
Boolean Functions and Artificial Neural Networks∗

Martin Anthony
Department of Mathematics

and Centre for Discrete and Applicable Mathematics
The London School of Economics and Political Science

London WC2A 2AE, UK
m.anthony@lse.ac.uk

CDAM Research Report LSE-CDAM-2003-01
January 2003

Abstract

This report surveys some connections between Boolean functions and artificial neural
networks. The focus is on cases in which the individual neurons are linear threshold neu-
rons, sigmoid neurons, polynomial threshold neurons, or spiking neurons. We explore the
relationships between types of artificial neural network and classes of Boolean function. In
particular, we investigate the type of Boolean functions a given type of network can com-
pute, and how extensive or expressive the set of functions so computable is. A version of
this is to appear as a chapter in a book on Boolean functions, but the report itself is relatively
self-contained.

∗A version of this is to appear as a chapter inBoolean Functions: Volume II, edited by Yves Crama and Peter
Hammer

1

1 Introduction

There has recently been much interest in ‘artificial neural networks’, machines (or models of
computation) based loosely on the ways in which the brain is believed to work. Neurobiologists
are interested in using these machines as a means of modeling biological brains, but much of
the impetus comes from their applications. For example, engineers wish to create machines
that can perform ‘cognitive’ tasks, such as speech recognition, and economists are interested in
financial time series prediction using such machines.

In this report we shall focus on individual ‘artificial neurons’ and feed-forward artificial neural
networks. We shall be particularly interested in cases where the neurons are linear threshold
neurons, sigmoid neurons, polynomial threshold neurons, and spiking neurons. We will in-
vestigate the relationships between types of artificial neural network and classes of Boolean
function. In particular, we shall ask questions about the type of Boolean functions a given
type of network can compute, and about how extensive or expressive the set of functions so
computable is.

2 Artificial neural networks

2.1 Introduction

It appears that one reason why the human brain is so powerful is the sheer complexity of con-
nections between neurons. In computer science parlance, the brain exhibits huge parallelism,
with each neuron connected to many other neurons. This has been reflected in the design of
artificial neural networks. One advantage of such parallelism is that the resulting network isro-
bust: in a serial computer, a single fault can make computation impossible, whereas in a system
with a high degree of parallelism and many computation paths, a small number of faults may
be tolerated with little or no upset to the computation. There are many good general texts on
neural networks, such as [7, 16]. Here we shall briefly describe the aspects of neural networks
that we will be interested in from a Boolean functions point of view.

Generally speaking, we can say that an artificial neural network consists of a directed graph
with computation units(or neurons) situated at the vertices. One or more of these computation

2

units are specified asoutput units. These are the units with zero out-degree in the directed
graph. We shall consider networks in which there is only one output unit. Additionally, the
network hasinput units, which receive signals from the outside world. Each unit produces an
output, which is transmitted to other units along the arcs of the directed graph. The outputs of
the input units are simply the input signals that have been applied to them. The computation
units haveactivation functionsdetermining their outputs. The degree to which the output of
one computation unit influences those of its neighbors is determined by the weights assigned to
the network. This description is quite abstract at this stage, but we shall concretize it shortly by
focusing on particular types of network.

2.2 Neurons

The building blocks of feed-forward networks arecomputation units(or neurons). In isolation,
a computation unit has some number,k, of inputs, and is capable of taking on a number of
states, each described by a vectorw = (w0, w1, . . . , wp) ∈ Rp of p real numbers, known as
weightsor parameters. Here,p, the number of parameters of the unit, will depend onk. If the
unit is a linear thresholdunit or sigmoid unit, thenp = k + 1 and, in these cases, it is useful
to think of the weightsw1, w2, . . . , wk as being assigned to each of thek inputs. Forspiking
neuronsandpolynomial threshold units, the number of parameters will be greater thank + 1.
The different types of neurons we consider are best described by defining how they process
their inputs.

Generally, when in the state described byw ∈ Rp, and on receiving inputx = (x1, x2, . . . , xk),
the computation unit produces as output anactivationg(w, x), whereg : Rp × Rk → R is a
fixed function. We may regard the unit as a parameterized function class. That is, we may write
g(w, x) = gw(x), where, for each statew, gw : Rk → R is the function computed by the unit on
the inputsx.

Linear threshold units

For a linear threshold unit, the functiong takes a particularly simple form:

g(w, x) = sgn (w0 + w1x1 + · · ·+ wkxk) ,

3

wheresgn is the sign function, given by

sgn(z) =

{
1 if z ≥ 0
0 if z < 0,

Thus, when the state of the unit is given byw = (w0, w1, . . . , wk), the output is either1 or 0,
and it is1 precisely when

w0 + w1x1 + · · ·+ wkxk ≥ 0,

which may be written as
w1x1 + · · ·+ wkxk ≥ θ,

whereθ = −w0 is known as thethreshold. In other words, the computation unit gives output
1 (in biological parlance, itfires) if and only if the weighted sum of its inputs is at least the
thresholdθ. If the inputs to the threshold unit are restricted to{0, 1}n, then the set of Boolean
functions it computes is precisely the(Boolean) threshold functions.

Sigmoid units

For a (standard) sigmoid unit, we have

g(w, x) = σ (w0 + w1x1 + · · ·+ wkxk) ,

where the ‘activation function’σ(z) = 1/(1 + e−z) is thestandard sigmoid function. Writing
θ = −w0, as we did above for the linear threshold unit, we see that the output of the sigmoid

unit is σ
(∑k

i=1 wixi − θ
)

. If the weighted sum
∑k

i=1 wixk is much larger than the threshold,

then the output is close to1; if it is much less than the threshold, the output is close to0; and
if it is very close to the threshold, then the output is close to1/2. In fact, the sigmoid function
can be thought of as a ‘smoothed’ version of the sign function,sgn, sinceσ maps fromR into
the interval(0, 1), is differentiable, and satisfies

lim
z→−∞

σ(z) = 0, lim
z→∞

σ(z) = 1.

Note that, whereas the linear threshold unit has output in{0, 1}, the output of a sigmoid unit
lies in the interval(0, 1) of real numbers.

4

Polynomial threshold units

The linear threshold and sigmoid units both work withw1x1 + · · ·+wkxk, a linear combination
of the inputs to the unit, but we can generalize from this and consider instead units which use
a non-linear combination of thexi. For example, whenk = 3, imagine a unit which computes
the quadratic expression

w1x1 + w2x2 + w3x3 + w4x
2
1 + w5x

2
2 + w6x

2
3 + w7x1x2 + w8x1x3 + w9x2x3,

for some contantswi, (1 ≤ i ≤ 9), and then compares this with a threshold valueθ. Such a unit
is apolynomial threshold unitof degree2. We now set up a description of this generalization
of linear threshold units. We shall denote by[n]m the set of all selections, in which repetition
is allowed, of at mostm objects from the set[n] = {1, 2, . . . , n}. Thus,[n]m is a collection of
‘multi-sets’. For example,[3]2 consists of the multi-sets

∅, {1}, {1, 1}, {2}, {2, 2}, {3}, {3, 3}, {1, 2}, {1, 3}, {2, 3}.

