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Abstract

This report is a brief exposition of some of the important links between machine learn-
ing and combinatorial optimization. We explain how efficient ‘learnability’ in standard
probabilistic models of learning is linked to the existence of efficient randomized algo-
rithms for certain natural combinatorial optimization problems, and we discuss the com-
plexity of some of these optimization problems.
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1 Introduction

In this report, we aim to give a brief exposition of some of the important links between machine
learning and combinatorial optimization. We explain how efficient ‘learnability’ in standard
probabilistic models of learning is linked to the existence of efficient randomized algorithms
for certain natural optimization problems, and we discuss the complexity of some of these
problems. There is no attempt here to give an all-encompassing survey of work on the com-
plexity of learning and its associated optimization problems; rather, the goal is to provide a brief
self-contained tutorial for those unfamiliar with computational learning theory, highlighting the
aspects that may be of interest to researchers in optimization or operations research.

2 Probabilistic modeling of learning

The main probabilistic model of ‘supervised’ learning we discuss here is a variant of the ‘prob-
ably approximately correct’ (or PAC) model introduced by Valiant [20], and further developed
by a number of many others; see [21, 9, 1], for example. The probabilistic aspects of the model
have their roots in work of Vapnik and Chervonenkis [22, 23], as was pointed out in [4]. Com-
putational efficiency was a key aspect of Valiant’s learning model [20], and has been much
further explored for the models of this chapter. The papers [4, 17] provided some of the impor-
tant initial results, and these are further explored in the books [12, 15, 2]. The treatment here
follows [1].

In the model, it is assumed that, for eachn, we use some classHn of functions defined onXn ⊆
R
n to find a good fit to a set of data, where the data points are of the form(x, b) for x ∈ Xn,

andb ∈ {0, 1}. The unionH =
⋃
Hn is called thehypothesis class. The learning model is

probabilistic: we assume that we are presented with some randomly generated ‘training’ data
points and that we choose a hypothesis on this basis.

The simplest assumption to make about the relationship betweenH and the data is that the
data can indeed be exactly matched by some function inH, by which we mean that each data
point takes the form(x, t(x)) for some fixedt ∈ Hn for somen (wherex ∈ Xn). (In this
case,t is called thetarget concept). In this realizablecase, we assume that some number
m of (labeled) data points (orlabeled examples) are generated to form atraining samples =
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((x1, t(x1)), . . . , (xm, t(xm)) as follows: for somen, eachxi is chosen independently according
to some fixed probability distributionµ onXn. The learning problem is then, given onlys, and
the knowledge that the data are labeled according tosometarget concept inH, to produce some
h ∈ Hn which is ‘close’ tot (in a sense to be formalized below).

A more general framework can usefully be developed to model the case in which the data cannot
necessarily be described completely by a function inH, or, indeed, when there is a stochastic,
rather than deterministic, labeling of the data points. In this more general formulation, it is
assumed that, for somen, the data points(x, b) in the training sample are generated according to
a probability distributionP on the productXn×{0, 1}. This formulation includes the realizable
case just described, but also permits a givenx to appear with the two different labels0 and1,
each with certain probability. The aim of learning in this case is to find a function fromHn that
is a good predictor of the data labels (something we will shortly make precise).

We now formalize these outline descriptions of what is meant by learning. We place most
emphasis on the more general framework, the realizable one being a special case of this. A
training sample is some element ofZ∗n, whereZn = Xn×{0, 1} andZ∗n =

⋃∞
m=1 Z

m
n . We may

therefore regard a learning algorithm as a function

L :
∞⋃
n=1

Z∗n → H =
∞⋃
n=1

Hn

with the property that ifs ∈ Z∗n thenL(s) ∈ Hn. We denote byL(s) theoutput hypothesisof
the learning algorithm after being presented with training samples.

