The Sample Complexity and Computational
Complexity of Boolean Function Learninhg

Martin Anthony

December 2002
CDAM Research Report LSE-CDAM-2002-13

Abstract

This report surveys some key results on the learning of Boolean functions in a proba-
bilistic model that is a generalization of the well-known ‘PAC’ model. A version of this

is to appear as a chapter in a book on Boolean functions, but the report itself is relatively
self-contained.

1 Introduction

This report explores thkearnability of Boolean functions. Broadly speaking, the problem of
interest is how to infer information about an unknown Boolean function given only information
about its values on some points, together with the information that it belongs to a particular
class of Boolean functions. This broad description can encompass many more precise formu-
lations, but here we focus on probabilistic models of learning, in which the information about

*A version of this is to appear as a chapteBioolean Functions: Volume,ledited by Yves Crama and Peter
Hammer

the function value on points is provided through its values on some randomly drawn sample,
and in which the criteria for successful ‘learning’ are defined using probability theory. Other
approaches, such as ‘exact query learning’ (see [1, 16, 17], for instance) and ‘specification’,
‘testing’ or ‘learning with a helpful teacher’ (see [10, 4, 14, 18, 23]) are possible, and particu-
larly interesting in the context of Boolean functions. Here, however, we focus on probabilistic
models, and aim to give a fairly thorough account of what can be said in two such models.

In the probabilistic models discussed, there are two separate, but linked, issues of concern. First,
there is the question of how much information is needed about the values of a function on points
before a good approximation to the function can be found. Secondly, there is the question of
how, algorithmically, we might find a good approximation to the function. These two issues
are usually termed theample complexitgndcomputational complexityf learning. The report
breaks fairly naturally into, first, an exploration of sample complexity and then a discussion of
computational complexity.

2 Probabilistic modelling of learning

2.1 A probabilistic model

The primary probabilistic model of ‘supervised’ learning we discuss here is a variant of the
‘probably approximately correct’ (or PAC) model introduced by Valiant [27], and further de-
veloped by a number of many others; see [28, 11, 2], for example. The probabilistic aspects
of the model have their roots in work of Vapnik and Chervonenkis [29, 30], as was pointed out
by [5]. Valiant's model additionally placed considerable emphasis also on the computational
complexity of learning.

In the model, it is assumed that we are using some ¢fastBoolean functions oX’ = {0, 1}"
(termed thenypothesis spagdo find a good fit to a set of data. We assume that the (labeled)
data points take the forifx, b) for = € {0, 1} andb € {0, 1} (though most of what we discuss

will apply also to the more general case in whighmaps fromR™ to {0, 1} and the data are in

R™ x {0,1}). The learning model is probabilistic: we assume that we are presented with some
randomly generated ‘training’ data points and that we choose a hypothesis on this basis.

The simplest assumption to make about the relationship betWesnd the data is that the data

2

can indeed be exactly matched by some functiof jrby which we mean that each data point
takes the fornm{z, t(x)) for some fixedt € H (thetarget concept In thisrealizablecase, we
assume that some numberof (labeled) data points (¢abeled examplgsre generated to form
atraining samples = ((z1,t(x1)), ..., (zm, t(x,,)) as follows: each; is chosen independently
according to some fixed probability distributipnon X. The learning problem is then, given
only s, and the knowledge that the data are labeled accordisgreetarget concept irf, to
produce somé € H which is ‘close’ tot (in a sense to be formalized below).

A more general framework can usefully be developed to model the case in which the data cannot
necessarily be described completely by a functio#/inor, indeed, when there is a stochastic,
rather than deterministic, labelling of the data points. In this more general formulation, it is
assumed that the data poirts, b) in the training sample are generated according to some
probability distributionP on the productX’ x {0, 1}. This formulation includes the realizable
case just described, but also permits a given appear with the two different labelsand1,

each with certain probability. The aim of learning in this case is to find a function fromat

is a good predictor of the data labels (something we will shortly make precise). It is hoped that
such a function can be produced given only the training sample.

2.2 Definitions

We now formalize these outline descriptions of what is meant by learning. We place most
emphasis on the more general framework, the realizable one being a special case of this.

A training sample is some element 8f*, for somem > 1, whereZ = X x {0,1}, We may
therefore regard a learning algorithm as a functionZ* — H whereZ* = | J°_, Z™ is the
set of all possible training samples. (It is conceivable that we might want to defomdy on
part of this domain. But we could easily extend its domain to the wholg*dby assuming
some default output in cases outside the domain of interest.) We dendtés pyhe output
hypothesi®f the learning algorithm after being presented with training sample

Since there is assumed to be some probability distributigmn the setZ = X x {0, 1} of
all examples, we may define tteeror, erp(h), of a functionh (with respect toP) to be the
P-probability that, for a randomly chosen example, the label is not correctly predictediby
other wordserp(h) = P({(z,b) € Z : h(x) # b}).

