Links Between Learning and Optimization:
a Brief Tutorial

Martin Anthony
Department of Mathematics
and Centre for Discrete and Applicable Mathematics
The London School of Economics and Political Science
London WC2A 2AE, UK
m.anthony@lse.ac.uk

CDAM Research Report LSE-CDAM-2003-02
January 2003

Abstract

This report is a brief exposition of some of the important links between machine learn-
ing and combinatorial optimization. We explain how efficient ‘learnability’ in standard
probabilistic models of learning is linked to the existence of efficient randomized algo-
rithms for certain natural combinatorial optimization problems, and we discuss the com-
plexity of some of these optimization problems.

1 Introduction

In this report, we aim to give a brief exposition of some of the important links between machine
learning and combinatorial optimization. We explain how efficient ‘learnability’ in standard
probabilistic models of learning is linked to the existence of efficient randomized algorithms
for certain natural optimization problems, and we discuss the complexity of some of these
problems. There is no attempt here to give an all-encompassing survey of work on the com-
plexity of learning and its associated optimization problems; rather, the goal is to provide a brief
self-contained tutorial for those unfamiliar with computational learning theory, highlighting the
aspects that may be of interest to researchers in optimization or operations research.

2 Probabilistic modeling of learning

The main probabilistic model of ‘supervised’ learning we discuss here is a variant of the ‘prob-
ably approximately correct’ (or PAC) model introduced by Valiant [20], and further developed
by a number of many others; see [21, 9, 1], for example. The probabilistic aspects of the model
have their roots in work of Vapnik and Chervonenkis [22, 23], as was pointed out in [4]. Com-
putational efficiency was a key aspect of Valiant’s learning model [20], and has been much
further explored for the models of this chapter. The papers [4, 17] provided some of the impor-
tant initial results, and these are further explored in the books [12, 15, 2]. The treatment here
follows [1].

In the model, it is assumed that, for eagtwe use some clag$, of functions defined orX,, C

R™ to find a good fit to a set of data, where the data points are of the (fortn for x € X,

andb € {0,1}. The unionH = |J H, is called thehypothesis classThe learning model is
probabilistic: we assume that we are presented with some randomly generated ‘training’ data
points and that we choose a hypothesis on this basis.

The simplest assumption to make about the relationship bet#eand the data is that the
data can indeed be exactly matched by some functidi,iby which we mean that each data
point takes the forn{z, t(z)) for some fixedt € H, for somen (wherezx € X,). (In this
case,t is called thetarget concept In this realizable case, we assume that some number
m of (labeled) data points (dabeled examplgsare generated to formteaaining samples =

((x1,t(x1)), ..., (xm, t(zy)) as follows: for some:, eachr; is chosen independently according
to some fixed probability distribution on X,,. The learning problem is then, given orslyand
the knowledge that the data are labeled accordirsgptoetarget concept il/, to produce some
h € H, which is ‘close’ tot (in a sense to be formalized below).

A more general framework can usefully be developed to model the case in which the data cannot
necessarily be described completely by a functiof/iror, indeed, when there is a stochastic,
rather than deterministic, labeling of the data points. In this more general formulation, it is
assumed that, for some the data pointsz, b) in the training sample are generated according to

a probability distributionP on the producfX,, x {0, 1}. This formulation includes the realizable

case just described, but also permits a givdn appear with the two different labelsand1,

each with certain probability. The aim of learning in this case is to find a function figrinat

is a good predictor of the data labels (something we will shortly make precise).

We now formalize these outline descriptions of what is meant by learning. We place most
emphasis on the more general framework, the realizable one being a special case of this. A
training sample is some element&f, whereZ,, = X,, x {0,1} andZ} = | -_, Z". We may
therefore regard a learning algorithm as a function

L:GZ;HH:GHH
n=1 n=1

with the property that it € Z* thenL(s) € H,. We denote by.(s) the output hypothesisf
the learning algorithm after being presented with training sample

Since there is assumed to be some probability distribufipron the setZ,, = X, x {0, 1}, for
somen, we may define therror, erp(h), of a functionh € H, (with respect taP) to be the
P-probability that, for a randomly chosen example, the label is not correctly predictediby
other wordserp(h) = P({(z,b) € Z, : h(x) # b}).