Since there is assumed to be some probability distribution,P , on the setZn = Xn × {0, 1}, for
somen, we may define theerror, erP (h), of a functionh ∈ Hn (with respect toP ) to be the
P -probability that, for a randomly chosen example, the label is not correctly predicted byh. In
other words,erP (h) = P ({(x, b) ∈ Zn : h(x) 6= b}).

The aim is to ensure that the error ofL(s) is ‘usually near-optimal’ provided the training sample
is ‘large enough’. Since each of them examples in the training sample is drawn randomly
and independently according toP , the samples is drawn randomly fromZm

n according to the
product probability distributionPm. Thus, more formally, we want it to be true that with high
Pm-probability the samples is such that the output functionL(s) has near-optimal error with
respect toP . The smallest the error could be isoptP (Hn) = min{erP (h) : h ∈ Hn}. We are
led to the following definition of a PAC learning algorithm. (See [20, 9, 13], for example.)
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Definition 2.1 If L is a learning algorithm forH =
⋃
Hn, then we say thatL is PAC if

for all n ∈ N and δ, ε ∈ (0, 1), there ism0(n, δ, ε) such that ifm ≥ m0(n, δ, ε) then, for
any probability distributionP onZn, if s ∈ Zm

n is drawn randomly according to the product
probability distributionPm on Zm

n , then with probability at least1 − δ, the hypothesisL(s)
output byL satisfies

erP (L(s)) < optP (Hn) + ε.

The smallest suitable value ofm0(n, δ, ε), denotedmL(n, δ, ε), is called thesample complexity
of L. The definition is fairly easy to understand in the realizable case. In this case,erP (h) is
the probability that a hypothesish disagrees with the target conceptt on a randomly chosen
example from the appropriate domainXn. So, here, informally speaking, a learning algorithm
is PAC if, provided a random sample is long enough (where ‘long enough’ is independent of
P ), then it is ‘probably’ the case that after training on that sample, the output hypothesis is
‘approximately’ correct. We often refer toε as theaccuracy parameterandδ as theconfidence
parameter.

Note that the probability distributionP occurs twice in the definition: first in the requirement
that thePm-probability of a sample be small and secondly through the fact that the error ofL(s)
is measured with reference toP . The crucial feature of the definition is that we require that the
sample lengthm0(n, δ, ε) be independent ofP .

Additionally, we want the learning to be not only accurate enough in the sense just indicated, but
alsoefficient. An input toL is a training sample, which consists ofm labeled vectors of lengthn.
We use the notationRL(m,n) to denote the worst-case running time ofL on a training sample
of m points ofZn. Clearly,n is not the only parameter with which the running time of the
learning procedure as a whole should be allowed to vary, since decreasing either the confidence
parameterδ or the accuracy parameterε makes the learning task more difficult. We ask that
the running time of a learning algorithmL be polynomial inm, and that the sample complexity
mL(n, δ, ε) depend polynomially on1/ε andln (1/δ). If these conditions hold, then the running
time required to produce a ‘good’ output hypothesis will be polynomial inn, ln(1/δ) and1/ε.
Thus we have the following definition of anefficient PAC learning algorithm.
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Definition 2.2 Let H =
⋃
Hn be a hypothesis class and suppose thatL is a PAC learning

algorithm forH. We say thatL is efficient if:

• the worst-case running timeRL(m,n) of L on sampless ∈ Zm
n is polynomial inm and

n, and

• the sample complexitymL(n, δ, ε) ofL onHn is polynomial inn, 1/ε and ln(1/δ).

We have described the outputs of learning algorithms as hypotheses. But, more precisely, they
are representationsof hypotheses (for instance, a Boolean formula, or a set of weights for a
neural network). When discussing the complexity of learning, it is always assumed that the
output lies in a representation class for the hypothesis class. This is not something we shall
explore much further, for the sake of simplicity, but it is sometimes important.

3 Sample complexity of learning

We now describe some results concerning the sample complexity of learning. We will present
these without proof, since our main interest, in subsequent sections, lies in what they tell us
about the computational efficiency of learning. We first need a few important definitions.