A polynomial threshold unit of degreem (also termed asigma-pi unit[37, 44, 48]) hasp =(
n+m
m

)
parameterswS, one for each multi-setS ∈ [n]m. ForS ∈ [n]m andx = x1x2 . . . , xn ∈

R
n, let xS denote the product of thexi for i ∈ S (with repetitions as required). For example,

x{1,2,3} = x1x2x3 andx{1,1,2} = x2
1x2. WhenS = ∅, the empty set, we interpretxS as the

constant1. The output of the unit is given by

gw(x) = g(w, x) = sgn

 ∑
S∈[n]m

wSxS

 .

Of course, whenm = 1 we obtain a linear threshold unit. But form > 1, a polynomial threshold
unit can compute functions that a linear threshold unit is incapable of computing. Furthermore
(and this will prove useful later), note that if we restrict the inputsxi to belong to{0, 1} then
we do not need terms of the formwSxS where the multi-setS contains repeated members: this
is simply because ifxi ∈ {0, 1} thenxri = xi for all r > 1.

Consider, for example, the casen = m = 2 and suppose we take

w∅ = −1

2
, w{1} = w{2} = 1, w{1,2} = −2,

5

with the remaining weightsw{1,1} andw{2,2} equal to0. Then

gw(x) = sgn

(
−1

2
+ x1 + x2 − 2x1x2

)
.

It is easy to verify that, as a Boolean function on{0, 1}2, g is the exclusive-or function, which
is not computable by a linear threshold unit.

Spiking neurons

A very interesting class of artificial neurons are thespiking neurons. A number of results
on the capabilities of these neurons and networks of them have been obtained by Maass and
Schmitt [28, 25, 26, 41]. In this report we present some results from [41, 28] concerning spik-
ing neurons of a simplified type. The type of neuron considered is a ‘Type A’ spiking neuron
with ‘binary encoding’ [28]. For biological motivation for this model, see [28] and the refer-
ences cited there. The key difference between this type of neuron and the ones considered so far
is the introduction of a time variable. In the three types of neuron discussed so far, a weighted
sum is immediately computed and the output of the neuron depends directly on that weighted
sum. Here, however,delaysin the inputs to the neuron are modeled by assuming not only that
to each input there is associated a weightwi, but also adelaydi. It is assumed that the weighted
input corresponding to input uniti is only ‘active’ during the time interval[di, di + 1). If, at
any time, the sum of the currently active weighted inputs is at least the threshold value, then the
neuron fires; otherwise it does not. Formally, withk inputs and in state

w = (w0, w1, w2, . . . , wk, d1, d2, . . . , dk),

the output of the spiking neuron is given by

g(w, x) = sgn

(
w0 + max

t≥0

k∑
i=1

wixiχ[di,di+1)(t)

)
,

whereχ[di,di+1), the characteristic function of the time interval[di, di + 1), is given by

χ[di,di+1)(t) =

{
1 if di ≤ t < di + 1
0 otherwise,

Observe that if all delaysdi are fixed at0, then the spiking neuron behaves just like the linear
threshold neuron with weights(w0, w1, . . . , wk).

6

2.3 Networks

As mentioned in the general description above, a neural network is formed when we place
units at the vertices of a directed graph, with the arcs of the digraph representing the flows of
signals between units. Some of the units are termedinput units: these receive signals not from
other units, but instead they take their signals from the outside environment. Units that do not
transmit signals to other units are termedoutput units. The network is said to be afeed-forward
network if the underlying directed graph is acyclic (that is, it has no directed cycles). This
feed-forward condition means that the units can be labeled with integers in such a way that if
there is a connection from the computation unit labeledi to the computation unit labeledj then
i < j. We will often be interested inmulti-layernetworks. In such networks, the units may be
grouped intolayers, labeled0, 1, 2, . . . , `, in such a way that the input units form layer0, these
feed into the computation units, and if there is a connection from a computation unit in layerr
to a computation unit in layers, then we must haves > r. Note, in particular, that there are no
connections between any two units in a given layer. We call such a network an`-layer network.
(Strictly speaking, it has̀ + 1 layers, but one of these consists entirely of input units, and it is
the number of layers of computation units that is usually important.) Any feed-forward network
is a multi-layer network (since we could just take the layers to consist of single computation
units), but we shall often be interested in feed-forward networks with a small number of layers.
It is easy to see that the smallest` for which such a layering is possible is thedepthof the
network, defined as the length of the largest directed path in the underlying directed graph.

We shall primarily be interested in single polynomial threshold units and spiking neurons, and
in one-output feed-forward networks in which the computation units are linear threshold units
or sigmoid units. A threshold or sigmoid network withn input units is capable of computing a
number of functions fromRn toR, or (simply restricting the input signals to be{0, 1}-valued)
from {0, 1}n → R. The precise function computed depends on the state of each computation
unit. Recall that for the threshold and sigmoid neurons, if a unit hask inputs then the state is a
vector ofk + 1 real numbers: one of these numbers (w0 or its negative, the thresholdθ in the
description above) can be thought of as being attached to the unit itself, and the otherk can be
thought of as describing the weight attached to each of thek arcs feeding into the unit. Suppose
that the network hasN computation units, labeled1, 2, . . . , N , and that computation uniti has
ki inputs. Then the total number of weights in the network is

N∑
i=1

(ki + 1) = N +
N∑
i=1

ki = N + E,

7

whereE denotes the total number of arcs in the digraph. We may therefore say that thestate
of the networkas a whole is described by a vectorw of W = N + E real numbers. When
there aren input units and one output unit, the network computes, for each statew, a function
hw : Rn → R. The set of functionscomputableby the network when the weight vector can be
chosen from a subsetΩ of RW is {hw : w ∈ Ω}. (Often,Ω will simply beRW , but one may
want, for example, to restrict the sizes of the allowable weights, in which caseΩ will be a strict
subset ofRW .)

Linear threshold networks have long been studied, and were the subject of much work in
‘threshold logic’ in the 1960’s; see the books by Muroga [32] and Hu [17], and the papers
cited there. A single linear threshold unit may be regarded as a linear threshold network, and
this simplest of all neural networks is often called theperceptron, though that term is also
used more generally [30]. Questions concerning the type of function computable by a poly-
nomial threshold unit have been worked on by a number of researchers, and were considered
in [30, 9, 34]. For more recent results, see the survey article by Saks [38]: this provides an
excellent overview of much of the theoretical work on functions computable by threshold and
polynomial threshold units and related areas (some of which will be touched on later in this
report). See also [47].

In the rest of this report, we concentrate on two main issues. First, how many and what type of
Boolean functions can be computed by neural networks of particular types? Secondly, what is
the expressive power (as measured by the VC-dimension, an important parameter in quantifying
the complexity of learning [46, 2]).

