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Abstract

This report surveys some connections between Boolean functions and artificial neural
networks. The focus is on cases in which the individual neurons are linear threshold neu-
rons, sigmoid neurons, polynomial threshold neurons, or spiking neurons. We explore the
relationships between types of artificial neural network and classes of Boolean function. In
particular, we investigate the type of Boolean functions a given type of network can com-
pute, and how extensive or expressive the set of functions so computable is. A version of
this is to appear as a chapter in a book on Boolean functions, but the report itself is relatively
self-contained.

*A version of this is to appear as a chapteBioolean Functions: Volume,ledited by Yves Crama and Peter
Hammer



1 Introduction

There has recently been much interest in ‘artificial neural networks’, machines (or models of
computation) based loosely on the ways in which the brain is believed to work. Neurobiologists
are interested in using these machines as a means of modeling biological brains, but much of
the impetus comes from their applications. For example, engineers wish to create machines
that can perform ‘cognitive’ tasks, such as speech recognition, and economists are interested in
financial time series prediction using such machines.

In this report we shall focus on individual ‘artificial neurons’ and feed-forward artificial neural
networks. We shall be particularly interested in cases where the neurons are linear threshold
neurons, sigmoid neurons, polynomial threshold neurons, and spiking neurons. We will in-
vestigate the relationships between types of artificial neural network and classes of Boolean
function. In particular, we shall ask questions about the type of Boolean functions a given
type of network can compute, and about how extensive or expressive the set of functions so
computable is.

2 Artificial neural networks

2.1 Introduction

It appears that one reason why the human brain is so powerful is the sheer complexity of con-
nections between neurons. In computer science parlance, the brain exhibits huge parallelism,
with each neuron connected to many other neurons. This has been reflected in the design of
artificial neural networks. One advantage of such parallelism is that the resulting netwmrk is
bust in a serial computer, a single fault can make computation impossible, whereas in a system
with a high degree of parallelism and many computation paths, a small number of faults may
be tolerated with little or no upset to the computation. There are many good general texts on
neural networks, such as [7, 16]. Here we shall briefly describe the aspects of neural networks
that we will be interested in from a Boolean functions point of view.

Generally speaking, we can say that an artificial neural network consists of a directed graph
with computation unitgor neuron$ situated at the vertices. One or more of these computation
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units are specified asutput units These are the units with zero out-degree in the directed
graph. We shall consider networks in which there is only one output unit. Additionally, the
network hagnput units which receive signals from the outside world. Each unit produces an
output, which is transmitted to other units along the arcs of the directed graph. The outputs of
the input units are simply the input signals that have been applied to them. The computation
units haveactivation functiondetermining their outputs. The degree to which the output of
one computation unit influences those of its neighbors is determined by the weights assigned to
the network. This description is quite abstract at this stage, but we shall concretize it shortly by
focusing on particular types of network.

2.2 Neurons

The building blocks of feed-forward networks ax@mputation unitgor neurong. In isolation,

a computation unit has some numbky,of inputs and is capable of taking on a number of
states each described by a vecter = (wp, wy,...,w,) € R? of p real numbers, known as
weightsor parameters Here,p, the number of parameters of the unit, will dependkorif the

unit is alinear thresholdunit or sigmoid unif thenp = k£ + 1 and, in these cases, it is useful

to think of the weightsu,, ws, ..., w; as being assigned to each of thenputs. Forspiking
neuronsandpolynomial threshold unitghe number of parameters will be greater tian 1.

The different types of neurons we consider are best described by defining how they process
their inputs.

Generally, when in the state describediby R?, and on receiving input = (z1, z, . .., xx),

the computation unit produces as outputaativationg(w, ), whereg : R? x R¥ — R is a

fixed function. We may regard the unit as a parameterized function class. That is, we may write
g(w,r) = g,(x), where, for each state, g,, : R¥ — R is the function computed by the unit on

the inputsr.

Linear threshold units

For a linear threshold unit, the functigrtakes a particularly simple form:

g(w,x) = sgn (wo + wyzy + - -+ + wxy) ,



wheresgn is the sign function, given by

1 ifz>0
s80(2) =\ ¢ if. <0

Thus, when the state of the unit is given by= (w, w1, ..., wy), the output is eithet or 0,
and it is1 precisely when
wo +wixy + - - -+ wiz > 0,

which may be written as
w1T1 + -+ Wi 26’,

wheref) = —wy is known as thehreshold In other words, the computation unit gives output
1 (in biological parlance, ifires) if and only if the weighted sum of its inputs is at least the
thresholdd. If the inputs to the threshold unit are restricted €p1}", then the set of Boolean
functions it computes is precisely tilBoolean) threshold functions

Sigmoid units

For a (standard) sigmoid unit, we have
g(w,x) = o (wy + wixy + - -+ + wWiTy) ,

where the ‘activation function(z) = 1/(1 + e~#) is thestandard sigmoid functionWriting

0 = —wy, as we did above for the linear threshold unit, we see that the output of the sigmoid
unitiso Zf”:l w;x; — 0 ). If the weighted sunEf:1 w;xy IS much larger than the threshold,
then the output is close t if it is much less than the threshold, the output is close;tand

if it is very close to the threshold, then the output is closé/ In fact, the sigmoid function

can be thought of as a ‘smoothed’ version of the sign functign, sincesc maps fromR into

the interval(0, 1), is differentiable, and satisfies

lim o(z) =0, limo(z)=1.

Z——00 Z—00

Note that, whereas the linear threshold unit has outp§bin }, the output of a sigmoid unit
lies in the interval 0, 1) of real numbers.