Forh ∈ H ands = (((x1, b1), . . . , (xm, bm)), thesample errorof h on s is

êrs(h) =
1

m
|{i : h(xi) 6= xi}| .

A natural optimization problem in this context is, givens, to seek to findh ∈ H that has
minimum sample error. We say thatL is a SEM (sample-error minimization) algorithm for
H =

⋃
Hn if, for anyn and anys ∈ Z∗n,

êrs(L(s)) = min{êrs(h) : h ∈ H}.

(So, such an algorithm solves the optimization problem.)
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3.1 FiniteHn

The following result shows that if eachHn is finite, then any SEM algorithm forH is a PAC
learning algorithm.

Theorem 3.1 Suppose thatH =
⋃
Hn where eachHn is finite. Then any SEM learning algo-

rithmL for H is PAC and has sample complexity bounded as follows:

mL(n, δ, ε) ≤ 2

ε2
ln

(
2|Hn|
δ

)
.

Note that, in the realizable case, the optimal error is zero, so a SEM algorithm is what is called
a consistentalgorithm. This is one which, given a sample labeled by a target conceptt ∈ H,
returnsh that is consistent with the sample, meaning thath(xi) = t(xi) for eachi, wheret is
the target concept. We have the following [4].

Theorem 3.2 Suppose thatH =
⋃
Hn where eachHn is finite. Then, for realizable learning

problems, any consistent learning algorithmL is PAC and has sample complexity bounded as
follows:mL(n, δ, ε) ≤ (1/ε) ln (|Hn|/δ) .

3.2 The VC dimension

An important measure of theexpressive powerof a set of functionsH fromX to {0, 1} is the
Vapnik-Chervonenkis dimension[23], or VC-dimension, ofH, which is defined as follows.

Definition 3.3 LetH be a set of functions from a setX to {0, 1}. TheVC-dimensionof H is
the maximal size of a subsetE of X with the property that for eachS ⊆ E, there isfS ∈ H
with fS(x) = 1 if x ∈ S andfS(x) = 0 if x ∈ E \ S.

Thus, the VC-dimension is the largest cardinality of a setS of points inX on which all possible
2|S| classifications can be achieved. The VC-dimension of a finite set of functions can easily be
bounded in terms of its cardinality: ifH is finite thenVCdim(H) ≤ log2 |H|.
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The importance of the VC-dimension in learning theory was highlighted in [4]. The following
result bounds from above the sample complexity of PAC learning (in the general and realizable
cases). It is obtained from results of Vapnik and Chervonenkis [23] (see [1]) and Blumeret
al. [4].

Theorem 3.4 Suppose thatH =
⋃
Hn is a hypothesis class, supposeHn has VC-dimension

dn ≥ 1, and letL be any SEM algorithm forH. ThenL is a PAC learning algorithm forH with
sample complexity bounded as follows:

mL(n, δ, ε) ≤ m0(n, δ, ε) =
64

ε2

(
2dn ln

(
12

ε

)
+ ln

(
4

δ

))
.

LetL be any consistent learning algorithm forH. ThenL is a PAC learning algorithm forH
in the realizable case, with sample complexity bounded as follows:

mL(n, δ, ε) ≤ 4

ε

(
dn ln

(
12

ε

)
+ ln

(
2

δ

))
.

In fact, it is possible (using a result of Talagrand [19]; see [1]) to obtain an upper bound of order
(1/ε2) (d+ ln (1/δ)) . for the general case. (However, the constants involved are quite large.)

The following lower bounds on sample complexity are also obtainable; see [7, 18, 1] for these
and similar results.