3 Computing Boolean functions by neural networks

3.1 Linear threshold units

We have noted that the Boolean functions computed by the single linear threshold unit are
precisely the Boolean threshold functions. Recall thatf is a (Boolean) threshold defined on
{0, 1}n if there arew ∈ Rn andθ ∈ R such that

f(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

8

where〈w, x〉 = wTx is the standard inner product ofw andx. Given suchw andθ, we say that
f is represented by[w, θ] and we writef ← [w, θ]. The vectorw is known as theweight-vector,
andθ is known as thethreshold. We denote the class of threshold functions on{0, 1}n by Tn.
Note that anyf ∈ Tn will satisfy f ← [w, θ] for ranges ofw andθ.

Asummability and linear separability

Properties and characterizations of (Boolean) threshold functions have been much-explored, and
we discuss only a few aspects here. Geometrically, a Boolean functionf is a threshold function
if the true and false points are separable by a hyperplane; that is,f is linearly separable. Such
functions can also be characterized by the asummability property, as follows.

Theorem 3.1 The Boolean functionf is a threshold function if and only if it isasummable,
meaning that for anyk ∈ N, for any sequencex1, x2, . . . , xk of (not necessarily distinct) true
points off and any sequencey1, y2, . . . , yk of (not necessarily distinct) false points off ,

k∑
i=1

xi 6=
k∑
i=1

yi.

Asummability can be seen to be equivalent to the non-intersection of the convex hulls of the
sets true points and false points off . (It can be seen quite directly to be equivalent to the
assertion that there is no point that is simultaneously a rational convex combination of true
points and a rational convex combination of false points. This, in turn, is equivalent to the
non-intersection of the convex hulls.) By the Separating Hyperplanes Theorem, asummability
is therefore equivalent to linear separability.

Number of functions computed

A classical result, which dates back to work by Schläfli in the last century [40] and which
also appears in [9], is that the maximum number of connected regions into whichR

d can be

9

partitioned byN hyperplanes passing through the origin is bounded above by

C(N, d) = 2
d−1∑
k=0

(
N − 1

k

)
.

(Here, we apply the usual convention that
(
a
b

)
= 0 if b > a, and

(
0
b

)
= 1.) From this, it is

possible to obtain the following result [9].

Theorem 3.2 Suppose thatS ⊆ Rn is finite. Then the number of different functionsf : S →
{0, 1} computable by a linear threshold unit on domainS is at most

2
n∑
k=0

(
|S| − 1

k

)
.

TakingS = {0, 1}n, the set of computable functions is justTn, the set of Boolean threshold
functions, so we obtain

|Tn| ≤ 2
n∑
k=0

(
2n − 1

k

)
≤ 2n

2

.

It is clear thatTn is a vanishingly small fraction of all Boolean functions on{0, 1}n, as might
be expected. Since the 1960’s (see Muroga’s book [32]), a lower bound on|Tn| of the form
2(n2/2)(1+o(1)) has been known. More recently, Zuev [49] showed that, for sufficiently largen,
log2 |Tn| > n2 (1− 10/ lnn) . So the upper bound is asymptotically of the right order.

Sizes of weights

A weight-vector and threshold are said to beintegral if the threshold and each entry of the
weight-vector are integers. Any Boolean threshold function can be represented by an integral
weight-vector and threshold. To see this, note first that, by the discreteness of{0, 1}n, any
Boolean threshold function can be represented by a rational threshold and weight-vector. Scal-
ing these by a suitably large integer yields integral threshold and weight-vector representing the
same function. A natural question is how large the integer weights (including the threshold)
have to be. An upper bound is as follows [32].

10

Theorem 3.3 For any Boolean threshold functionf on {0, 1}n, there is an integral weight-
vectorw and an integral thresholdθ such thatt← [w, θ] and such that

max{|θ|, |w1|, . . . , |wn|} ≤ (n+ 1)nn/2.

It is easy to show that exponential-sized integer weights are sometimes necessary just by a
simple counting argument. A result of Muroga [32] alluded to above says that there are at least
2n(n−1)/2 threshold functions on{0, 1}n. ForB ∈ N, the number of pairs(w, θ) of integer
weight-vector and threshold which satisfy|wi| ≤ B for i = 1, 2, . . . , n, and |θ| ≤ B, is at
mostBn+1. So, for example, the number of threshold functions representable with integer
weights and threshold bounded in magnitude by2n/6 is no more than2n(n+1)/6. But this is less
than2n(n−1)/2 for n ≥ 2, so there must be some threshold functions in which, using integer
weights, we would need weights greater than2n/6 in magnitude. This simple argument given
above establishes the need for large weights, but it does not provide a concrete example of
a threshold function requiring such large weights. Specific examples of such functions have
long been known (see [32, 31]). We now present an example function which, although it is
not the simplest possible, will be useful later and has been of much interest in analysing the
performance of the perceptron learning algorithm [14, 5].

Consider, forn even, the Boolean functionfn on variables with formula

fn = un ∧ (un−1 ∨ (un−2 ∧ (un−3 ∨ (. . . (u2 ∧ u1)) . . .).

Thus, for example,
f6 = u6 ∧ (u5 ∨ (u4 ∧ (u3 ∨ (u2 ∧ u1)))).

It can be shown (see [35, 1], for example) that ifw is any integral weight-vector in a threshold
representation offn, thenwi ≥ Fi for 1 ≤ i ≤ n, whereFi is theith Fibonacci number. Since

Fn ≥
√

5

6

(
1 +
√

5

2

)n

,

for all n this function requires integer weights exponential inn.

The general upper bound on integral weights given in Theorem 3.3 is(n+ 1)nn/2, whereas the
specific lower bound exhibited by the functionfn is (merely) exponential inn. The question
arises as to whether the general upper bound is loose and could potentially be considerably
improved. In fact, however, the upper bound is quite tight. Specifically, Håstad [15] has proved

11

that there are constantsk > 0 andc > 1 such that, forn a power of2, there is a threshold
functionf on {0, 1}n such that any integral weight-vector representingf has a weight at least
kc−nnn/2.

Test sets for linear threshold functions

For f ∈ Tn, we say that a setS ⊆ {0, 1}n is a test setfor f if when h ∈ Tn andh classifies
the inputs inS in the same way asf does, thenh is necessarily equal tof , among all threshold
functions. In other words,S is a test set forf if the inputs inS serve to specify uniquely the
function f . Denote byσ(f) the cardinality of the smallest test set fort. This parameter is
useful in considering the complexity of ‘teaching’ linear threshold functions; see [11, 4]. The
following result was obtained in [4].

Theorem 3.4 Supposef ∈ Tn and suppose thatk ≥ 1 is such that any weight-vector realizing
f has at leastk non-zero weights and that there is a weight-vector realizingf which has exactly
k non-zero weights. Then

2n−k(k + 1) ≤ σ(f) ≤ 2n−k
(
k + 1⌊
k+1

2

⌋),
and equality is possible in both of these inequalities.

Despite the fact that the testing number can be exponential, it can be shown [4] that the average,
or expected, testing number of a function inTn is at mostn2.