Polynomial threshold units

The linear threshold and sigmoid units both work withe, + - - - +wx4, a linear combination

of the inputs to the unit, but we can generalize from this and consider instead units which use
a non-linear combination of the. For example, whek = 3, imagine a unit which computes

the quadratic expression

2 2 2
W1T1 + WaZo + W33 + Wyex] + W5X5 + WeX3 + W71 T2 + WT1T3 + WeTaX3,

for some contants);, (1 <1 < 9), and then compares this with a threshold valuSuch a unit

is apolynomial threshold unibf degree2. We now set up a description of this generalization
of linear threshold units. We shall denote [a™ the set of all selections, in which repetition
is allowed, of at mostn objects from the s€i| = {1,2,...,n}. Thus,[n]™ is a collection of
‘multi-sets’. For example[3]? consists of the multi-sets

0, {13 {1, 13, {2}, {2, 2}, {3}, {3, 3}, {1, 2}, {1, 3}, {2, 3}.

A polynomial threshold unit of degree (also termed aigma-pi unit[37, 44, 48]) hay =
(") parametersvg, one for each multi-se$ € [n]™. ForS € [n]™ andz = 125..., 2, €
R", let x5 denote the product of the, for ; € S (with repetitions as required). For example,
{23y = T1T2x3 ANy g0y = r?z. WhensS = (), the empty set, we interprets as the
constantl. The output of the unit is given by

guw(z) = g(w, ) = sgn Z WsTs
S€n]

Of course, whem: = 1 we obtain a linear threshold unit. But for > 1, a polynomial threshold

unit can compute functions that a linear threshold unit is incapable of computing. Furthermore
(and this will prove useful later), note that if we restrict the inptit$o belong to{0, 1} then

we do not need terms of the formxs where the multi-sef contains repeated members: this

is simply because if; € {0, 1} thenz] = x; for all » > 1.

Consider, for example, the case= m = 2 and suppose we take

1
Wy = =5, Wy = Wizp = 1, wpgy = =2,



with the remaining weights;; 1, andwy, 2y equal to0. Then

1
gw(T) = sgn (—5 + 2]+ 19 — 2x1x2) )

It is easy to verify that, as a Boolean function fh 1}2, g is the exclusive-or function, which
is not computable by a linear threshold unit.

Spiking neurons

A very interesting class of artificial neurons are #mking neurons A number of results

on the capabilities of these neurons and networks of them have been obtained by Maass and
Schmitt [28, 25, 26, 41]. In this report we present some results from [41, 28] concerning spik-
ing neurons of a simplified type. The type of neuron considered is a ‘Type A spiking neuron
with ‘binary encoding’ [28]. For biological motivation for this model, see [28] and the refer-
ences cited there. The key difference between this type of neuron and the ones considered so far
is the introduction of a time variable. In the three types of neuron discussed so far, a weighted
sum is immediately computed and the output of the neuron depends directly on that weighted
sum. Here, howevedelaysin the inputs to the neuron are modeled by assuming not only that

to each input there is associated a weightbut also adelayd;. It is assumed that the weighted

input corresponding to input unitis only ‘active’ during the time intervdld;, d; + 1). If, at

any time, the sum of the currently active weighted inputs is at least the threshold value, then the
neuron fires; otherwise it does not. Formally, witinputs and in state

w = (w07w1aw27 cee 7wk7d17d27 ceey dk)y
the output of the spiking neuron is given by
k
g(w,x) = sgn (wo + Igaox; wixix[dhdiﬂ)(t)) ,
wherey|q, 4,+1), the characteristic function of the time interVa), d; + 1), is given by

1 ifdy<t<d+1
X[ds,di+1)(t) = 0 otherwise,

Observe that if all delays; are fixed ab, then the spiking neuron behaves just like the linear
threshold neuron with weightsvg, wy, . .., wy).
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2.3 Networks

As mentioned in the general description above, a neural network is formed when we place
units at the vertices of a directed graph, with the arcs of the digraph representing the flows of
signals between units. Some of the units are termpdt units these receive signals not from
other units, but instead they take their signals from the outside environment. Units that do not
transmit signals to other units are ternmdput units The network is said to befaed-forward
networkif the underlying directed graph is acyclic (that is, it has no directed cycles). This
feed-forward condition means that the units can be labeled with integers in such a way that if
there is a connection from the computation unit labélexthe computation unit labeledthen

i < j. We will often be interested imulti-layernetworks. In such networks, the units may be
grouped intdayers labeled, 1,2, ..., ¢, in such a way that the input units form lay&rthese

feed into the computation units, and if there is a connection from a computation unit in-layer
to a computation unit in layer, then we must have > r. Note, in particular, that there are no
connections between any two units in a given layer. We call such a netwdrlagar network.
(Strictly speaking, it hag + 1 layers, but one of these consists entirely of input units, and it is
the number of layers of computation units that is usually important.) Any feed-forward network
is a multi-layer network (since we could just take the layers to consist of single computation
units), but we shall often be interested in feed-forward networks with a small number of layers.
It is easy to see that the smalléstor which such a layering is possible is tdepthof the
network, defined as the length of the largest directed path in the underlying directed graph.