Theorem 3.5 Suppose thatH is a hypothesis class with|Hn| ≥ 3 for all n, andVCdim(Hn) =
dn ≥ 1. For any PAC learning algorithmL for H, the sample complexitymL(n, δ, ε) of L
satisfies

mL(n, δ, ε) ≥ 1

ε2

(
dn
640

+
1

4
ln

(
1

8δ

))
for all 0 < ε, δ < 1/64. For any PAC learning algorithmL for H in the realizable case, the
sample complexitymL(n, δ, ε) ofL satisfies

mL(n, δ, ε) ≥ 1

ε

(
(dn − 1)

32
+

1

2
ln

(
1

δ

))
for all 0 < ε < 1/8 and0 < δ < 1/100.
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4 Sufficient conditions for efficient learning

There may be some advantage in allowing SEM algorithms and PAC learning algorithms to be
randomized. For our purposes, a randomized algorithmA has available to it a random number
generator that produces a sequence of independent, uniformly distributed bits. The randomized
algorithmA uses these random bits as part of its input, but it is useful to think of this input as
somehow ‘internal’ to the algorithm, and to think of the algorithm as defining a mapping from
an ‘external’ input to a probability distribution over outputs. We may therefore speak of the
‘probability’ thatA has a given outcome on an (external) inputx. It is useful to extend our
concept of a PAC learning algorithm to allow randomization. The definition of a randomized
PAC learning is as in Definition 2.1, with the additional feature that the algorithm is randomized.
(So,L should no longer be regarded as a deterministic function, and the1 − δ probability is a
probability jointly over randomly chosen samples and over the random bitstream employed in
the randomization of the algorithm.) Anefficientrandomized PAC algorithm is then defined in
the obvious manner. We shall also be interested in efficient randomized SEM algorithms.

Definition 4.1 A randomized algorithmA is an efficient randomized SEM algorithmfor the
hypothesis classH =

⋃
Hn if given anys ∈ Zm

n , A halts in time polynomial inn andm and
outputsh ∈ Hn which, with probability at least1/2, satisfiesêrs(h) = ming∈Hn êrs(g).

Suppose we run a randomized SEM algorithmk times on a fixed sample, keeping the output
hypothesisf (k) with minimal sample error among all thek hypotheses returned. In other words,
we take thebest ofk iterationsof the algorithm. Then the probability thatf (k) has sample error
that isnot minimal is at most(1/2)k. The following result, which may be found in [4] (for the
realizable and deterministic case), follows directly from the observation just made (by taking
the best ofk iterations ofA for a suitablek) and from the results presented in the previous
section. (See [1] for details.) It shows that ifVCdim(Hn) is small enough, then the existence of
an efficient randomized SEM algorithm implies the existence of an efficient randomized PAC
learning algorithm.

Theorem 4.2 Suppose thatH =
⋃
Hn is a hypothesis class and thatVCdim(Hn) is polyno-

mial in n. If there is an efficient randomized SEM algorithmA for H, then there is an efficient
randomized PAC learning algorithm forH that usesA as a subroutine.
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5 Necessary conditions for efficient learning

We have seen that efficient SEM algorithms can in many cases be used to construct efficient
PAC learning algorithms. The next result proves, as a converse, that if there is an efficient
randomized PAC learning algorithm for a hypothesis class thennecessarilythere is an efficient
randomized SEM algorithm. (For the realizable case, this may be found in [17, 4, 16].)

Theorem 5.1 If there is an efficient randomized PAC learning algorithm for the hypothesis
classH =

⋃
Hn, then there is an efficient randomized SEM algorithm.

Proof: SupposeL is an efficient PAC learning algorithm for the hypothesis classH =
⋃
Hn.