The aim is to ensure that the erroriofs) is ‘usually near-optimal’ provided the training sample
is ‘large enough’. Since each of the examples in the training sample is drawn randomly
and independently according 1o, the samples is drawn randomly fron¥;* according to the
product probability distributior”™. Thus, more formally, we want it to be true that with high
P™-probability the sampls is such that the output functiob(s) has near-optimal error with
respect toP. The smallest the error could bedst (H,,) = min{erp(h) : h € H,}. We are
led to the following definition of a PAC learning algorithm. (See [20, 9, 13], for example.)

Definition 2.1 If L is a learning algorithm forH = | J H,,, then we say thal is PAC if
forall n € Nandd,e € (0,1), there ismq(n,d,e) such that ifm > mqg(n,d, e) then, for
any probability distribution” on Z,,, if s € Z is drawn randomly according to the product
probability distribution P™ on Z*, then with probability at least — 4, the hypothesid.(s)
output byL satisfies

erp(L(s)) < optp(H,) + €.

The smallest suitable value ofy(n, J,), denotedn (n, J, €), is called thesample complexity

of L. The definition is fairly easy to understand in the realizable case. In this@agé,) is

the probability that a hypothesis disagrees with the target concepbdn a randomly chosen
example from the appropriate domaif,. So, here, informally speaking, a learning algorithm

is PAC if, provided a random sample is long enough (where ‘long enough’ is independent of
P), then it is ‘probably’ the case that after training on that sample, the output hypothesis is
‘approximately’ correct. We often refer toas theaccuracy parameteandd as theconfidence
parameter

Note that the probability distributio® occurs twice in the definition: first in the requirement
that theP™-probability of a sample be small and secondly through the fact that the erkds pf

is measured with reference f& The crucial feature of the definition is that we require that the
sample lengthng(n, 6, €) be independent aP.

Additionally, we want the learning to be not only accurate enough in the sense just indicated, but
alsoefficient AninputtolL is atraining sample, which consistsraflabeled vectors of length.

We use the notatio; (m, n) to denote the worst-case running timelobn a training sample

of m points of Z,,. Clearly,n is not the only parameter with which the running time of the
learning procedure as a whole should be allowed to vary, since decreasing either the confidence
parametew or the accuracy parametemakes the learning task more difficult. We ask that

the running time of a learning algorithimbe polynomial inm, and that the sample complexity
mr(n,d, €) depend polynomially ot /e andln (1/4). If these conditions hold, then the running

time required to produce a ‘good’ output hypothesis will be polynomial,im(1/0) and1/e.

Thus we have the following definition of afficient PAC learning algorithm

Definition 2.2 Let H = (J H,, be a hypothesis class and suppose thas a PAC learning
algorithm for H. We say that is efficientif:

e the worst-case running timg,(m, n) of L on samples € Z'™ is polynomial inm and
n,and

e the sample complexity...(n, d, ¢) of L on H,, is polynomial inn, 1/e andln(1/6).

We have described the outputs of learning algorithms as hypotheses. But, more precisely, they
arerepresentation®f hypotheses (for instance, a Boolean formula, or a set of weights for a
neural network). When discussing the complexity of learning, it is always assumed that the
output lies in a representation class for the hypothesis class. This is not something we shall
explore much further, for the sake of simplicity, but it is sometimes important.

3 Sample complexity of learning

We now describe some results concerning the sample complexity of learning. We will present
these without proof, since our main interest, in subsequent sections, lies in what they tell us
about the computational efficiency of learning. We first need a few important definitions.

Forh € H ands = (((x1,b1), ..., (m, by)), thesample errorof 4 ons is

érs(h) = % {7 : h(x;) # x|

A natural optimization problem in this context is, givento seek to findh € H that has
minimum sample error. We say thatis a SEM (sample-error minimization) algorithm for
H =|JH, if, foranyn and anys € 2},

érs(L(s)) = min{érs(h) : h € H}.

(So, such an algorithm solves the optimization problem.)