The aim is to ensure that the errorlofs) is ‘usually near-optimal’ provided the training sample
is ‘large enough’. Since each of the examples in the training sample is drawn randomly
and independently according ¢, the samples is drawn randomly fron¥™ according to the
product probability distributior”™. Thus, more formally, we want it to be true that with high
P™-probability the sample arising fromx is such that the output functioh(s) has near-
optimal error with respect t&’. The smallest the error could bedst,(H) = min{erp(h) :

h € H}. (For a class of Boolean functions, singeis finite, the minimum is defined, but in
general we would use the infimum.)

This leads us to the following formal definition of a version of ‘PAC’, (probably approximately
correct) learning.

Definition 2.1 (PAC learning) The learning algorithml is a PAC-learning algorithnfor the
class H of Boolean functions if for any givene > 0 there is a sample length (9, €) such
that for all probability distributionsP? onZ = X x {0, 1},

m > mg(d,€) = P ({s € Z™ :erp(L(s)) > optp(H) + €}) < 6.

The smallest suitable value of,(d, €), denotedn (6, ¢), is called thesample complexitgf L.

The definition is fairly easy to understand in the realizable case. In this eagg,) is the
probability that a hypothesis disagrees with the target concepin a randomly chosen exam-

ple. So, here, informally speaking, a learning algorithm is PAC if, provided a random sample is
long enough (where ‘long enough’ is independenPfthen it is ‘probably’ the case that after
training on that sample, the output hypothesis is ‘approximately’ correct. We often refasto
theaccuracy parametesind) as theconfidence parameter

Note that the probability distributio® occurs twice in the definition: first in the requirement
that theP-probability of a sample be small and secondly through the fact that the erkds pf

is measured with reference f& The crucial feature of the definition is that we require that the
sample lengthn (0, €) be independent aP.

2.3 Alearnability result for Boolean classes

Forh € H ands = (((z1,b1), ..., (zm, b)), thesample errorof 4 ons is

3 — 1) - . .
cis(h) = — i« hwi) # @i},
and we say that is a SEM (sample-error minimization) algorithm if, for asy
érs(L(s)) = min{erg(h) : h € H}.

We now show that. is a PAC learning algorithm provided it has this fairly natural property.

Theorem 2.2 Any SEM learning algorithnd, for a setH of Boolean functions is PAC. More-
over, the sample complexity is bounded as follows:

2 (2|H]|
mL((S, 6) S gln (T) .

Proof: By Hoeffding’s inequality [12], for any particuldr € H,
P (érg(h) — erp(h)| > €/2) < 2exp(—e*m/2).

So, for anyP ande,

p™ {max lers(h) —erp(h)| > 6/2} = pP" <U {s € Z™ :|érs(h) —erp(h)| > e/2}>

heH
heH

<) P {[érg(h) — erp(h)]| > €/2}

heH
< |H|2exp(—€e*m/2).

as required. Now suppo$e € H is such thatrp(h*) = optp(H). Then

pm {r&af[dérs(h) —erp(h)| > 6/2} < 2|H|exp (—€’m/2),

and this is no more thahif m > (2/€%) (2|H|/d) . In this case, with probability at least— 4,
for everyh € H,erp(h) —€/2 < érg(h) < erp(h) + €/2, and so,

erp(L(s)) < érg(L(s)) +¢€/2 = Enilr}érs(h) +¢/2 < érg(h*) +¢/2
S
< (erp(h™)+€/2)+€/2=optp(H) + €
The result follows. O

We have stated the result for classes of Boolean functions, but it clearly applies &lsiteto
classes 0f0, 1}-valued functions defined dR".

The proof of Theorem 2.2 shows that, for any> 0, with probability at least — 9, L returns
a functionh with
2 2|H
erp(h) < optp(H)+ 4/ —In <M>

m)

Thus,ep(6,m) = 4/ % In (@) may be thought of as a bound on #&imation errorof the

learning algorithm. The definitions and results can easily be stated in terms of estimation error
rather than sample complexity, but here we will mostly use sample complexity.

We state, without its proof (which is, in any case, simpler than the one just given, and may be
found in [5]), the following result for the realizable case. Note that, in the realizable case, the
optimal error is zero, so a SEM algorithm is what is callezbasistenalgorithm. That is, the
output hypothesis is consistent with the sample, meaning thét;) = ¢(z;) for eachi, where

t is the target concept.

Theorem 2.3 Suppose that/ is a set of Boolean functions. Then, for anyandd, and any
target concept € H, the following holds with probability at leadt— o: if . € H is any
hypothesis consistent with a training samglef lengthm, then with probability at least — ¢,

erp(h) < %m (@) |

In particular, for realizable learning problems, any consistent learning algorithis PAC and
has sample complexity bounded as follows;(d,¢) < (1/¢)In (|H|/0) .