We construct a randomized algorithmA, which will turn out to be an efficient randomized
SEM algorithm. Suppose the samples ∈ Zm

n is given as input toA. Let P be the probability
distribution that is uniform on the labeled examples ins and zero elsewhere onZn. (This
probability is defined with multiplicity; that is, for instance, if there are two labeled examples
in s each equal toz, we assign the labeled examplez probability2/m rather than1/m.) We use
the randomization allowed inA to form a sample of lengthm∗ = mL(n, 1/2, 1/m), in which
each labeled example is drawn according toP . Let s∗ denote the resulting sample. Feedings∗

into the learning algorithm, we receive as outputh∗ = L(s∗) and we take this to be the output
of the algorithmA; that is,A(s) = h∗ = L(s∗). By the fact thatL is a randomized PAC
learning algorithm, and given thatm∗ = mL(n, 1/2, 1/m), with probability at least1/2, we
haveerP (h∗) < optP (H) + 1/m. But becauseP is discrete, with no probability mass less than
1/m, this meanserP (h∗) = optP (H). For anyh, by the definition ofP , erP (h) = êrs(h). So
with probability at least1/2,

êrs(h
∗) = erP (h∗) = optP (H) = min

g∈Hn
erP (g) = min

g∈Hn
êrs(g).

This means thatA is a randomized SEM algorithm. BecauseL is efficient,m∗ = mL(n, 1/2, 1/m)
is polynomial inn andm. Since the samples∗ has lengthm∗, and sinceL is efficient, the time
taken byL to produceh∗ is polynomial inm∗ andn. HenceA has running time polynomial in
n andm, as required. ut

We arrive at the following succinct characterization of (randomized) PAC learnability.
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Theorem 5.2 Suppose thatH =
⋃
Hn is a hypothesis class. Then there is an efficient random-

ized PAC learning algorithm forH if and only ifVCdim(Hn) is polynomial inn andthere is
an efficient randomized SEM algorithm forH.

6 Establishing hardness of learning

There are two quite natural decision problems associated with a hypothesis classH =
⋃
Hn:

H-FIT

Instance: s ∈ Zm
n = ({0, 1}n × {0, 1})m and an integerk between1 andm.

Question: Is thereh ∈ Hn such thatêrs(h) ≤ k/m?

H-CONSISTENCY

Instance: s ∈ Zm
n = ({0, 1}n × {0, 1})m.

Question: Is thereh ∈ Hn such thatêrs(h) = 0?

H-FIT is clearly related to the optimization problem of finding a function inH with mini-
mal error, with this optimization problem being at least as difficult asH-FIT. ClearlyH-
CONSISTENCY is a sub-problem ofH-FIT, obtained by settingk = 0. Thus, any algorithm
for H-FIT can be used also to solveH-CONSISTENCY.

We say that a randomized algorithmA solves a decision problemΠ if the algorithm always halts
and produces an output—either ‘yes’ or ‘no’—such that if the answer toΠ on the given instance
is ‘no’, the output ofA is ‘no’, and if the answer toΠ on the given instance is ‘yes’ then, with
probability at least1/2, the output ofA is ‘yes’. A randomized algorithm ispolynomial-time
if its worst-case running time (over all instances) is polynomial in the size of its input. The
class of decision problemsΠ that can be solved by a polynomial-time randomized algorithm
is denoted byRP. One approach to proving that PAC learning is computationally intractable
for particular classes (in the general or realizable cases) is through showing that these decision
problems are hard. The following results explain why this approach can be taken. First, we
have the following [13, 10].

Theorem 6.1 LetH =
⋃
Hn be a hypothesis class. If there is an efficient randomized learning

algorithm forH then there is a polynomial-time randomized algorithm forH-FIT; in other
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words,H-FIT is in RP.

Proof: If H is efficiently learnable then, by Theorem 5.1, there exists an efficient randomized
SEM algorithmA for H. UsingA, we construct a polynomial-time randomized algorithmB
for H-FIT as follows. Suppose thats ∈ Zm

n andk together constitute an instance ofH-FIT, and
hence an input toB. The first step of the algorithmB is to computeh = A(s), the output ofA
on s. This function belongs toHn and, with probability at least1/2, êrs(h) is minimal among
all functions inHn. The next step inB is to check whether̂ers(h) ≤ k/m. If so, then the output
of B is ‘yes’ and, if not, the output is ‘no’. It is clear thatB is a randomized algorithm for
H-FIT. Furthermore, sinceA runs in time polynomial inm andn, and since the time taken for
B to calculateêrs(h) is linear in the size ofs, B is a polynomial-time algorithm. ut

The following result [17] applies to the realizable case.