Fixing attention for the moment on the casek = n above, it has been shown [4] that there is a
large family of threshold functions — thenestedfunctions — each having minimum possible
testing number. Let us recursively define a Boolean function to becanonically nestedby: both
functions of1 variable are canonically nested, andtn, a function ofn variables, is canonically
nested iftn = un ? tn−1 or tn = ūn ? tn−1 where? is ∨ (the OR connective) or∧ (the AND
connective) andtn−1 is a canonically nested function ofn − 1 variables. (Here, we mean that
tn−1 acts on the firstn− 1 entries of its argument.) We say that a functionf is nestedif, by per-
muting (or re-labeling) the variables, we obtain a canonically nested function. One may relate
nested functions to particular types ofdecision lists(as defined by [36]). It is straightforward to

12

see that any nested function can be realized as a1-decision list of lengthn in which, for eachi
between1 andn, precisely one term of the form(ui, b) or (ūi, b) occurs (for someb ∈ {0, 1})
(andvice versa). It is easily seen that any nested function is a threshold function. Examples
of nested functions include the functionsfn described above. It turns out [4] that all nested
functions (regarded as threshold functions) have the smallest possible testing numbers, since
each has testing numbern+ 1.

3.2 Polynomial threshold units

We now consider the Boolean functions computable by a polynomial threshold unit. Forn ∈ N
andd ≤ n, let [n](d) denote all subsets of[n] = {1, 2, . . . , n} of cardinality at mostd. A
Boolean functionf defined on{0, 1}n is a polynomial threshold functionof degreed if there
are real numberswS, one for eachS ∈ [n](d), such that

f(x) = sgn

 ∑
S∈[n](d)

wSxS

 ,

where the notation is as defined earlier. The set of polynomial threshold functions on{0, 1}n
of degreed will be denoted byP(n, d). The classP(n, 1) is, of course, simply as the set of
threshold functionsTn on {0, 1}n. (Note that we have used the earlier observation that, for
Boolean inputs to the polynomial threshold unit, no powers ofxi other than0 or 1 are needed;
soS ranges over subsets rather than multi-subsets of[n].)

Asummability and polynomial separability

We have already observed that a function is a linear threshold function if and only if the true
points can be separated from the false points by a hyperplane. For a polynomial threshold
function of degreem, we have the corresponding geometrical characterization that the true
points can be separated from the false points by a surface whose equation is a polynomial of
degreem.

It is possible to relate such polynomial separation to linear separation in a higher-dimensional
space [47, 9]. Forx ∈ {0, 1}n, we define them-augment, x(m), of x to be the{0, 1}-vector

13

of length
∑m

i=1

(
n
i

)
whose entries arexS for ∅ 6= S ∈ [n](m) in some prescribed order. To be

precise, we shall suppose the entries are in order of increasing degree and that terms of the same
order are listed inlexicographic (dictionary) order. Thus, for example, whenn = 5 andm = 2,

x(5) = (x1, x2, x3, x4, x5, x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5).

We observe that a Boolean functionf is a polynomial threshold function of degreem if and only
if there is some linear threshold functionhf , defined on{0, 1} vectors of lengthr =

∑m
i=1

(
n
i

)
,

such that
f(x) = 1⇐⇒ hf (x

(m)) = 1;

that is, if and only if them-augments of the true points off and them-augments of the false
points off can be separated by a hyperplane in the higher-dimensional spaceR

r, wherer =∑m
i=1

(
n
i

)
.

Them-augments can be used to provide an asummability criterion similar to Theorem 3.1.

We say thatf ism-asummable if for anyk ∈ N, for any sequencex1, x2, . . . , xk of (not neces-
sarily distinct) true points off and any sequencey1, y2, . . . , yk of (not necessarily distinct) false
points off ,

k∑
i=1

x
(m)
i 6=

k∑
i=1

y
(m)
i .

Note that iff ism-asummable thenf ism′-asummable for anym′ > m. The following result
holds [47].

Theorem 3.5 The Boolean functionf is a threshold function of degreem if and only if f is
m-asummable.

Number of polynomial threshold functions

We can obtain an upper bound on the number of polynomial threshold functions of a given
degree by using Theorem 3.2, together with the fact that a Boolean function is a polynomial
threshold function of degreem if and only if them-augments of true points and them-augments
of the false points are linearly separable.

14

Theorem 3.6 The number,|P(n,m)| of polynomial threshold functions of degreem on{0, 1}n
satisfies

|P(n,m)| ≤ 2

∑m
i=1 (ni)∑
k=0

(
2n − 1

k

)
.

for all m,n with 1 ≤ m ≤ n.

It is fairly easy to deduce from this thatlog2 |T (n,m)| is at mostn
(
n
m

)
+ O(nm) asn → ∞,

with m = o(n).

Saks [38] observed that|P(n,m)| ≥ |P(n − 1,m)||P(n − 1,m − 1)|, for 2 ≤ m ≤ n − 1.
From this, it follows [38, 1] that:

Theorem 3.7 The number,|P(n,m)|, of polynomial threshold functions of degreem on{0, 1}n

satisfies|P(n,m)| ≥ 2(n
m+1). for all m,n with 1 ≤ m ≤ n− 1.

Note that this lower bound is not at all tight form > n/2. However, for constantm it provides
a good match for the upper bound of Theorem 3.6. Taken together, the results imply that, for
fixedm, for some positive constantsc, k, log2 |T (n,m)| is, betweencnm+1 andknm+1.

Threshold order

A Boolean function is said to be ak-DNF function if it has a DNF formula in which each term
is of degree at mostk. It is easy to see that anyk-DNF f on {0, 1}n is in P(n, k), as follows.
Given a termTj = ui1ui2 . . . uir ūj1ūj2 . . . ūjs of the DNF, we form the expression

Aj = xi1xi2 . . . xir(1− xj1)(1− xj2) . . . (1− xjs).

We do this for each termT1, T2, . . . , Tl and expand the algebraic expressionA1 +A2 + · · ·+Al
according to the normal rules of algebra, until we obtain a linear combination of the form∑

S∈[n](k) wSxS. Then, sincef(x) = 1 if and only ifA1 + A2 + · · ·+ Al > 0, it follows that

f(x) = sgn

 ∑
S∈[n](k)

wSxS

 ,

15

sof ∈ P(n, k). Thus, anyk-DNF function is also a polynomial threshold function of degree at
mostk.

Generally, given a Boolean functionf , thethreshold order[47, 30] off is the leastk such that
f ∈ P(n, k). We mention that there are always (exactly) two functions with threshold ordern,
namely the parity functionPARITYn (defined byPARITYn(x) = 1 if and only if x has an
odd number of entries equal to1) and its complement; see [47].

A very precise behaviour of the ‘expected’ threshold order has been conjectured by Wang and
Williams [47]. Roughly speaking, the conjecture says that, for large even numbersn, almost all
the Boolean functions on{0, 1}n have threshold order equal ton/2; and that for large oddn,
almost every function has threshold order(n − 1)/2 or (n + 1)/2, with an equal split between
these. To make this precise, we introduce some notation. Letσ(n, k) denote the proportion of
Boolean functions ofn variables with threshold orderk; thus,

σ(n, k) =
|P(n, k)| − |P(n, k − 1)|

22n
.