We shall primarily be interested in single polynomial threshold units and spiking neurons, and
in one-output feed-forward networks in which the computation units are linear threshold units
or sigmoid units. A threshold or sigmoid network withinput units is capable of computing a
number of functions fronR™ to R, or (simply restricting the input signals to ke, 1}-valued)

from {0,1}" — R. The precise function computed depends on the state of each computation
unit. Recall that for the threshold and sigmoid neurons, if a unitthaputs then the state is a
vector ofk + 1 real numbers: one of these numbeig 6r its negative, the thresholtlin the
description above) can be thought of as being attached to the unit itself, and thé otrebe
thought of as describing the weight attached to each of tres feeding into the unit. Suppose
that the network had/ computation units, labeled 2, . . ., V, and that computation unithas

k; inputs. Then the total number of weights in the network is

N N

> (ki+1)=N+> ki=N+E,

i=1 =1



where E/ denotes the total number of arcs in the digraph. We may therefore say trsatbe
of the networkas a whole is described by a vectorof W = N + FE real numbers. When
there aren input units and one output unit, the network computes, for eachstadunction
h. : R™ — R. The set of functionsomputableby the network when the weight vector can be
chosen from a subsét of R is {h,, : w € Q}. (Often,Q will simply be R, but one may
want, for example, to restrict the sizes of the allowable weights, in which(¢aa# be a strict
subset ofR"".)

Linear threshold networks have long been studied, and were the subject of much work in
‘threshold logic’ in the 1960’s; see the books by Muroga [32] and Hu [17], and the papers
cited there. A single linear threshold unit may be regarded as a linear threshold network, and
this simplest of all neural networks is often called ferceptron though that term is also

used more generally [30]. Questions concerning the type of function computable by a poly-
nomial threshold unit have been worked on by a number of researchers, and were considered
in [30, 9, 34]. For more recent results, see the survey article by Saks [38]: this provides an
excellent overview of much of the theoretical work on functions computable by threshold and
polynomial threshold units and related areas (some of which will be touched on later in this
report). See also [47].

In the rest of this report, we concentrate on two main issues. First, how many and what type of
Boolean functions can be computed by neural networks of particular types? Secondly, what is
the expressive power (as measured by the VC-dimension, an important parameter in quantifying
the complexity of learning [46, 2]).

3 Computing Boolean functions by neural networks

3.1 Linear threshold units

We have noted that the Boolean functions computed by the single linear threshold unit are
precisely the Boolean threshold functions. Recall thad a (Boolean) threshold defined on
{0, 1}™ if there arew € R™ andf € R such that



where(w, z) = w’'z is the standard inner product efandz. Given suchw andd, we say that
f is represented by, #] and we writef — [w, 6]. The vectorw is known as theveight-vector
andd is known as thehreshold We denote the class of threshold functions{on1 }" by 7,,.
Note that anyf € T,, will satisfy f < [w, 0] for ranges ofw andf.

Asummability and linear separability

Properties and characterizations of (Boolean) threshold functions have been much-explored, and
we discuss only a few aspects here. Geometrically, a Boolean furytisom threshold function

if the true and false points are separable by a hyperplane; thatdsinearly separable Such
functions can also be characterized by the asummability property, as follows.

Theorem 3.1 The Boolean functiorf is a threshold function if and only if it iasummablg
meaning that for any: € N, for any sequence, x,, ..., x; Of (not necessarily distinct) true
points of f and any sequenag, v», . . ., y; Of (not necessarily distinct) false points ff

k k

1=1 =1

Asummability can be seen to be equivalent to the non-intersection of the convex hulls of the
sets true points and false points pf (It can be seen quite directly to be equivalent to the
assertion that there is no point that is simultaneously a rational convex combination of true
points and a rational convex combination of false points. This, in turn, is equivalent to the
non-intersection of the convex hulls.) By the Separating Hyperplanes Theorem, asummability
is therefore equivalent to linear separability.

Number of functions computed

A classical result, which dates back to work by Zdhlin the last century [40] and which
also appears in [9], is that the maximum number of connected regions into RAichn be



partitioned byN hyperplanes passing through the origin is bounded above by
d—1
N -1
C(N,d) =2 :
=23 e

(Here, we apply the usual convention tH{&} = 0 if b > q, and(}) = 1.) From this, it is
possible to obtain the following result [9].

Theorem 3.2 Suppose that' C R" is finite. Then the number of different functiohs S —
{0, 1} computable by a linear threshold unit on domairs at most

22(\5\1{;—1)

Taking S = {0, 1}", the set of computable functions is just, the set of Boolean threshold

functions, so we obtain
"L /om— 2
T, <2 <o
T, Z( . )

It is clear thatT,, is a vanishingly small fraction of all Boolean functions i 1}", as might
be expected. Since the 1960’s (see Muroga’s book [32]), a lower bouri,oof the form
2(n*/2)(1+o(1)) has been known. More recently, Zuev [49] showed that, for sufficiently large
log, |T,,| > n*(1 —10/1nn). So the upper bound is asymptotically of the right order.

Sizes of weights

A weight-vector and threshold are said to ibéegral if the threshold and each entry of the
weight-vector are integers. Any Boolean threshold function can be represented by an integral
weight-vector and threshold. To see this, note first that, by the discreten¢g8si¢f, any
Boolean threshold function can be represented by a rational threshold and weight-vector. Scal-
ing these by a suitably large integer yields integral threshold and weight-vector representing the
same function. A natural question is how large the integer weights (including the threshold)
have to be. An upper bound is as follows [32].
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Theorem 3.3 For any Boolean threshold functiofi on {0,1}", there is an integral weight-
vectorw and an integral threshold such that < [w, 6] and such that

max{|6], |wi], ..., |wn|} < (n+ 1)n"2

It is easy to show that exponential-sized integer weights are sometimes necessary just by a
simple counting argument. A result of Muroga [32] alluded to above says that there are at least
27(n=1)/2 threshold functions 040, 1}". For B € N, the number of pairgw, §) of integer
weight-vector and threshold which satigty;| < B fori = 1,2,...,n, and|f| < B, is at

most B"*!. So, for example, the number of threshold functions representable with integer
weights and threshold bounded in magnitudeby is no more thare»(*+1)/6, But this is less
than2"(»=1/2 for n > 2, so there must be some threshold functions in which, using integer
weights, we would need weights greater ti2arf in magnitude. This simple argument given
above establishes the need for large weights, but it does not provide a concrete example of
a threshold function requiring such large weights. Specific examples of such functions have
long been known (see [32, 31]). We now present an example function which, although it is
not the simplest possible, will be useful later and has been of much interest in analysing the
performance of the perceptron learning algorithm [14, 5].