3.1 Finite H,

The following result shows that if eadt,, is finite, then any SEM algorithm fol is a PAC
learning algorithm.

Theorem 3.1 Suppose thatl = | J H,, where each,, is finite. Then any SEM learning algo-
rithm L for H is PAC and has sample complexity bounded as follows:

2 2|H.
mg(n,d,e) < —ln< ’5"‘)

€2

Note that, in the realizable case, the optimal error is zero, so a SEM algorithm is what is called
a consistentlgorithm. This is one which, given a sample labeled by a target concept,
returnsh that is consistent with the sample, meaning that;) = ¢(x;) for eachi, wheret is

the target concept. We have the following [4].

Theorem 3.2 Suppose that/ = | J H,, where eachH,, is finite. Then, for realizable learning
problems, any consistent learning algorithins PAC and has sample complexity bounded as
follows: mp(n,d,¢) < (1/€)In (|H,|/J) .

3.2 The VC dimension

An important measure of thexpressive powesf a set of functiond? from X to {0, 1} is the
Vapnik-Chervonenkis dimensif8], or VC-dimensionof H, which is defined as follows.

Definition 3.3 Let H be a set of functions from a sé&tto {0, 1}. TheVC-dimensionof H is
the maximal size of a subsktof X with the property that for eacl§ C F, there isfs € H
with fs(z) = 1ifz € Sand fs(z) =0ifx € E'\ S.

Thus, the VC-dimension is the largest cardinality of a$ef points inX on which all possible
2151 classifications can be achieved. The VC-dimension of a finite set of functions can easily be
bounded in terms of its cardinality: f is finite thenVCdim(H) < log, |H|.

6

The importance of the VC-dimension in learning theory was highlighted in [4]. The following
result bounds from above the sample complexity of PAC learning (in the general and realizable
cases). It is obtained from results of Vapnik and Chervonenkis [23] (see [1]) and B&imer

al. [4].

Theorem 3.4 Suppose thatl = |J H,, is a hypothesis class, suppo&g has VC-dimension
d, > 1, and letL be any SEM algorithm fof. ThenL is a PAC learning algorithm fof with
sample complexity bounded as follows:

mr(n,o,€) < mg(n,d,) = % (an In (E> +1n (%)) :
€ €

Let L be any consistent learning algorithm féf. ThenL is a PAC learning algorithm ford
in the realizable case, with sample complexity bounded as follows:

mi(n,d,€) < % (dn In (g) +1n (%)) |

In fact, it is possible (using a result of Talagrand [19]; see [1]) to obtain an upper bound of order
(1/€?) (d +1n (1/4)) . for the general case. (However, the constants involved are quite large.)

The following lower bounds on sample complexity are also obtainable; see [7, 18, 1] for these
and similar results.

Theorem 3.5 Suppose thak is a hypothesis class witl#Z,,| > 3 for all n, andVCdim(H,,) =
d, > 1. For any PAC learning algorithnl. for H, the sample complexity.;(n,d,) of L

satisfies
1/d, 1 1
> 4 - -
mg(n, 0, €) > = (640 + 4ln <85)>

forall 0 < ¢,5 < 1/64. For any PAC learning algorithni. for H in the realizable case, the
sample complexityu; (n, 6, €) of L satisfies

oz (g Jn ()

forall 0 < e < 1/8and0 < § < 1/100.

4 Sufficient conditions for efficient learning

There may be some advantage in allowing SEM algorithms and PAC learning algorithms to be
randomized. For our purposes, a randomized algorithhas available to it a random number
generator that produces a sequence of independent, uniformly distributed bits. The randomized
algorithm .4 uses these random bits as part of its input, but it is useful to think of this input as
somehow ‘internal’ to the algorithm, and to think of the algorithm as defining a mapping from
an ‘external’ input to a probability distribution over outputs. We may therefore speak of the
‘probability’ that A has a given outcome on an (external) inputlt is useful to extend our
concept of a PAC learning algorithm to allow randomization. The definition of a randomized
PAC learning is as in Definition 2.1, with the additional feature that the algorithm is randomized.
(So, L should no longer be regarded as a deterministic function, ant thé probability is a
probability jointly over randomly chosen samples and over the random bitstream employed in
the randomization of the algorithm.) Aefficientrandomized PAC algorithm is then defined in

the obvious manner. We shall also be interested in efficient randomized SEM algorithms.