Theorem 6.2 Suppose thatH =
⋃
Hn is a hypothesis class. IfH is efficiently learnable in the

realizable model, then there is a polynomial-time randomized algorithm forH-CONSISTENCY;
that is,H-CONSISTENCYis in RP.

In particular, therefore, we have the following.

Theorem 6.3 Suppose RP6= NP. IfH-FIT is NP-hard, then there is no efficient PAC learning
algorithm forH. Furthermore, ifH-CONSISTENCYis NP-hard then there is no efficient PAC
learning algorithm forH in the realizable case.

7 Hardness results

We now use the theory just developed to show that PAC learnability of Boolean threshold func-
tions is computationally intractable (although it is tractable in the realizable case). We also
show the intractability of PAC learning a particular class of Boolean functions in the realizable
case.
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7.1 Threshold functions

A function t defined on{0, 1}n is a(Boolean) threshold functionif there arew ∈ Rn andθ ∈ R
such that

t(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where〈w, x〉 = wTx is the standard inner product ofw andx. The vectorw is known as the
weight-vector, andθ is known as thethreshold. We denote the class of threshold functions on
{0, 1}n by Tn.

It is well-known that ifTn is the set of threshold Boolean functions on{0, 1}n, then the hypothe-
sis classT =

⋃
Tn is efficiently PAC learnable in the realizable case. Indeed, the VC-dimension

of Tn is n + 1, which is linear, and there exist SEM algorithms based on linear programming.
(See [4, 1], for instance.) However,T is notefficiently PAC learnable in the general case, if RP
6= NP. This arises from the following result [8, 11, 10].

Theorem 7.1 Let T =
⋃
Tn be the hypothesis class of threshold functions. ThenT -FIT is

NP-hard.

We present a proof of this which establishes that the problem it is at least as hard as the well-
known NP-hardVERTEX COVERproblem in graph theory.

We denote a typical graph byG = (V,E), whereV is the set of vertices andE the edges. We
shall assume that the vertices are labeled with the numbers1, 2, . . . , n. Then, a typical edge
{i, j} will, for convenience, be denotes byij. A vertex coverof the graph is a setU of vertices
such that for each edgeij of the graph, at least one of the verticesi, j belongs toU . The
following decision problem is known to be NP-hard [8].

VERTEX COVER

Instance: A graphG = (V,E) and an integerk ≤ |V |.
Question: Is there a vertex coverU ⊆ V such that|U | ≤ k?

A typical instance ofVERTEX COVER is a graphG = (V,E) together with an integerk ≤
|V |. We assume, for simplicity, thatV = {1, 2, . . . , n} and we denote the number of edges,
|E|, by r. Notice that the size of an instance ofVERTEX COVER is Ω(r + n). We construct
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s = s(G) ∈ ({0, 1}2n × {0, 1})2r+n as follows. For any two distinct integersi, j between1
and2n, let ei,j denote the binary vector of length2n with ones in positionsi andj and zeroes
elsewhere. The samples(G) consists of the labeled examples(ei,n+i, 1) for i = 1, 2, . . . , n and,
for each edgeij ∈ E, the labeled examples(ei,j, 0) and(en+i,n+j, 0). Note that the ‘size’ ofs is
(2r + n)(2n + 1), which is polynomial in the size of the original instance ofVERTEX COVER,
and thatz(G) can be computed in polynomial time.

Lemma 7.2 Given any graphG = (V,E) with n vertices, and any integerk ≤ n, let s = s(G)
be as defined above. Then, there ish ∈ T2n such thatêrs(h) ≤ k/(2n) if and only if there is a
vertex cover ofG of cardinality at mostk.