Consider, fom even, the Boolean functiofj, on variables with formula
fo=un A (Up—1V (Upo A (Up_—3V (... (ug Auyg))...).
Thus, for example,

f6 = Ug A (U5 V (U4 A\ (U,g V (’UQ AN Ul))))
It can be shown (see [35, 1], for example) thawifs any integral weight-vector in a threshold
representation of,,, thenw; > F; for 1 <1i < n, whereF; is theith Fibonacci number. Since
F, > % (1 +2¢5> ,

for all n this function requires integer weights exponentiakin

The general upper bound on integral weights given in Theorem 3:3-is1)n™/?, whereas the
specific lower bound exhibited by the functigh is (merely) exponential im. The question
arises as to whether the general upper bound is loose and could potentially be considerably
improved. In fact, however, the upper bound is quite tight. Specificafigtétl [15] has proved
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that there are constants> 0 andc¢ > 1 such that, fom a power of2, there is a threshold
function f on {0, 1}" such that any integral weight-vector representfnigas a weight at least
ke "n™/2,

Test sets for linear threshold functions

For f € T,, we say that a sef C {0,1}" is atest sefor f if whenh € T, andh classifies

the inputs inS in the same way ag does, thert is necessarily equal t, among all threshold
functions. In other words$ is a test set foif if the inputs inS serve to specify uniquely the
function f. Denote byos(f) the cardinality of the smallest test set for This parameter is
useful in considering the complexity of ‘teaching’ linear threshold functions; see [11, 4]. The
following result was obtained in [4].

Theorem 3.4 Supposef € T,, and suppose thdt > 1 is such that any weight-vector realizing
f has at least: non-zero weights and that there is a weight-vector realizinghich has exactly
k non-zero weights. Then

Qn_k(k 4 1) < U(f) < 2”_]“(][:];_11)’

and equality is possible in both of these inequalities.

Despite the fact that the testing number can be exponential, it can be shown [4] that the average,
or expected, testing number of a functioriZinis at most»?.

Fixing attention for the moment on the cdse- n above, it has been shown [4] that there is a
large family of threshold functions — theestedfunctions — each having minimum possible
testing number. Let us recursively define a Boolean function tcalpenically nestety: both
functions of1 variable are canonically nested, ard a function ofn variables, is canonically
nested ift, = u, xt,_; ort, = u, x t,_; Wherex is v (the OR connective) on (the AND
connective) and,,_; is a canonically nested function ef— 1 variables. (Here, we mean that
t,_1 acts on the first — 1 entries of its argument.) We say that a functjois nestedf, by per-
muting (or re-labeling) the variables, we obtain a canonically nested function. One may relate
nested functions to particular typesd#cision list§as defined by [36]). It is straightforward to
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see that any nested function can be realized adgecision list of lengt in which, for each
betweenl andn, precisely one term of the foriu;, b) or (u;,b) occurs (for somé < {0,1})
(andvice versa. It is easily seen that any nested function is a threshold function. Examples
of nested functions include the functioris described above. It turns out [4] that all nested
functions (regarded as threshold functions) have the smallest possible testing numbers, since
each has testing number+ 1.

3.2 Polynomial threshold units

We now consider the Boolean functions computable by a polynomial threshold unit. 6
andd < n, let [n]¥ denote all subsets df] = {1,2,...,n} of cardinality at mostl. A
Boolean functionf defined on{0, 1}" is apolynomial threshold functionf degreed if there
are real numbersg, one for eactt € [n]@, such that

f@)=sen | 3 wsas |,

Sen](d

where the notation is as defined earlier. The set of polynomial threshold functiofts byt

of degreed will be denoted byP(n,d). The classP(n,1) is, of course, simply as the set of
threshold functiond’, on {0,1}". (Note that we have used the earlier observation that, for
Boolean inputs to the polynomial threshold unit, no powers;ajther thar) or 1 are needed,;
so0.S ranges over subsets rather than multi-subsefs|9f

Asummability and polynomial separability

We have already observed that a function is a linear threshold function if and only if the true
points can be separated from the false points by a hyperplane. For a polynomial threshold
function of degreen, we have the corresponding geometrical characterization that the true
points can be separated from the false points by a surface whose equation is a polynomial of
degreen.

It is possible to relate such polynomial separation to linear separation in a higher-dimensional
space [47, 9]. For € {0,1}", we define then-augmentz(™, of z to be the{0, 1}-vector
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of length>>", (') whose entries areg for § # S € [n]™ in some prescribed order. To be
precise, we shall suppose the entries are in order of increasing degree and that terms of the same
order are listed ihexicographic (dictionary) orderThus, for example, whem = 5 andm = 2,

5
1) = (11, 09, 13, T4, Ts, T1 X9, T1 T3, V14, T1T5, ToT3, ToTy, Loy, T3Ly, T3T5, T4Ts).

We observe that a Boolean functigns a polynomial threshold function of degreeif and only
if there is some linear threshold functian, defined on{0, 1} vectors of lengthr = 3", (%),
such that

fz) =1 hy(a™) =1;

that is, if and only if then-augments of the true points gfand them-augments of the false
points of f can be separated by a hyperplane in the higher-dimensional Bjaeéherer =

i ()

Them-augments can be used to provide an asummability criterion similar to Theorem 3.1.