Wang and Williams conjectured that for even values ofn, σ(n, n/2) → 1 asn → ∞ and that
for odd values ofn, σ(n, (n − 1)/2) → 1/2 andσ(n, (n + 1)/2) → 1/2 asn → ∞. The
following observation [3] provides a partial proof of this.

Theorem 3.8 For k = k(n) ≤ bn/2c − 1, σ(n, k(n)) → 0 asn → ∞. Furthermore, for all
oddn, σ(

(
n,
⌊
n
2

⌋)
≤ 1/2.

This result shows, among other things, that the representational power ofP(n, k) is limited
unlessk is of the same order asn. In particular, it might be said that the ‘typical’ Boolean
function has threshold order at leastbn/2c.

Some progress has been made on the remaining parts of the conjecture. As reported in [38],
Alon, using a result of Gotsman [12] on the harmonic analysis of Boolean functions, showed
that there is a fixed constantε > 0, such that almost all Boolean functions ofn variables have
threshold order less than(1 − ε)n; that is,σ(n, (1 − ε)n) → 0 asn → ∞. This has recently
been improved upon by Samorodnitsky [39], who has shown (again, using harmonic analysis)

that almost all Boolean functions have threshold order at most
n

2
+O(

√
n log n).

16

3.3 Linear threshold networks

We now move on to consider the representation of Boolean functions by feed-forward linear
threshold networks (which we will refer to as threshold networks for the sake of brevity). Single
linear threshold units have very limited computational abilities, but we can easily see that any
Boolean function can be represented by a threshold network with one hidden layer. It is natural
to ask how small a threshold network can be used for particular functions or types of functions.
Questions like this bring us into the realm of circuit complexity, (in which threshold networks
are usually referred to asthreshold circuits) a large area which we will only very briefly touch
on here.

The existence of a DNF formula for every Boolean function can be used to show that any
Boolean function can be computed by a two-layer feed-forward threshold network.

Theorem 3.9 There is a2-layer threshold network capable of computing any Boolean function.

Proof: Suppose thatf : {0, 1}n, and letφ be the DNF formula obtained as the disjunction of
the prime implicants off . Supposeφ = T1 ∨ T2 ∨ · · · ∨ Tk, where eachTj is a term of the form

Tj =
(∧

i∈Pj ui

)∧(∧
j∈Nj ūj

)
, for some disjoint subsetsPj, Nj of {1, 2, . . . , n}. Suppose

that the network has2n hidden units, and let us set the weights to and from all but the firstk of
these to equal0, and the corresponding thresholds equal to1 (so the effect is as if these units
were absent). Then for each of the firstk units, let the weight-vectorα(j) from the inputs to
unit j correspond directly toTj, in thatα(j)

i = 1 if i ∈ Pj, α(j)
i = −1 if i ∈ Nj, andα(j)

i = 0
otherwise. We take the threshold on unitj to be|P |, the weight on the connection between the
unit and the output unit to be1, and the threshold on the output unit to be1/2. It is clear that
unit j outputs1 on inputx precisely whenx satisfiesTj, and that the output unit computes the
‘or’ of all the outputs of the hidden units. Thus, the output of the network is the disjunction of
the termsTj, and hence equalsf .

A universal networkfor Boolean functions on{0, 1}n is a threshold network which is capable
of computing every Boolean function ofn variables. Theorem 3.9 shows that the two-layer
threshold network withn inputs,2n units in the hidden layer, and one output unit, is universal.
The question arises as to whether there is a universal network with fewer threshold units. By
an easy counting argument, one can obtain a lower bound on the size ofanyuniversal network,
regardless of its structure. In particular (see [43, 33]), any universal network (regardless of how

17

many layers it has) must have at leastΩ
(
2n/2/

√
n
)

threshold units. Moreover, any two-layer
universal network for Boolean functions must have at leastΩ(2n/n2) threshold units.

Much work in circuit complexity has gone into consideration of the sizes of threshold network
needed to compute particular Boolean functions. Of particular interest has been the parity
functionPARITYn. Many sophisticated techniques have been used to produce lower bounds on
the sizes of networks (with particular numbers of layers, for example) capable of computing
parity; see [43]. One such result is that any two-layer threshold network capable of computing
PARITYn, must haveΩ(

√
n) units.

3.4 Spiking neurons

We have observed that if all delays on a spiking neuron are set to zero, then the neuron behaves
exactly like a linear threshold unit. So the spiking neuron is at least as powerful as the linear
threshold unit and the setSn of Boolean functions it computes is at least as large asTn. However,
Sn is not significantly larger thanTn, for as shown by Maass and Schmitt [28],log2 |Sn| ≤
n2 +O(log n), whereas, as noted above,log2 |Tn| is n2(1 + o(1)).

By the way the neuron acts, the weighted signal from inputi is ‘active’ (if at all) on the time
interval [di, di + 1) and the output of the neuron is1 if and only if the sum of active weighted
inputs exceeds the threshold, at some time. By partitioning the time axis into intervals on which
the same weighted inputs are active, it can be seen [28] that there are at most2n−1 intervals on
which the sum of active weighted inputs is constant. (For, there are at most2n times at which
the set of active weighted inputs can change.) Hence, the neuron fires if one of these2n − 1
sums exceeds the threshold. Thus, we obtain the result from [28] that any function inSn can be
expressed as a disjunction of at most2n− 1 threshold functions. Schmitt [41] improved this to
n−1. Hammeret al.[13] defined thethreshold numberof a Boolean function to be the smallest
number of threshold functions of which it is a conjunction (a number that is well-defined and
at most2n−1 by a result of Jeroslow [18]). Thus, this result may be re-phrased as saying that
any function inSn has threshold number at mostn − 1. That there are functions inSn quite
different from threshold functions has been indicated by Schmitt [41], who showed that there
is a function inSn with threshold number at leastbn/2c (whereas, of course, any function in
Tn has threshold number1). (He also shows, however, that there is some function of threshold
number2 that is not inSn.)

18

Further differences between the spiking neuron and the threshold (and polynomial threshold)
unit emerge when the threshold order of computable functions is considered [41]. Whereas
the threshold order of any function inTn is 1, there are functions inSn with threshold order
n1/3/41/3. This shows, additionally, that the functions inSn cannot be computed by a poly-
nomial threshold unit of any fixed degree. (Schmitt also shows that some Boolean function of
threshold order2 is not inSn.)

A Boolean function is aµ-DNF function if it has a DNF formula in which each variable appears,
either negated or not, at most once. Maass and Schmitt [28] showed that anyµ-DNF function
can be computed by a spiking neuron, and that, by contrast, there areµ-DNF functions that
cannot be computed by a linear threshold unit.