Definition 4.1 A randomized algorithnd is an efficient randomized SEM algorithifior the
hypothesis clasél = | J H, if given anys € Z', A halts in time polynomial im andm and
outputsh € H,, which, with probability at least /2, satisfiests(h) = mingep, €rs(g).

Suppose we run a randomized SEM algorithrtimes on a fixed sample, keeping the output
hypothesisf*) with minimal sample error among all thehypotheses returned. In other words,
we take thebest ofk iterationsof the algorithm. Then the probability th#&f*) has sample error

that isnot minimal is at most1/2)*. The following result, which may be found in [4] (for the
realizable and deterministic case), follows directly from the observation just made (by taking
the best off iterations of. A for a suitablek) and from the results presented in the previous
section. (See [1] for details.) It shows tha¥i€dim(H,,) is small enough, then the existence of

an efficient randomized SEM algorithm implies the existence of an efficient randomized PAC
learning algorithm.

Theorem 4.2 Suppose that! = | H,, is a hypothesis class and th&Cdim(H,,) is polyno-
mial in n. If there is an efficient randomized SEM algoritbdrfor H, then there is an efficient
randomized PAC learning algorithm fdf that usesA as a subroutine.

5 Necessary conditions for efficient learning

We have seen that efficient SEM algorithms can in many cases be used to construct efficient
PAC learning algorithms. The next result proves, as a converse, that if there is an efficient
randomized PAC learning algorithm for a hypothesis class tieeessarilythere is an efficient
randomized SEM algorithm. (For the realizable case, this may be found in [17, 4, 16].)

Theorem 5.1 If there is an efficient randomized PAC learning algorithm for the hypothesis
classH = |J H,, then there is an efficient randomized SEM algorithm.

Proof: Supposé. is an efficient PAC learning algorithm for the hypothesis cléss- | H,,.
We construct a randomized algorithr, which will turn out to be an efficient randomized
SEM algorithm. Suppose the samples 7" is given as input tod. Let P be the probability
distribution that is uniform on the labeled examplessiand zero elsewhere of,. (This
probability is defined with multiplicity; that is, for instance, if there are two labeled examples
in s each equal ta, we assign the labeled exampl@robability2/m rather tharl /m.) We use
the randomization allowed il to form a sample of length* = m(n,1/2,1/m), in which
each labeled example is drawn according’toLet s* denote the resulting sample. Feedsig
into the learning algorithm, we receive as outptit= L(s*) and we take this to be the output
of the algorithm.4; that is, A(s) = h* = L(s*). By the fact thatL is a randomized PAC
learning algorithm, and given that* = m(n,1/2,1/m), with probability at least /2, we
haveerp(h*) < optp(H) + 1/m. But because” is discrete, with no probability mass less than
1/m, this meansrp(h*) = optp(H). For anyh, by the definition ofP, erp(h) = érg(h). So
with probability at least /2,

érs(h7) = erp(h”) = optp(H) = min erp(g) = min ers(g).
This means thatl is a randomized SEM algorithm. Becauses efficient,m* = my(n,1/2,1/m)
is polynomial inn andm. Since the samplg* has lengthn*, and sincel. is efficient, the time
taken byL to produceh* is polynomial inm* andn. HenceA has running time polynomial in
n andm, as required. O

We arrive at the following succinct characterization of (randomized) PAC learnability.

Theorem 5.2 Suppose thatl = | H,, is a hypothesis class. Then there is an efficient random-
ized PAC learning algorithm fof{ if and only if VCdim(H,,) is polynomial inn andthere is
an efficient randomized SEM algorithm far.

6 Establishing hardness of learning

There are two quite natural decision problems associated with a hypothesi&/ctasg H,,:

H-FIT
Instance:s € Z™ = ({0,1}" x {0,1})™ and an integek betweenl andm.
Question: Is thereh € H,, such thatrg(h) < k/m?