We say thatf is m-asummable if for any € N, for any sequence, -, . . ., x; of (not neces-
sarily distinct) true points of and any sequenag, vs, . . . , yx Of (not necessarily distinct) false
points of f,

k k
el # "
=1 =1
Note that if f is m-asummable therf is m’-asummable for any’ > m. The following result

holds [47].

Theorem 3.5 The Boolean functiorf is a threshold function of degree if and only if f is
m-asummable.

Number of polynomial threshold functions

We can obtain an upper bound on the number of polynomial threshold functions of a given
degree by using Theorem 3.2, together with the fact that a Boolean function is a polynomial
threshold function of degree if and only if them-augments of true points and theaugments

of the false points are linearly separable.
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Theorem 3.6 The numbelP(n, m)| of polynomial threshold functions of degreeon {0, 1}"
satisfies
S ()

Pm)<2 3 (2”];1).

k=0
forall m,nwith1 <m <n.

It is fairly easy to deduce from this thatg, |7'(n, m)| is at mostn(”) + O(n™) asn — oo,
with m = o(n).

Saks [38] observed thd®P (n,m)| > |P(n — 1,m)||P(n — 1,m — 1)|,for2 < m < n — 1.
From this, it follows [38, 1] that:

Theorem 3.7 The numbetP(n, m)|, of polynomial threshold functions of degneson {0, 1}"
satisfie§P (n, m)| > 2(+1) for all m,nwith 1 < m < n — 1.

Note that this lower bound is not at all tight for > n /2. However, for constant: it provides
a good match for the upper bound of Theorem 3.6. Taken together, the results imply that, for
fixed m, for some positive constantsk, log, |T'(n, m)| is, betweeren™ ! andkn™*!.

Threshold order

A Boolean function is said to be/aDNF function if it has a DNF formula in which each term
is of degree at most. It is easy to see that ariyDNF f on {0, 1}" is in P(n, k), as follows.
Given aterml; = u;, u;, . .. u; u;,Uj, .. . u;, of the DNF, we form the expression

Aj =T Tig - - xz,(]- — ZL‘jl)(l — JZjQ) e (]_ — ZL‘]‘S).

We do this for each terff}, 75, . . ., 7; and expand the algebraic expression- A, + - - - + A;
according to the normal rules of algebra, until we obtain a linear combination of the form
> sepnw WsTs. Then, sincef(z) = 1ifand only if A; + Ay +--- + A4; > 0, it follows that

fle)=sen | Y wszs |,

Sen] k)
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sof € P(n, k). Thus, anyk-DNF function is also a polynomial threshold function of degree at
mostk.

Generally, given a Boolean functigf thethreshold ordef47, 30] of f is the least such that

f € P(n, k). We mention that there are always (exactly) two functions with threshold arder
namely the parity functioARITY,, (defined byPARITY,(x) = 1 if and only if x has an
odd number of entries equal 1y and its complement; see [47].

A very precise behaviour of the ‘expected’ threshold order has been conjectured by Wang and
Williams [47]. Roughly speaking, the conjecture says that, for large even numpamost all

the Boolean functions of0, 1}" have threshold order equal t9'2; and that for large odd,

almost every function has threshold order— 1)/2 or (n + 1)/2, with an equal split between
these. To make this precise, we introduce some notationo (zet:) denote the proportion of
Boolean functions of variables with threshold ordés; thus,

[P(n, k)| = [P(n, k —1)]
22"

o(n, k) = :
Wang and Williams conjectured that for even valuesof(n,n/2) — 1 asn — oo and that
for odd values of:, o(n,(n — 1)/2) — 1/2 ando(n,(n + 1)/2) — 1/2 asn — oo. The
following observation [3] provides a partial proof of this.

Theorem 3.8 For k = k(n) < |n/2] — 1, o(n,k(n)) — 0 asn — oo. Furthermore, for all
oddn, o((n, |2]) < 1/2.

This result shows, among other things, that the representational pow(nok) is limited
unlessk is of the same order as. In particular, it might be said that the ‘typical’ Boolean
function has threshold order at least/2].

Some progress has been made on the remaining parts of the conjecture. As reported in [38],
Alon, using a result of Gotsman [12] on the harmonic analysis of Boolean functions, showed
that there is a fixed constaat> 0, such that almost all Boolean functionsro¥ariables have
threshold order less than — €)n; that is,o(n, (1 — €)n) — 0 asn — oo. This has recently

been improved upon by Samorodnitsky [39], who has shown (again, using harmonic analysis)

that almost all Boolean functions have threshold order at ngost()(\/nlog n).
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3.3 Linear threshold networks

We now move on to consider the representation of Boolean functions by feed-forward linear
threshold networks (which we will refer to as threshold networks for the sake of brevity). Single
linear threshold units have very limited computational abilities, but we can easily see that any
Boolean function can be represented by a threshold network with one hidden layer. It is natural
to ask how small a threshold network can be used for particular functions or types of functions.
Questions like this bring us into the realm of circuit complexity, (in which threshold networks
are usually referred to dlreshold circuit} a large area which we will only very briefly touch

on here.

The existence of a DNF formula for every Boolean function can be used to show that any
Boolean function can be computed by a two-layer feed-forward threshold network.

Theorem 3.9 There is &-layer threshold network capable of computing any Boolean function.

