}n, Bohossian and Bruck [8] observed that any Boolean function
can be realized as a2n-threshold function. (For that reason, they paid particular attention to
multithreshold functions where the number of thresholds is polynomial inn.)
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5.2 Finding consistent hypotheses: some open questions

We now consider the problem of finding consistent hypotheses for the class ofk-threshold
functions. The fact that the classifications now alternate between0 and1, rather than take, suc-
cessively, the values0 to k, makes it difficult to adapt the linear programming and incremental
approaches to finding consistentk-MTFs. We raise two open questions: first, is a procedure
based on a technique proposed by Takiyama [26] effective; and, secondly, is there anyeffi-
cientmeans of finding a consistent hypothesis, in the restricted problem where all examples are
assumed to be binary vectors?

An incremental method based on a procedure of Takiyama

An incremental ‘learning’ algorithm was proposed by Takiyama [26]. Although he cites some
experimental success with the method, no analysis of its effectiveness was undertaken. The
presentation of the method in [26] is very complex, but the procedure can be described much
more simply. We describe here the modification of Takiyama’s method that would be applicable
to cycling through a finite sample (in the hope of creating a consistent hypothesis). Suppose that
a samples for some multithreshold functiont is given. Then the procedure can be described as
follows. The numbersa(u) for u ∈ N constitute some prescribed sequence of positive ‘learning
rates’, and the variableu indexes the updates made by the algorithm.

Input: Sample s = ((x1, t(x1), . . . , (xm, t(xm)) of k-threshold function t.
Output: Weights w1, . . . , wn and thresholds θ1 ≤ θ2 ≤ · · · , θk

for all i, choose wi randomly
for all l, choose θl randomly
repeat until no updates needed in a complete cycle through s
for i := 1 to m do

let h be the current hypothesis, represented by w and θ
if h(xi) 6= t(xi) then

let v be such that θv−1+θv

2 < 〈w, x〉 ≤ θv+θv+1

2
if 〈w, x〉 ≥ θv then
update the weights and thresholds as follows

θv ← θv + a(u)
θl ← θl for l 6= v (i.e., no change)
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w ← w − a(u)xi

if 〈w, x〉 < θv then
update the weights and thresholds as follows
θv ← θv − a(u)
θl ← θl for l 6= v (i.e., no change)
w ← w + a(u)xi

return w1, w2, . . . , wn and θ1, . . . , θk.
end

Thus, given an examplexi misclassified by the current hypothesis (represented byw andθ), the
procedure shifts the thresholdθv nearest in value to〈w, xi〉 and alters the weight vectorw, so
as to make the quantity〈w, xi〉 − θv decrease or increase, as appropriate.

For k ≥ 2, the proof of Theorem 3.1 apparently cannot be adapted to show that this procedure
terminates (because the fact thath(x) 6= t(x) does not imply either that〈w, x〉 is too large or
that it is too small). We therefore raise the following open question:

Question: Does this procedure terminate for some choice of sequence(a(u))∞u=1? That is, is it
a consistent hypothesis finder?

Computational complexity of finding a consistent hypothesis

Let us suppose that the domain is restricted to{0, 1}n, so that we are considering theBooleank-
threshold functions (simply referred to as Boolean threshold functions in the casek = 1). Even
if the incremental method described above is indeed, in this case, a consistent hypothesis finder,
it is not anefficientone, in the sense that the running time will not generally be polynomial in
m(n + 1), the size of the input. That this is the case follows from the observation that when
k = 1, the procedure is equivalent to the consistent hypothesis finder based on the standard
perceptron algorithm, and, as already noted, this is not a polynomial-time algorithm.

The question arises therefore whether there can be some other efficient consistent hypothesis
finder for the class of Booleank-threshold functions. In the casek = 1, there is. For, in this
case the consistent hypothesis finder for1-MTF based on linear programming is a consistent
hypothesis finder for Boolean threshold functions, and is known to be efficient (by using, for
example, Karmarkar’s algorithm [11], as noted in [7].)
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More specifically, consider the casek = 2 (and, again, Boolean domain{0, 1}n). Correspond-
ing to the problem of finding a consistent hypothesis, we have the following ‘consistency prob-
lem’:

TWO PARALLEL PLANE SEPARABILITY

Instance: S+ ⊆ {0, 1}n andS− ⊆ {0, 1}n.
Question: Are there two parallel hyperplanes such that all points ofS+ lie between the hyper-
planes and all points ofS− do not?

If this problem is NP-complete then (assuming P6= NP), there can certainly be no efficient
consistent hypothesis finder for2-threshold functions. Furthermore, since a class of Boolean
functions is learnable in the standard PAC model of learning if and only if the correspond-
ing consistency problem is in RP (as shown in [24], for example), unless TWO PARALLEL

PLANE SEPARABILITY is in RP, there can be no efficient PAC learning algorithm for Boolean
2-threshold functions (unless P= RP). We therefore raise the following question:

Question: Is TWO PARALLEL PLANE SEPARABILITY NP-complete?

That the answer to this question could be ‘yes’ might be suggested by the fact that the con-
sistency problem for the intersection of two halfspaces is NP-complete [9] (though, here, of
course, the halfspaces need not necessarily be defined by parallel hyperplanes). On the other
hand, for the case of single-plane separability, as already noted, the consistency problem can be
solved in polynomial time.
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threshold perceptrons using genetic algorithms. InProceedings of the 28th IEEE Inter-
national Symposium on Multiple-Valued Logic, IEEE Press, 1998.
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