H-CONSISTENCY
Instance:s € Z™ = ({0,1}" x {0,1})™.
Question: Is thereh € H,, such thatrg(h) = 0?

H-FAIT is clearly related to the optimization problem of finding a functiondnwith mini-
mal error, with this optimization problem being at least as difficultFasiT. Clearly H-
CONSISTENCYIs a sub-problem of{/-FIT, obtained by settingg = 0. Thus, any algorithm
for H-FIT can be used also to solV&-CONSISTENCY.

We say that a randomized algorith#nsolves a decision problehhif the algorithm always halts

and produces an output—either ‘yes’ or ‘no’—such that if the answHrda the given instance

is ‘no’, the output ofA is ‘no’, and if the answer tdl on the given instance is ‘yes’ then, with
probability at least /2, the output ofA4 is ‘yes’. A randomized algorithm ipolynomial-time

if its worst-case running time (over all instances) is polynomial in the size of its input. The
class of decision problemd that can be solved by a polynomial-time randomized algorithm

is denoted byRP. One approach to proving that PAC learning is computationally intractable
for particular classes (in the general or realizable cases) is through showing that these decision
problems are hard. The following results explain why this approach can be taken. First, we
have the following [13, 10].

Theorem 6.1 Let H = | J H,, be a hypothesis class. If there is an efficient randomized learning
algorithm for H then there is a polynomial-time randomized algorithm f&+FIT; in other

10

words,H-FITis in RP.

Proof. If H is efficiently learnable then, by Theorem 5.1, there exists an efficient randomized
SEM algorithmA for H. Using.A, we construct a polynomial-time randomized algoritBm

for H-FIT as follows. Suppose thate Z* andk together constitute an instance@friT, and
hence an input t&. The first step of the algorithri is to computeh = A(s), the output of4

ons. This function belongs té/,, and, with probability at leastt/2, érs(h) is minimal among

all functions inH,,. The next step if8 is to check whethefrs(h) < k/m. If so, then the output

of B is ‘yes’ and, if not, the output is ‘no’. It is clear th#t is a randomized algorithm for
H-FIT. Furthermore, sincgl runs in time polynomial inn andn, and since the time taken for

B to calculatesrs(h) is linear in the size of, 5 is a polynomial-time algorithm. O

The following result [17] applies to the realizable case.
Theorem 6.2 Suppose thall = | J H,, is a hypothesis class. H is efficiently learnable in the

realizable model, then there is a polynomial-time randomized algorithr/ fGroNSISTENCY,
that is, H-CONSISTENCYis in RP.

In particular, therefore, we have the following.

Theorem 6.3 Suppose RE: NP. If H-FIT is NP-hard, then there is no efficient PAC learning
algorithm for H. Furthermore, ifH-CONSISTENCYis NP-hard then there is no efficient PAC
learning algorithm forH in the realizable case.

7 Hardness results

We now use the theory just developed to show that PAC learnability of Boolean threshold func-
tions is computationally intractable (although it is tractable in the realizable case). We also
show the intractability of PAC learning a particular class of Boolean functions in the realizable
case.

11

7.1 Threshold functions

A functiont defined on{0, 1}" is a(Boolean) threshold functioifithere arew € R™ andd € R

such that f lwa) > 0
1 if (w,z) >
te) = { 0 if (w,z) <4,

where(w, z) = w”x is the standard inner product of andz. The vectorw is known as the
weight-vectoyandd is known as theéhreshold We denote the class of threshold functions on
{0,1}" by T,,.

It is well-known that if7}, is the set of threshold Boolean functions{@n1}", then the hypothe-

sis clasg” = | T,, is efficiently PAC learnable in the realizable case. Indeed, the VC-dimension
of T,, isn + 1, which is linear, and there exist SEM algorithms based on linear programming.
(See [4, 1], for instance.) Howevdl,is not efficiently PAC learnable in the general case, if RP
NP. This arises from the following result [8, 11, 10].

Theorem 7.1 Let T = (JT,, be the hypothesis class of threshold functions. ThenT is
NP-hard.