Proof: Suppose thaf : {0,1}", and let¢ be the DNF formula obtained as the disjunction of
the prime implicants of . Suppose) =7, V1,V ---V T}, where eaclT; is a term of the form
T; = (/\iepj ul) A (/\jeNj @-) , for some disjoint subsetB;, N, of {1,2,...,n}. Suppose
that the network hag” hidden units, and let us set the weights to and from all but thekfio$t
these to equd)d, and the corresponding thresholds equal {go the effect is as if these units
were absent). Then for each of the fitstinits, let the weight-vectar?) from the inputs to
unit j correspond directly t@}, in thata!”) = 1if i € P;, o) = —1if i € N;, anda’) = 0
otherwise. We take the threshold on uptb be|P|, the weight on the connection between the
unit and the output unit to be and the threshold on the output unit to be. It is clear that
unit j outputsl on inputx precisely whernr satisfies’;, and that the output unit computes the
‘or’ of all the outputs of the hidden units. Thus, the output of the network is the disjunction of
the terms/;, and hence equals

A universal networlor Boolean functions og0, 1}" is a threshold network which is capable

of computing every Boolean function ef variables. Theorem 3.9 shows that the two-layer
threshold network withe inputs,2™ units in the hidden layer, and one output unit, is universal.
The question arises as to whether there is a universal network with fewer threshold units. By
an easy counting argument, one can obtain a lower bound on the sing wfhiversal network,
regardless of its structure. In particular (see [43, 33]), any universal network (regardless of how
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many layers it has) must have at Ie%@"/z/\/ﬁ) threshold units. Moreover, any two-layer
universal network for Boolean functions must have at €48t /n?) threshold units.

Much work in circuit complexity has gone into consideration of the sizes of threshold network
needed to compute particular Boolean functions. Of particular interest has been the parity
functionPARITY,,. Many sophisticated techniques have been used to produce lower bounds on
the sizes of networks (with particular numbers of layers, for example) capable of computing
parity; see [43]. One such result is that any two-layer threshold network capable of computing
PARITY,,, must have(y/n) units.

3.4 Spiking neurons

We have observed that if all delays on a spiking neuron are set to zero, then the neuron behaves
exactly like a linear threshold unit. So the spiking neuron is at least as powerful as the linear
threshold unit and the s, of Boolean functions it computes is at least as largE,aslowever,

S, is not significantly larger thaff,,, for as shown by Maass and Schmitt [28]g, |S,| <

n? + O(logn), whereas, as noted aboveg, |7,,| is n*(1 + o(1)).

By the way the neuron acts, the weighted signal from inpat‘active’ (if at all) on the time
interval [d;, d; + 1) and the output of the neuron isif and only if the sum of active weighted
inputs exceeds the threshold, at some time. By partitioning the time axis into intervals on which
the same weighted inputs are active, it can be seen [28] that there are @maisintervals on
which the sum of active weighted inputs is constant. (For, there are amaishes at which

the set of active weighted inputs can change.) Hence, the neuron fires if one oftheske

sums exceeds the threshold. Thus, we obtain the result from [28] that any funcfipiam be
expressed as a disjunction of at m@st— 1 threshold functions. Schmitt [41] improved this to
n—1. Hammeret al.[13] defined theéhreshold numbeof a Boolean function to be the smallest
number of threshold functions of which it is a conjunction (a number that is well-defined and
at most2"~! by a result of Jeroslow [18]). Thus, this result may be re-phrased as saying that
any function inS,, has threshold number at mast— 1. That there are functions ifi,, quite
different from threshold functions has been indicated by Schmitt [41], who showed that there
is a function inS,, with threshold number at least /2| (whereas, of course, any function in

T,, has threshold numbé). (He also shows, however, that there is some function of threshold
number2 that is not inS,,.)
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Further differences between the spiking neuron and the threshold (and polynomial threshold)
unit emerge when the threshold order of computable functions is considered [41]. Whereas
the threshold order of any function i, is 1, there are functions i¥,, with threshold order
n'/3/41/3, This shows, additionally, that the functions $) cannot be computed by a poly-
nomial threshold unit of any fixed degree. (Schmitt also shows that some Boolean function of
threshold orde? is notin.S,,.)

A Boolean function is a-DNF function if it has a DNF formula in which each variable appears,
either negated or not, at most once. Maass and Schmitt [28] showed that2N¥{ function
can be computed by a spiking neuron, and that, by contrast, theye @M~ functions that
cannot be computed by a linear threshold unit.

4 Expressive power of neural networks

4.1 Growth function and VC-dimension
Definitions

The number of examples needed for valid learning in standard probabilistic models of learning
can be quantified fairly precisely by the VC-dimension of the class of functions being used as
hypotheses (that is, as the functions chosen to approximate to the training data); see [2, 8], for
example . In this sense, the VC-dimension is a useful way of measuring the expressive power
of a set of functions. In this section, we examine the growth functions and VC-dimensions of
the sets of functions computable by certain types of neural networks.

We start by recalling what is meant by the growth function and VC-dimension. Suppogé that
is a set of functions from a séf to {0, 1}. (So, whenH is the set of functions computable by
ann-input neural networkX will be R™ or — the case of most interest to us {8, 1}".) For

a finite subset of X, I15(S) denotes the cardinality of the set of functial$s, obtained by
restrictingH to domainS. Form € N, IIy(m) is defined to be the maximum & (S) over all
subsets of cardinality:. For allm, I15(m) < 2™. TheVapnik-Chervonenkis dimensi@ts, 8]

of H is defined as the maximum (possibly infinite, in the case where the domairiRis)
such thatlly(m) = 2™. We say thatS C X is shatteredby H, or that H shatterss, if
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I1;;(S) = 2 that is, if H gives all possible classifications of the pointssf Thus, S is
shattered by if for each subserR of S, there is some functiofiz in H such thatfol <i < m,
fR(CCZ) =1<—=ux; € R.

The neural networks considered in this report compute a clag$),df}-valued functions.