4 Expressive power of neural networks

4.1 Growth function and VC-dimension

Definitions

The number of examples needed for valid learning in standard probabilistic models of learning
can be quantified fairly precisely by the VC-dimension of the class of functions being used as
hypotheses (that is, as the functions chosen to approximate to the training data); see [2, 8], for
example . In this sense, the VC-dimension is a useful way of measuring the expressive power
of a set of functions. In this section, we examine the growth functions and VC-dimensions of
the sets of functions computable by certain types of neural networks.

We start by recalling what is meant by the growth function and VC-dimension. Suppose thatH
is a set of functions from a setX to {0, 1}. (So, whenH is the set of functions computable by
ann-input neural network,X will be Rn or — the case of most interest to us —{0, 1}n.) For
a finite subsetS of X, ΠH(S) denotes the cardinality of the set of functionsH|S, obtained by
restrictingH to domainS. Form ∈ N, ΠH(m) is defined to be the maximum ofΠH(S) over all
subsets of cardinalitym. For allm, ΠH(m) ≤ 2m. TheVapnik-Chervonenkis dimension[46, 8]
of H is defined as the maximumm (possibly infinite, in the case where the domain isRn)
such thatΠH(m) = 2m. We say thatS ⊆ X is shatteredby H, or thatH shattersS, if

19

ΠH(S) = 2|S|; that is, ifH gives all possible classifications of the points ofS. Thus,S is
shattered byH if for each subsetR of S, there is some functionfR inH such that for1 ≤ i ≤ m,
fR(xi) = 1⇐⇒ xi ∈ R.

The neural networks considered in this report compute a class of{0, 1}-valued functions.
So we can define the VC-dimension of a neural network to be the VC-dimension of the set
of functions computable by the network. For a networkN with n inputs, we denote by
VCdim(N ,Rn) the VC-dimension of the class of functions fromRn → {0, 1}n computed
by N and VCdim(N , {0, 1}n) will denote the VC-dimension of the corresponding class of
Boolean functions. In this report, we shall be primarily interested in the VC-dimension of the
set of Boolean functions computable by the network.

VC-dimension and linear dimension

There is a useful connection between linear (vector-space) dimension and the VC-dimension [10].
SupposeV is a set of real functions defined on some setX. For f, g ∈ V andλ ∈ R, we can
form the functionf + g : X → R by pointwise additionand the functionλf : X → R by
pointwise scalar multiplication, as follows:

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x), (x ∈ X).

If V is closed under these operations, then it is a vector space of functions. Then, inV, we say
that the set{f1, f2, . . . , fk} of functions islinearly dependentif there are constantsλi (1 ≤ i ≤
k), not all zero, such that,for all x ∈ X,

λ1f1(x) + λ2f2(x) + · · ·+ λkfk(x) = 0;

that is, some non-trivial linear combination of the functions is the zero function onX. The
vector spaceV is finite-dimensional, of linear dimensiond, if the maximum cardinality of a
linearly independent set of functions inV is d. We have the following result, due to Dudley [10].

Theorem 4.1 LetV be a real vector space of real-valued functions defined on a setX. Suppose
thatV has linear dimensiond. For anyf ∈ V, define the{0, 1}-valued functionf+ onX by

f+(x) =

{
1 if f(x) ≥ 0
0 if f(x) < 0,

and letsgn(V) = {f+ : f ∈ V}. Then the VC-dimension ofsgn(V) is d.

20

4.2 Linear threshold units

The VC-dimension of the single linear threshold unit can be bounded fairly directly using The-
orem 4.1. For, the class of functions in question is preciselysgn(V) whereV is the set of affine
functions, of the formx 7→ w0 +w1x1 +w2x2 + · · ·+wnxn, for some constantsw0, w1, . . . , wn.
The setV is easily seen to be a vector space of linear dimensionn + 1, and hence has VC-
dimensionn+ 1. In fact, this is so even if we restrict the inputs to{0, 1}n:

Theorem 4.2 The VC-dimension ofTn, the set of (Boolean) threshold functions, isn+ 1.

Proof: We have already indicated why the VC-dimension of the set of functions computable
by the threshold unit onRn is n + 1. Certainly, we must therefore haveVCdim(Tn) no more
thann + 1, sinceTn is a restriction to the Boolean domain,{0, 1}n, of this class. So the result
will follow if we show thatVCdim(Tn) ≥ n+ 1. We do this by proving that a particular subset
of {0, 1}n of cardinalityn + 1 is shattered by theTn. Let 0 denote the all-0 vector and, for
1 ≤ i ≤ n, let ei be the point with a1 in theith coordinate and all other coordinates0. We shall
show thatTn shatters the setS = {0, e1, e2, . . . , en} . Suppose thatR is any subset ofS and, for
i = 1, 2, . . . , n, let

wi =

{
1, if ei ∈ R;
−1, if ei 6∈ R;

and let

θ =

{
−1/2, if 0 ∈ R;
1/2, if 0 6∈ R.

Then it is straightforward to verify that ifhR is the function computed by the threshold unit
when the weight-vector isw = (w1, w2, . . . , wn) and the threshold isθ, then the set of pos-
itive examples ofhR in S is preciselyR. ThereforeS is shattered byTn and, consequently,
VCdim(Tn) ≥ n+ 1. ut

Theorem 3.2 shows that

ΠH(m) ≤ 2
n∑
k=0

(
m− 1

k

)
.

This upper bound is easily seen to equal2m form ≤ n+1 and to be less than2m form > n+1,
from which it follows also thatVCdim(Tn) ≤ n+ 1.

21

4.3 Polynomial threshold units

We now bound the VC-dimension of the classP(n,m) of (Boolean) polynomial threshold
functions of degreem. Recall that such a function takes the form

f(x) = sgn

 ∑
S∈[n]m

wSxS

 ,

for somewS ∈ R, where[n](m) is the set of subsets of at mostm elements from{1, 2, . . . , n}
andxS denotes the product of thexi for i ∈ S. Form ≤ n, letC(n,m) =

{
xS : S ∈ [n](m)

}
,

regarded as a set of real functions on domain{0, 1}n.

Theorem 4.3 For all n,m withm ≤ n, C(n,m) is a linearly independent set of real functions
defined on{0, 1}n.

Proof: Let n ≥ 1 and suppose that for some constantscS and for allx ∈ {0, 1}n,

A(x) =
∑

S∈[n](m)

cSxS = 0.

Setx to be the all-0 vector to deduce thatc∅ = 0. Let 1 ≤ k ≤ m and assume, inductively, that
cS = 0 for all S ⊆ [n] with |S| < k. Let S ⊆ [n] with |S| = k. Settingxi = 1 if i ∈ S and
xj = 0 if j 6∈ S, we deduce thatA(x) = cS = 0. Thus for allS of cardinalityk, cS = 0. Hence
cS = 0 for all S, and the functions are linearly independent. ut

It is therefore immediate, from Theorem 4.1, that for alln,m with m ≤ n,

VCdim(P(n,m)) =
m∑
i=0

(
n

i

)
.