We present a proof of this which establishes that the problem it is at least as hard as the well-
known NP-hard/ERTEX COVERproblem in graph theory.

We denote a typical graph iy = (V, E), whereV is the set of vertices anfl the edges. We
shall assume that the vertices are labeled with the numbeérs.. , n. Then, a typical edge
{7, j} will, for convenience, be denotes by. A vertex coveof the graph is a séf of vertices
such that for each edgg of the graph, at least one of the vertices belongs toU. The
following decision problem is known to be NP-hard [8].

VERTEX COVER
Instance: A graphG = (V, E) and an integek < |V|.
Question: Is there a vertex covéy¥ C V such thatU| < k?

A typical instance ofVERTEX COVERIs a graphG = (V, E) together with an integet <
|V|. We assume, for simplicity, that = {1,2,...,n} and we denote the number of edges,
|E|, by . Notice that the size of an instance WERTEX COVERIs Q(r + n). We construct

12

s = s(@) € ({0,1}* x {0,1})** as follows. For any two distinct integets; betweenl
and2n, lete; ; denote the binary vector of leng# with ones in positiong and; and zeroes
elsewhere. The sampi¢G) consists of the labeled examples,,;, 1) fori =1,2,... . n and,
for each edgej € E, the labeled examplés; ;,0) and(e,+; .+, 0). Note that the ‘size’ o8 is
(2r 4+ n)(2n + 1), which is polynomial in the size of the original instancev&#RTEX COVER,
and thatz(G) can be computed in polynomial time.

Lemma 7.2 Given any grapltz = (V, E) with n vertices, and any integdr < n, lets = s(G)
be as defined above. Then, theréis T3, such thatrs(h) < k/(2n) if and only if there is a
vertex cover ofy of cardinality at mosk:.

Proof: Recall that any threshold function is represented by some weight veetod threshold

0. Suppose first that there is such /aand that this is represented by the weight-veatos
(w1, wa, ..., wsy,) and threshold. We construct a subsét of V' as follows. Ifh(e; i) = 0,
then we include in U; if, for i # j, h(e; ;) = 1 or h(entin+;) = 1 then we includesither one

of 4,7 in U. Becauséh is ‘wrong’ on at most: of the examples is, the setl/ consists of at
mostk vertices. We claim thal/ is a vertex cover. To show this, we need to verify that given
any edgeij € E, at least one of, j belongs taU. It is clear from the manner in whicli is
constructed that this is true if eithé(e; ,,.;) = 0 or h(e;,+;) = 0, SO suppose that neither of
these holds; in other words, suppose @t ,,.;,) = 1 = h(e;,+;). Then we may deduce that

w; + Wy 44 Z @, W + Wn,4-5 Z 9,
and so
Wi + Wi + Wnyi + Wnyj = 20

that is,
(wi +wj) + (Wnps + wnyy) > 20.

From this, we see that either, + w; > 6 or w,,4; + w,+; > 0 (or both); thush(e; ;) = 1 or
h(entint;) = 1, Or both. Because of the way in whi€his constructed, it follows that at least
one of the vertices j belongs td/. Sinceij was an arbitrary edge of the graph, this shows that
U is indeed a vertex cover.

We now show, conversely, that if there is a vertex covefzafonsisting of at most vertices,
then there is a function iif,,, with sample error at mogt/(2n) ons(G). Supposé’ is a vertex

13

cover andU| < k. Define a weight-vectow = (wy, ws, . .., ws,) and threshold as follows:
letd =1and, fori =1,2,...,n,

[AlifieU
WimWnti =1 ifigU.

We claim that if% is the threshold function represented byand 6, thenerg(h) < k/(2n).
Observe that ifj € F, then, sincdJ is a vertex cover, at least one ©fj belongs toU and
hence the inner products’e; ; andw?’e,, . ,+; are both eithed or —2, less thar, soh(e; ;) =
h(entint;) = 0. The functionh is therefore correct on all the examplessiitz) arising from
the edges ofs. We now consider the other types of labeled exampl @): those of the form
(€intis 1). Now, w’le;,; is —2if i € U and is2 otherwise, sdi(e; ;) = 0if i € U and
h(e;n+;) = 1 otherwise. It follows that is ‘wrong’ only on the examples;, ,,; for i € U and
hence

vl _ k
=<2

2n T 2n
as claimed. 0

érs(h)

This result shows that the answerZerIT on the instancés(G), k) is the same as the answer
to VERTEX COVER on instance(G, k). Given thats(G) can be computed frond in time
polynomial in the size of7, we have therefore established tdaEIT is NP-hard.