So we can define the VC-dimension of a neural network to be the VC-dimension of the set
of functions computable by the network. For a netwdvkwith n inputs, we denote by
VCdim(N,R") the VC-dimension of the class of functions fraRt — {0,1}" computed

by /' and VCdim(N, {0,1}") will denote the VC-dimension of the corresponding class of
Boolean functions. In this report, we shall be primarily interested in the VC-dimension of the
set of Boolean functions computable by the network.

VC-dimension and linear dimension

There is a useful connection between linear (vector-space) dimension and the VC-dimension [10].
Suppose) is a set of real functions defined on some XetFor f,g € V and)\ € R, we can

form the functionf + ¢ : X — R by pointwise additiorand the functiom\f : X — R by
pointwise scalar multiplicationas follows:

(f +9)(x) = f(x) +9(z), (A)(x) = Af(z), (€ X).

If V is closed under these operations, then it is a vector space of functions. Th&nyénsay
that the se{ f1, fo, ..., fx} of functions islinearly dependenif there are constants; (1 <i <
k), not all zero, such thafor all = € X,

/\1f1($) + )\2f2(1') + -+ )\kfk(flf) =0;

that is, some non-trivial linear combination of the functions is the zero functioX orThe
vector spacé’ is finite-dimensional, of linear dimensiafj if the maximum cardinality of a
linearly independent set of functionsihis d. We have the following result, due to Dudley [10].

Theorem 4.1 LetV be areal vector space of real-valued functions defined on A s&uppose
that) has linear dimensiod. For any f € V, define the{0, 1}-valued functionf, on X by

1 iff@) =0
F+lz) = { 0 if f(z) <0,
and letsgn(V) = {f; : f € V}. Then the VC-dimension efn(V) is d.
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4.2 Linear threshold units

The VC-dimension of the single linear threshold unit can be bounded fairly directly using The-
orem 4.1. For, the class of functions in question is precigely)’) whereV is the set of affine
functions, of the formx — wq + w21 +woxs + - - - +w,z,, fOr some constantsy, wy, . .., w,.

The setV is easily seen to be a vector space of linear dimensiagnl, and hence has VC-
dimensiom: + 1. In fact, this is so even if we restrict the inputs{ta 1}":

Theorem 4.2 The VC-dimension df,,, the set of (Boolean) threshold functionspig- 1.

Proof: We have already indicated why the VC-dimension of the set of functions computable
by the threshold unit olR™ is n + 1. Certainly, we must therefore ha¥&dim(7},) no more
thann + 1, sinceT,, is a restriction to the Boolean domaift), 1}", of this class. So the result

will follow if we show thatVCdim(7;,) > n + 1. We do this by proving that a particular subset

of {0,1}" of cardinalityn + 1 is shattered by thé&,,. Let 0 denote the al} vector and, for

1 <i < n, lete; be the point with d in the:th coordinate and all other coordinates/e shall
show that7, shatters the s&t = {0, ey, es, ..., e,} . Suppose thak is any subset of and, for

i=1,2,...,n,let
{1, if e; € R;

and let
0— —1/2, if0€R,
1 1/2, if0¢R.
Then it is straightforward to verify that it is the function computed by the threshold unit
when the weight-vector i& = (w;,ws,...,w,) and the threshold ig, then the set of pos-
itive examples ofi in S is preciselyR. ThereforeS is shattered byf;,, and, consequently,
VCdim(T,,) > n + 1. O

Theorem 3.2 shows that
" /m—1
p(m) <2) ( L )
k=0
This upper bound is easily seen to eqeialfor m < n+ 1 and to be less thai* for m > n+1,
from which it follows also thaVCdim(7},) < n + 1.
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4.3 Polynomial threshold units

We now bound the VC-dimension of the claB$n, m) of (Boolean) polynomial threshold
functions of degree:. Recall that such a function takes the form

f(z) =sgn Z wsTs |,

Sen]™

for somews € R, where[n]™ is the set of subsets of at mostelements from{1,2,...,n}
andzs denotes the product of the for i € S. Form < n, letC(n,m) = {zg: S € [n]™},
regarded as a set of real functions on don{aint }".

Theorem 4.3 For all n, m withm < n, C(n,m) is a linearly independent set of real functions
defined on{0, 1}".

Proof: Letn > 1 and suppose that for some constantsnd for allz € {0,1}",

A(z) = Z csrs = 0.

Se [n} (m)

Setx to be the alld vector to deduce thaf) = 0. Let1 < k£ < m and assume, inductively, that
cs = 0forall S C [n] with |[S| < k. LetS C [n] with |S| = k. Settingz; = 1if i € S and
z; =0if j & S, we deduce thati(z) = cg = 0. Thus for allS of cardinalityk, cs = 0. Hence
cs = 0 forall S, and the functions are linearly independent. O

It is therefore immediate, from Theorem 4.1, that forralin with m < n,

VCdim(P(n, m)) = i (?)

1=0

A similar analysis will determine the VC-dimension of the set of functions fi®ihto {0, 1}
computable by the polynomial threshold unit. In this case, the set of functions of degeee
sgn()V), whereV is the vector space with basig for all ("/™) multi-sets of at most: elements
from [n]. So the VC-dimension in this case(f§ ™). To sum up, we have the following results.
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Theorem 4.4 Let N be a singlen-input polynomial threshold unit of degree. Then, for alll
m,n € N,

m

VCdim(A, R") = (" * m) ,

and for all n, m withm < n,

v, 0.1 - 35 (1)

We have only considered single polynomial threshold units here, but clearly networks could be
formed from such units. The VC-dimensions of the resulting networks (and of further general-
izations of these types of network) have been bounded by Schmitt [42].