Proof: Recall that any threshold function is represented by some weight vectorw and threshold
θ. Suppose first that there is such anh and that this is represented by the weight-vectorw =
(w1, w2, . . . , w2n) and thresholdθ. We construct a subsetU of V as follows. Ifh(ei,n+i) = 0,
then we includei in U ; if, for i 6= j, h(ei,j) = 1 or h(en+i,n+j) = 1 then we includeeither one
of i, j in U . Becauseh is ‘wrong’ on at mostk of the examples ins, the setU consists of at
mostk vertices. We claim thatU is a vertex cover. To show this, we need to verify that given
any edgeij ∈ E, at least one ofi, j belongs toU . It is clear from the manner in whichU is
constructed that this is true if eitherh(ei,n+i) = 0 or h(ej,n+j) = 0, so suppose that neither of
these holds; in other words, suppose thath(ei,n+i) = 1 = h(ej,n+j). Then we may deduce that

wi + wn+i ≥ θ, wj + wn+j ≥ θ,

and so
wi + wj + wn+i + wn+j ≥ 2θ;

that is,
(wi + wj) + (wn+i + wn+j) ≥ 2θ.

From this, we see that eitherwi + wj ≥ θ or wn+i + wn+j ≥ θ (or both); thus,h(ei,j) = 1 or
h(en+i,n+j) = 1, or both. Because of the way in whichU is constructed, it follows that at least
one of the verticesi, j belongs toU . Sinceij was an arbitrary edge of the graph, this shows that
U is indeed a vertex cover.

We now show, conversely, that if there is a vertex cover ofG consisting of at mostk vertices,
then there is a function inT2n with sample error at mostk/(2n) ons(G). SupposeU is a vertex
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cover and|U | ≤ k. Define a weight-vectorw = (w1, w2, . . . , w2n) and thresholdθ as follows:
let θ = 1 and, fori = 1, 2, . . . , n,

wi = wn+i =

{
−1 if i ∈ U
1 if i 6∈ U .

We claim that ifh is the threshold function represented byw andθ, then êrs(h) ≤ k/(2n).
Observe that ifij ∈ E, then, sinceU is a vertex cover, at least one ofi, j belongs toU and
hence the inner productswT ei,j andwT en+i,n+j are both either0 or−2, less thanθ, soh(ei,j) =
h(en+i,n+j) = 0. The functionh is therefore correct on all the examples ins(G) arising from
the edges ofG. We now consider the other types of labeled example ins(G): those of the form
(ei,n+i, 1). Now, wT ei,n+i is −2 if i ∈ U and is2 otherwise, soh(ei,n+i) = 0 if i ∈ U and
h(ei,n+i) = 1 otherwise. It follows thath is ‘wrong’ only on the examplesei,n+i for i ∈ U and
hence

êrs(h) =
|U |
2n
≤ k

2n
,

as claimed. ut

This result shows that the answer toT -FIT on the instance(s(G), k) is the same as the answer
to VERTEX COVER on instance(G, k). Given thats(G) can be computed fromG in time
polynomial in the size ofG, we have therefore established thatT -FIT is NP-hard.

7.2 k-clause CNF

Pitt and Valiant [17] were the first to give an example of a hypothesis classH for which the
consistency problemH-CONSISTENCYis NP-hard, as we now describe.

Any Boolean function (that is, any function from{0, 1}n to {0, 1} can be expressed by acon-
junctive normal formula(or CNF), usingliterals x1, x2, . . . , xn, x̄1, . . . , x̄n, where thex̄i are
known asnegated literals. A conjunctive normal formula is one of the form

C1 ∧ C2 ∧ · · · ∧ Ck,

where eachCl is aclauseof the form

Cl =

(∨
i∈P

xi

)∨(∨
j∈N

x̄j

)
,
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for some disjoint subsetsP,N of {1, 2, . . . , n}. A Boolean function is said to be ak-clause-
CNF if there is such a formula representing the function in which the number of clausesCi is
at mostk.