7.2 k-clause CNF

Pitt and Valiant [17] were the first to give an example of a hypothesis ¢lags which the
consistency problem/-CONSISTENCYis NP-hard, as we now describe.

Any Boolean function (that is, any function frof, 1} to {0, 1} can be expressed bycan-
junctive normal formulgor CNF), usingliterals x1, z», ..., x,, 1, ..., Z,, Where thez; are
known asnegated literals A conjunctive normal formula is one of the form

CLACyA - ACY,

where eaclt; is aclauseof the form

o (yvive)

14

for some disjoint subsetB, N of {1,2,...,n}. A Boolean function is said to be/aclause-
CNF if there is such a formula representing the function in which the number of clauses
at mostk.

Let C* be the set of-clause CNF functions. Pitt and Valiant [17] showed that, for fikesd 2,
the consistency problem far* = | C* is NP-hard. Thus, if N2 RP, then can be no efficient
PAC learning algorithm fo€* in the realizable case. We prove this here for the éases.

The reduction in this case is ®BRAPH K-COLORABILITY. Suppose we are given a graph
G = (V,E), withV = {1,2,...,n}. We construct a training sampiG), as follows. For
each vertex € VV we take as a negative example the vectarhich hasl in theith coordinate
position and0’s elsewhere. For each edgge € F we take as a positive example the vector
v; + ;.

Lemma 7.3 There is a function i”* which is consistent with the training samplg?) if and
only if the graph(= is k-colorable.

Proof: Suppose that € C* is consistent with the training sample. By definitidnjs a
conjunction
h:hl/\hQ/\/\hk

of clauses. For each vertéxf G, h(v;) = 0, and so there must be at least one clausél <
f < k) for which hs(v;) = 0. Thus we may define a functionfrom V' to {1,2,....k} as
follows:

x(i) = min{f = hy(v;) = 0}
We claim thaty is a coloring ofG. Suppose that(i) = x(j) = f, sothath(v;) = hs(v;) = 0.
Sincely is a clause, every literal occurring in it must®en v; and onv;. Now v; has al only
in the ith position, and sé¢(v;) = 0 implies that the only negated literal which can occur in
hy is z;. Since the same is true far, we conclude thak; contains only some literals;, with
l #1,7. Thushs(v; +v,) = 0 andh(v; +v;) = 0. Now if ij were an edge af7, then we should
haveh(v; + v;) = 1, because we assumed thas consistent witls(G). Thusij is not an edge
of G, andy is a coloring, as claimed.

Conversely, suppose we are given a coloingV’ — {1,2,...,k}. Forl < f <k, defineh;
to be the clauség/x(i)# x;, and defineh = hy A ho A ... A hy. We claim thath is consistent
with s(G).

15

First, given a vertex suppose thaf(i) = g. The clausey, is defined to contain only those
(non-negated) literals corresponding to vertinescoloredg, and sax; does not occur irh,,.
It follows thath,(v;) = 0 andh(v;) = 0. Secondly, letj be any edge of;. For each colorf,
there is at least one a@f j which is not coloredf; denote an appropriate choice Hy). Then
hy contains the literak; s, which is1 onv; + v;. Thus every clausgy is 1 onv; + v;, and
h(v; +v;) = 1, as required. O

Note that wherk = 1, we haveC! = C,,, and there is a polynomial time learning algorithm for
C,, dual to the monomial learning algorithm. The consistency problem (and hence intractability
of learning) remains, however, whén= 2: to show this, the consistency problem can be
related to the NP-complet&ET-SPLITTING problem; see [17].