A similar analysis will determine the VC-dimension of the set of functions fromRn to {0, 1}
computable by the polynomial threshold unit. In this case, the set of functions of degreem is
sgn(V), whereV is the vector space with basisxS for all

(
n+m
m

)
multi-sets of at mostm elements

from [n]. So the VC-dimension in this case is
(
n+m
m

)
. To sum up, we have the following results.

22

Theorem 4.4 LetN be a singlen-input polynomial threshold unit of degreem. Then, for all
m,n ∈ N,

VCdim(N ,Rn) =

(
n+m

m

)
,

and for alln,m withm ≤ n,

VCdim(N , {0, 1}n) =
m∑
i=0

(
n

i

)
.

We have only considered single polynomial threshold units here, but clearly networks could be
formed from such units. The VC-dimensions of the resulting networks (and of further general-
izations of these types of network) have been bounded by Schmitt [42].

4.4 Linear threshold networks

We now provide a bound on the VC-dimension of feed-forward linear threshold networks. This
is a slightly weaker version (with an easier proof, from [24]) of a bound due to Baum and
Haussler [6].

Theorem 4.5 Suppose thatN is a feed-forward linear threshold network having a total ofW
variable weights and thresholds, andn inputs. Then

VCdim (N , {0, 1}n) ≤ VCdim (N ,Rn) < 6W log2 W.

Proof: LetX = Rn and suppose thatS ⊆ X is of cardinalitym. LetH be the set of functions
computable byN . We bound the growth function ofH by boundingΠH(S) independently
of S. Denote byN the number of computation units (that is, the number of linear threshold
neurons) in the network. Since the network is a feed-forward network, the computation units
may be labeled with the integers1, 2, . . . , N so that if the output of threshold uniti feeds into
unit j theni < j. Consider any particular threshold unit,i. Denote the in-degree ofi by di. By
Theorem 3.2, the number of different ways in which a set ofm points can be classified by unit

23

i is at most2
∑di

k=0

(
m−1
k

)
, which is certainly at mostmdi+2 for m ≥ di + 1. It follows that, (if

m > maxi di + 1) the number of classificationsΠH(S) of S by the network is bounded by

md1+2md2+2 . . .mdN+2,

which, sinceW = d1 + d2 + . . . + dN + N , the total number of weights and thresholds, is at
mostmW+N . SinceW ≥ N (there being a threshold for each threshold unit), this is at most
m2W . Now,m2W < 2m if m = 6W log2 W , from which it follows that the VC-dimension of
the network is less than6W log2 W . ut

With more careful bounding [6], the VC-dimension can be bounded above by2W log2(eN).
This upper bound is of orderW lnN whereW is the total number of weights and thresholds;
that is, the total number of variable parameters determining the state of the network. We have
already seen that the linear threshold unit onn inputs has VC-dimensionn+1, which is exactly
the number of variable parameters in this case. We have also seen that for polynomial threshold
functions, the VC-dimension is precisely the number of variable parameters. The question
therefore arises as to whether theO(W lnN) bound is of the best possible order or whether in
this case, too, the VC-dimension is of orderW . In fact, thelnN factor cannot, in general, be
removed, as the following result of Maass [23] shows.

Theorem 4.6 Let W be any positive integer greater than32. Then there is a three-layer
feed-forward linear threshold networkNW with at mostW weights and thresholds, for which
VCdim(NW , {0, 1}n) > (1/132)W log2 (N/16), whereN is the number of computation units.

4.5 Sigmoid networks

Bounding the VC-dimension of sigmoid networks is rather more complicated than for threshold
networks. Finiteness of the VC-dimension of sigmoid networks was established by Macintyre
and Sontag [29], using deep results from logic. This in itself was a significant result, since
it had previously been shown by Sontag [45] that for small networks with activation function
other than the standard sigmoid,σ, the VC-dimension could be infinite. (Indeed, there are ac-
tivation functions very similar to the standard sigmoid, for which the VC-dimension of a very
small corresponding network is infinite; see [2].) The following result of Karpinksi and Mac-
intyre [19, 20] provides concrete, polynomial, upper bounds on the VC-dimension of sigmoid
networks. The proof, which is quite involved, brings together techniques from logic and alge-
braic geometry. (See also [2].)

24

Theorem 4.7 Let N be a feed-forward sigmoid network. Suppose that the total number of
adjustable weights and thresholds isW , that the number of inputs isn, and that there areN
computation units. Then

VCdim(N ,Rn) ≤ (WN)2 + 11WN log2(18WN2).

Note that this bound, which isO(W 4), is polynomial in the number of weights and thresholds.
It has been shown by Koiran and Sontag [21, 22] that the VC-dimension of (unbounded depth)
sigmoid nets can be as large asW 2. There is thus, generally, a strict separation between the
VC-dimension of threshold networks (with VC-dimensionO(W lnW)) and sigmoid networks.

4.6 Spiking neurons

Recall thatSn denotes the set of Boolean functions computable by then-input spiking neuron.
Maass and Schmitt [28] obtained the following result on the VC-dimension of a single spiking
neuron.

Theorem 4.8 The VC-dimension ofSn, the set of functions computable by a spiking neuron on
{0, 1}n, isO(n log n) andΩ(n log n). Moreover, this lower bound is also true for a subclass of
Sn in which the weights and threshold are kept fixed and only the delay parameters are varied.

Thus, although, as noted earlier, there are not significantly many more Boolean functions com-
putable by the spiking neuron than by the threshold unit, the spiking neuron is considerably
more expressive. For, the VC-dimension of the linear threshold unit isn + 1, whereas the
VC-dimension of the spiking neuron isΘ(n log n).

The VC-dimension of feed-forward networks of spiking neurons has also been investigated.
Maass and Schmitt [28] proved that for eachn, there is a network of this type withO(n) edges,
for which, varying only the delays (and leaving weights and threshold fixed), the resulting class
of functions defined on{0, 1}n has VC-dimensionΩ(n2). Note that, here, only the delays are
variable and there areO(n) of these. Thus the VC-dimension is at least quadratic in the number
of variable delays. Recall that any linear threshold network has VC-dimensionO(W logW)
whereW is the number of weights and thresholds. Thus, the VC-dimension of a network of

25

spiking neurons with a given number of adjustable delays (and weights and threshold fixed) can
be larger than the VC-dimension of a threshold network with the same number of adjustable
weights and thresholds. Maass and Schmitt also showed that any such network has a VC-
dimension (over inputs fromRn) which is at mostO(E2) whereE is the number of edges in
the underlying digraph (that is, the number of network connections). So the VC-dimension is at
most quadratic in the number of variable weights, thresholds, and delays, and their lower bound
is asymptotically tight.

References

[1] M. Anthony. Discrete Mathematics of Neural Networks: Selected Topics. SIAM Mono-
graphs on Discrete Mathematics and Applications DT08, SIAM: Philadelphia, 2001.

[2] M. Anthony and P. L. Bartlett.Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999.

[3] M. Anthony. Classification by polynomial surfaces,Discrete Applied Mathematics, 61,
1996: 91–103.