LetCk
n be the set ofk-clause CNF functions. Pitt and Valiant [17] showed that, for fixedk ≥ 2,

the consistency problem forCk =
⋃
Ck
n is NP-hard. Thus, if NP6= RP, then can be no efficient

PAC learning algorithm forCk in the realizable case. We prove this here for the casek ≥ 3.

The reduction in this case is toGRAPH K-COLORABILITY . Suppose we are given a graph
G = (V,E), with V = {1, 2, . . . , n}. We construct a training samples(G), as follows. For
each vertexi ∈ V we take as a negative example the vectorvi which has1 in theith coordinate
position and0’s elsewhere. For each edgeij ∈ E we take as a positive example the vector
vi + vj.

Lemma 7.3 There is a function inCk
n which is consistent with the training samples(G) if and

only if the graphG is k-colorable.

Proof: Suppose thath ∈ Ck
n is consistent with the training sample. By definition,h is a

conjunction
h = h1 ∧ h2 ∧ . . . ∧ hk

of clauses. For each vertexi of G, h(vi) = 0, and so there must be at least one clausehf (1 ≤
f ≤ k) for which hf (vi) = 0. Thus we may define a functionχ from V to {1, 2, . . . , k} as
follows:

χ(i) = min{f : hf (vi) = 0}.
We claim thatχ is a coloring ofG. Suppose thatχ(i) = χ(j) = f , so thathf (vi) = hf (vj) = 0.
Sincehf is a clause, every literal occurring in it must be0 onvi and onvj. Now vi has a1 only
in the ith position, and sohf (vi) = 0 implies that the only negated literal which can occur in
hf is x̄i. Since the same is true for̄xj, we conclude thathf contains only some literalsxl, with
l 6= i, j. Thushf (vi + vj) = 0 andh(vi + vj) = 0. Now if ij were an edge ofG, then we should
haveh(vi + vj) = 1, because we assumed thath is consistent withs(G). Thusij is not an edge
of G, andχ is a coloring, as claimed.

Conversely, suppose we are given a coloringχ : V → {1, 2, . . . , k}. For1 ≤ f ≤ k, definehf
to be the clause

∨
χ(i) 6=f xi, and defineh = h1 ∧ h2 ∧ . . . ∧ hk. We claim thath is consistent

with s(G).
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First, given a vertexi suppose thatχ(i) = g. The clausehg is defined to contain only those
(non-negated) literals corresponding to verticesnot coloredg, and soxi does not occur inhg.
It follows thathg(vi) = 0 andh(vi) = 0. Secondly, letij be any edge ofG. For each colorf ,
there is at least one ofi, j which is not coloredf ; denote an appropriate choice byi(f). Then
hf contains the literalxi(f), which is1 on vi + vj. Thus every clausehf is 1 on vi + vj, and
h(vi + vj) = 1, as required. ut

Note that whenk = 1, we haveC1
n = Cn, and there is a polynomial time learning algorithm for

Cn dual to the monomial learning algorithm. The consistency problem (and hence intractability
of learning) remains, however, whenk = 2: to show this, the consistency problem can be
related to the NP-completeSET-SPLITTING problem; see [17].

8 Conclusions

This report has only briefly explored some of the connections between machine learning and
optimization, but has attempted to show that such connections are natural and central. But
of course there has been much more work on the complexity of learning and the associated
optimization problems. Another approach to proving the difficulty of learning has been via
reducing learning to problems that are assumed to be hard on the basis of standard cryptographic
hardness assumptions. (See [14], for example). Additionally, the optimization problems of
finding a hypothesis with smallest sample error have been shown, for many hypothesis classes,
to be difficult even to approximate to; see, for example, [10, 3, 5] and the references therein.
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