8 Conclusions

This report has only briefly explored some of the connections between machine learning and
optimization, but has attempted to show that such connections are natural and central. But
of course there has been much more work on the complexity of learning and the associated
optimization problems. Another approach to proving the difficulty of learning has been via
reducing learning to problems that are assumed to be hard on the basis of standard cryptographic
hardness assumptions. (See [14], for example). Additionally, the optimization problems of
finding a hypothesis with smallest sample error have been shown, for many hypothesis classes,
to be difficult even to approximate to; see, for example, [10, 3, 5] and the references therein.

References

[1] M. Anthony and P. L. BartlettNeural Network Learning: Theoretical Foundatiof&am-
bridge University Press, 1999.

[2] Martin Anthony and Norman L. Bigg€Computational Learning Theory: An Introduc-
tion. Cambridge Tracts in Theoretical Computer Science, 30, 1992. Cambridge Univer-
sity Press, Cambridge, UK.

16

[3]

[4]

[5]

[6]

P.L. Bartlett and S. Ben-David. Hardness results for neural network approximation prob-
lems. InProceedings of the 4th European Conference on Computational Learning Theory
(ed. P. Fischer and H. Simon), Springer, 1999.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Learnability and the
Vapnik-Chervonenkis dimensiodournal of the ACM 36(4), 1989: 929-965.

N. H. Bshouty and L. Burroughs. Maximizing agreements and CoAgnostic learning. In
Algorithmic Learning Theory, 13th International Conference, ALT 20Qheck, Ger-
many, November 200Zed. N. Cesa-Bianchi, M. Numao and R. Reischuk). Springer
Lecture Notes in Artificial Intelligence LNAI 2533. Springer, 2002.

L. Devroye and G. Lugosi. Lower bounds in pattern recognition and learRatgern
Recognitior28(7), 1995: 1011-1018.

[7] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the

[8]

[9]

[10]

[11]

[12]

[13]

[14]

number of examples needed for learnindormation and Computatign82, 1989: 247—
261.

M. Garey and D. JohnsorComputers and Intractibility: A Guide to the Theory of NP-
Completenesg-reemans, San Francisco, 1979.

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applicationdnformation and Computatign100(1), 1992: 78-150.

K.-U. Hoffgen, H. U. Simon and K. S. Van Horn. Robust trainability of single neurons.
Journal of Computer and System Scien&g1), 1995: 114-125.

D. S. Johnson and F. P. Preparata. The densest hemisphere probeoretical Com-
puter Scienceb, 1978: 93-107.

M. J. Kearns.The Computational Complexity of Machine Learni#d§M Distinguished
Dissertation Series. The MIT Press, Cambridge, MA., 1989.

M. J. Kearns, R. E. Schapire and L. M. Sellie. Toward efficient agnostic learhiag.
chine Learningl7(2/3), 1994: 115-142.

M. Kearns and L.G. Valiant. Cryptographic limitations on learning Boolean formulae
and finite automata. IRroceedings of the 21st Annual ACM Symposium on the Theory
of Computing The Association for Computing Machinery, New York.

17

[15] M. J. Kearns and U. Vaziranintroduction to Computational Learning TheorMIT
Press, Cambridge, MA, 1995.

[16] B. K. Natarajan. On learning sets and functiokschine Learning4(1), 1989: 67-97.

[17] L. Pitt and L. Valiant. Computational limitations on learning from examplesirnal of
the ACM 35, 1988: 965—-984.

[18] H. U. Simon. General bounds on the number of examples needed for learning probabilis-
tic conceptsJournal of Computer and System Scien&2§2), 1996: 239-254.

[19] M. Talagrand. Sharper bounds for Gaussian and empirical procésseals of Proba-
bility, 22, 1994: 28-76.

[20] L. G. Valiant. A theory of the learnabl€€ommunications of the ACM27(11), 1984:
1134-1142.

[21] V. N. Vapnik: Statistical Learning Theoryiley, 1998.

[22] V. N. Vapnik. Estimation of Dependences Based on Empirical D&pringer-Verlag,
New York, 1982.

[23] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilitieI.heory of Probability and its Applicationsl6(2), 1971
264-280.

18