[4] M. Anthony, G. Brightwell and J. Shawe-Taylor. On specifying Boolean functions by
labelled examples.Discrete Applied Mathematics, 61, 1995: 1–25.

[5] M. Anthony and J. Shawe-Taylor”, Using the perceptron algorithm to find consistent
hypotheses.Combinatorics, Probability and Computing, 4(2), 1993: 385–387.

[6] E. Baum and D. Haussler. What Size Net Gives Valid Generalization?.Neural Computa-
tion, 1(1), 1989: 151–160.

[7] C. M. Bishop.Neural Networks for Pattern Recognition, Oxford University Press, Ox-
ford, 1995.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Learnability and the
Vapnik-Chervonenkis dimension.Journal of the ACM, 36(4), 1989: 929–965.

[9] T. M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern Recognition.IEEE Trans. on Electronic Computers, EC-14,
1965: 326–334.

26

[10] R.M. Dudley, Central limit theorems for empirical measures,Ann. Probability6, 1978:
899–929.

[11] S. A. Goldman and M. J. Kearns. On the complexity of teaching.Journal of Computer
and System Sciences, 50(1), 1995: 20–31.

[12] C. Gotsman, On Boolean functions, polynomials and algebraic threshold functions. Tech-
nical report TR-89-18, Department of Computer Science, Hebrew University, 1989.

[13] P. L Hammer, T. Ibaraki and U. N. Peled. Threshold numbers and threshold completions.
Annals of Discrete Mathematics11, 1981: 125–145.

[14] S.E. Hampson and D.J. Volper, Linear function neurons: structure and training.Biologi-
cal Cybernetics53, 1986: 203–217.

[15] J. Håstad. On the size of weights for threshold gates,SIAM Journal on Discrete Mathe-
matics, 7(3), 1994: 484–492.

[16] J. Hertz, A. Krogh and R. G. Palmer.Introduction to the Theory of Neural Computation,
Addison-Wesley, Redwood City, California, 1991.

[17] S-T. Hu,Threshold Logic, University of California Press, Berkeley, 1965.

[18] R.G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities.Dis-
crete Mathematics, 11, 1975: 119–124.

[19] M. Karpinski and A. J. Macintyre. Polynomial bounds for VC dimension of sigmoidal
neural networks, inProceedings of the 27th Annual ACM Symposium on Theory of Com-
puting, ACM Press, New York, NY, 1995: 200-208.

[20] M. Karpinski and A. J. Macintyre. Polynomial Bounds for VC Dimension of Sigmoidal
and General Pfaffian Neural Networks,Journal of Computer and System Sciences, 54,
1997: 169–176.

[21] P. Koiran and E. D. Sontag. Neural Networks with Quadratic VC Dimension,Journal of
Computer and System Sciences, 54(1), 1997: 190–198.

[22] P. Koiran and E. D. Sontag. Neural Networks with Quadratic VC Dimension. InAdvances
in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer and M. E.
Hasselmo (eds). MIT Press, 1996: 197–203.

27

[23] W. Maass. Bounds for the computational power and learning complexity of analog neural
nets, InProceedings of the 25th Annual ACM Symposium on the Theory of Computing,
ACM Press, New York, NY, 1993: 335–344.

[24] W. Maass. On the complexity of learning in feedforward neural nets. Manuscript, Insti-
tute for Theoretical Computer Science, Technische Universitaet Graz, 1993.

[25] W. Maass. On the relevance of time in neural computation and learning. InProceedings
of the 8th International Workshop on Algorithmic Learning Theory, ALT’97(M. Li and
A. Maruoka, eds). Springer, Berlin, 1997.

[26] W. Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks(10), 1997: 1659–1671.

[27] W. Maass. Lower bounds for the computational power of networks of spiking neurons.
Neural Computation8, 1996: 1–40.

[28] W. Maass and M. Schmitt. On computing Boolean functions by a spiking neuron.

[29] A. Macintyre and E. D. Sontag. Finiteness results for sigmoidal “neural” networks. In
Proceedings 25th Annual ACM Symposium on the Theory of Computing. ACM Press,
New York, NY, 1993: 325–334.

[30] M. Minsky and S. Papert,Perceptrons. MIT Press, Cambridge, MA., 1969. (Expanded
edition 1988.)

[31] S. Muroga. Lower bounds of the number of threshold functions and a maximum weight,
IEEE Transactions on Electronic Computers, 14, 1965: 136–148.

[32] S. Muroga,Threshold Logic and its Applications, Wiley, New York, 1971.

[33] E. I Nechiporuk. The synthesis of networks from threshold elements,Problemy Kiber-
netiki, 11, 1964: 49–62.

[34] N.J. Nilsson,Learning Machines, McGraw-Hill, New York, 1965.

[35] I. Parberry.Circuit Complexity and Neural Networks, Foundations of Computing Series,
MIT Press, 1994.

[36] R. Rivest. Learning Decision Lists.Machine Learning2 (3), 1987: 229–246.

28

[37] D.E. Rumelhart, G. E. Hinton and J. L. McClelland. A general framework for parallel dis-
tributed processing. In Rumelhart, D.E. and McClelland, J.L. (eds),Parallel Distributed
Processing: Explorations in the Microstructure of CognitionVolume 1. MIT Press, Cam-
bridge, MA.

[38] M. Saks, Slicing the hypercube, inSurveys in Combinatorics, 1993, (ed. K. Walker),
Cambridge University Press, 1993.

[39] A. Samorodnitsky. Unpublished (personal communication).

[40] L. Schl̈afli. Gesammelte Mathematische Abhandlungen I, Birkhäuser, Basel, 1950.

[41] M. Schmitt. On computing Boolean functions by a spiking neuron.Annals of Mathemat-
ics and Artificial Intelligence24, 1998: 181–191.

[42] M. Schmitt. On the complexity of computing and learning with multiplicative neural
networks.Neural Computation14(2), 2002: 241–301.

[43] K-Y. Siu, V. Roychowdhury and T. Kailath.Discrete Neural Computation: A Theoret-
ical Foundation, Prentice Hall Information and System Sciences Series. Prentice Hall,
Englewood Cliffs, New Jersey, 1995.

[44] W. Softky and C. Koch. Single-cell models. InThe Handbook of Brain Theory and Neural
Networks, ed. M. A. Arbib. MIT Press, Cambridge, MA, 1995: 879–884.

[45] E. D. Sontag. Feedforward nets for interpolation and classification.Journal of Computer
and System Sciences, 45, 1992: 20–48.

[46] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities.Theory of Probability and its Applications, 16(2), 1971:
264–280.

[47] C. Wang and A.C. Williams, The threshold order of a Boolean function,Discrete Applied
Mathematics, 31, 1991: 51–69.

[48] R. J. Williams. The logic of activation functions. In Rumelhart, D.E. and McClelland, J.L.
(eds),Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Volume 1. MIT Press, Cambridge, MA.

[49] Y. A. Zuev. Asymptotics of the logarithm of the number of threshold functions of the
algebra of logic.Soviet Mathematics Doklady, 39, 1989: 512–513.

29