4.4 Linear threshold networks

We now provide a bound on the VC-dimension of feed-forward linear threshold networks. This
is a slightly weaker version (with an easier proof, from [24]) of a bound due to Baum and
Haussler [6].

Theorem 4.5 Suppose thalV is a feed-forward linear threshold network having a total/&f
variable weights and thresholds, andnputs. Then

VCdim (W, {0, 1}") < VCdim (N, R™) < 6W log, W.

Proof: Let X = R™and suppose tha&t C X is of cardinalitym. Let H be the set of functions
computable byV. We bound the growth function aff by boundinglly(S) independently

of S. Denote byN the number of computation units (that is, the number of linear threshold
neurons) in the network. Since the network is a feed-forward network, the computation units
may be labeled with the integets2, ..., N so that if the output of threshold unifeeds into

unit j theni < 5. Consider any particular threshold uriit Denote the in-degree oty d;. By
Theorem 3.2, the number of different ways in which a setgfoints can be classified by unit
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iisatmos > ¢, (™), which is certainly at most%+2 for m > d; + 1. It follows that, (if
m > max; d; + 1) the number of classificatiori$y (S) of S by the network is bounded by

mh T2yt .mdN+2,

which, sincelW' = d; + ds + ... + dy + N, the total number of weights and thresholds, is at
mostm" V. SinceW > N (there being a threshold for each threshold unit), this is at most
m2W. Now, m?V < 2™ if m = 6W log, W, from which it follows that the VC-dimension of
the network is less thagil log, V. O

With more careful bounding [6], the VC-dimension can be bounded abo@ibipg,(eNV).

This upper bound is of ordé# In N whereW is the total number of weights and thresholds;

that is, the total number of variable parameters determining the state of the network. We have
already seen that the linear threshold unitdnputs has VC-dimension+ 1, which is exactly

the number of variable parameters in this case. We have also seen that for polynomial threshold
functions, the VC-dimension is precisely the number of variable parameters. The question
therefore arises as to whether théll/ In V) bound is of the best possible order or whether in

this case, too, the VC-dimension is of ordér. In fact, theln IV factor cannot, in general, be
removed, as the following result of Maass [23] shows.

Theorem 4.6 Let W be any positive integer greater thad2. Then there is a three-layer
feed-forward linear threshold network(y;- with at mostlV weights and thresholds, for which
VCdim(Nw, {0,1}™") > (1/132)W log, (N/16), whereN is the number of computation units.

4.5 Sigmoid networks

Bounding the VC-dimension of sigmoid networks is rather more complicated than for threshold
networks. Finiteness of the VC-dimension of sigmoid networks was established by Macintyre
and Sontag [29], using deep results from logic. This in itself was a significant result, since
it had previously been shown by Sontag [45] that for small networks with activation function
other than the standard sigmoid, the VC-dimension could be infinite. (Indeed, there are ac-
tivation functions very similar to the standard sigmoid, for which the VC-dimension of a very
small corresponding network is infinite; see [2].) The following result of Karpinksi and Mac-
intyre [19, 20] provides concrete, polynomial, upper bounds on the VC-dimension of sigmoid
networks. The proof, which is quite involved, brings together techniques from logic and alge-
braic geometry. (See also [2].)
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Theorem 4.7 Let N be a feed-forward sigmoid network. Suppose that the total number of
adjustable weights and thresholdslig, that the number of inputs is, and that there areV
computation units. Then

VCdim(N,R") < (WN)? + 11W N log, (18W N?).

Note that this bound, which i9(17/), is polynomial in the number of weights and thresholds.

It has been shown by Koiran and Sontag [21, 22] that the VC-dimension of (unbounded depth)
sigmoid nets can be as large 8. There is thus, generally, a strict separation between the
VC-dimension of threshold networks (with VC-dimensiogiV In 1)) and sigmoid networks.

4.6 Spiking neurons

Recall thatS,, denotes the set of Boolean functions computable by:thrgut spiking neuron.
Maass and Schmitt [28] obtained the following result on the VC-dimension of a single spiking
neuron.

Theorem 4.8 The VC-dimension df,,, the set of functions computable by a spiking neuron on
{0,1}",isO(nlogn) and2(nlogn). Moreover, this lower bound is also true for a subclass of
S, in which the weights and threshold are kept fixed and only the delay parameters are varied.

Thus, although, as noted earlier, there are not significantly many more Boolean functions com-
putable by the spiking neuron than by the threshold unit, the spiking neuron is considerably
more expressive. For, the VC-dimension of the linear threshold unit4s1, whereas the
VC-dimension of the spiking neuron &(n log n).

The VC-dimension of feed-forward networks of spiking neurons has also been investigated.
Maass and Schmitt [28] proved that for eachhere is a network of this type with(n) edges,

for which, varying only the delays (and leaving weights and threshold fixed), the resulting class
of functions defined 040, 1}" has VC-dimensiof2(n?). Note that, here, only the delays are
variable and there a@(n) of these. Thus the VC-dimension is at least quadratic in the number
of variable delays. Recall that any linear threshold network has VC-dimenidnlog 1)
wherelV is the number of weights and thresholds. Thus, the VC-dimension of a network of
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spiking neurons with a given number of adjustable delays (and weights and threshold fixed) can
be larger than the VC-dimension of a threshold network with the same number of adjustable
weights and thresholds. Maass and Schmitt also showed that any such network has a VC-
dimension (over inputs froriR™) which is at mosO(E?) whereE is the number of edges in

the underlying digraph (that is, the number of network connections). So the VC-dimension is at
most quadratic in the number of variable weights, thresholds, and delays, and their lower bound
is asymptotically tight.
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