2.4 Learning monomials

We give a simple example of a PAC algorithm in the realizable casapAomialis a Boolean
function which can be represented by a formula that is a simple conjunction of literals. There
is a very simple learning algorithm for monomials, due to Valiant [27]. We begin with no
information, so we assume that every one of2hditerals x+, z4, . . ., z,,, Z,, can occur in the

target monomial. On presentation of a positive exangplé), the algorithm deletes literals as
necessary to ensure that the current hypothesis monomial is true on the example. The algorithm
takes no action on negative examples: it will always be the case that the current hypothesis
correctly classifies such examples as false points. The formal description is as follows. Suppose
we are given a training sampdecontaining the labeled examplés;, b;) (1 < i < m), where

each example; is ann—tuple of bits(z;);. If we leth;; denote the monomial formula containing

the literals in the set/, the algorithm can be expressed as follows.

setU = {x1,Z1,...,%p, Tn};
for k= 1 to m do
if b =1 then
for ;)= 1 to n do
if (x;); = 1then deletez; if present inU
else deleter; if presentinU;
L(S):z hU

Itis easy to check that ¥ is a training sample corresponding to a monomial, then the algorithm
outputs a monomial consistent wish So the algorithm is a PAC algorithm for the realizable
case. Furthermore, since the number of monomials is at 3fiestl, the sample complexity of

L is bounded above by
1 (ln(3” + 1))
-In{ ——=),
€)

which, ignoring constants, is of ordét + In (1/6)) /e. The algorithm is also computationally
efficient, something we shall turn attention to later.

2.5 Discussion

Theorem 2.2 and Theorem 2.3 show that the sample complexity of learning can be bounded
above using the cardinality af. But it is natural to ask if one can do better: that is, can we
obtain tighter upper bounds? Furthermore, we have not yet seen any lower bounds on the sample
complexity of learning. To deal with these concerns, we now look aVtbelimensionwhich

turns out to give (often better) upper bounds, and also lower bounds, on sample complexity.

3 The growth function and VC-Dimension

3.1 The growth function of a function class

Suppose thal] is a set of Boolean functions defined &n= {0, 1}". Letx = (z1,xa,...,Zy)
be a sample (unlabeled) of lengthof points of X. Asin [30, 5], we definél; (x), thenumber
of classifications ok by H, to be the number of distinct vectors of the form

(f(xl)v f(xQ)a ey f(xm)) 5

as f runs through all functions off. (This definition works more generally # is a set of

{0, 1}-valued functions defined on sorig&, for although in this cas& may be infinite [T (x)

will be finite.) Note that for any sample of lengthm, I15(x) < 2™. An important quantity,

and one which turns out to be crucial in PAC learning theory, is the maximum possible number
of classifications by of a sample of a given length. We define tirewth functionll; by

[y (m) = max {Ilg(x) : x € X"} .

We have used the notatidhy for both the number of classifications and the growth function,
but this should cause no confusion.

3.2 VC-dimension

We noted that the number of possible classificationgibgf a sample of lengthn is at most
2™, this being the number of binary vectors of length We say that a sampte of lengthm

8

is shatteredby H, or that H shattersx, if this maximum possible value is attained; that is, if

H gives all possible classifications ®f We shall also find it useful to talk of a set of points,
rather than a sample, being shattered. The notion is the same: the set is shattered if and only
if a sample with those entries is shattered. To be shatteredust clearly haven distinct
examples. Thenx is shattered by{ if and only if for each subsef of {x, 25 ..., x,,}, there

is some functiorys in H such thatforl <i <m, fs(z;) =1 <= z; € S.

Consistent with the intuitive notion that a sEtof functions has high expressive power if it

can achieve all possible classifications of a large set of examples, following [30, 5], we use as
a measure of this power thé@apnik-Chervonenkis dimensiaor VC-dimensionof H, which is
defined to be the maximum length of a sample shattereH biJsing the notation introduced
above, we can say that the VC-dimensionfhfdenotedvCdim(H), is given by

VCdim(H) = max {m : [Ig(m) = 2"},
We may state this definition formally, and in a slightly different form, as follows.

Definition 3.1 (VC-dimension) Let H be a set of Boolean functions from a sétto {0, 1}.
TheVC-dimensionof H is the maximal size of a subs@tof X with the property that for each
S C E,thereisfs € Hwith fs(z) =1ifz € Sand fs(z) =0ifz € E\ S.

The VC-dimension of a set of Boolean functions can easily be bounded in terms of its cardinal-
ity.

Theorem 3.2 For any setH of Boolean functionsyCdim(H) < log, |H]|.

Proof: If d is the VC-dimension off andx € X is shattered by7, then|H| > |H,| = 2%
(Here, H, denotes the restriction df to domainE = {1, xs,...,24}.) It follows thatd <
log, |H].

It should be noted that Theorem 3.2 is sometimes loose, as we shall shortly see. However,
it is reasonably tight: to see this, we need to explore further the relationship between growth
function and VC-dimension.

Note: All of the definitions in this section can be made more generally for (possibly infinite)
sets of functions mapping frol¥ = R™ to {0,1}. The VC-dimension can then be infinite.
Theorem 3.2 applies to any finite such class.

9

4 Relating growth function and VC-dimension

The growth functiorlly (m) is a measure of how many different classifications ofraeample
into true and false points can be achieved by the function§ ,ofvhile the VC-dimension of

H is the maximum value of: for which Il (m) = 2™. Thus, the VC-dimension is defined in
terms of the growth function. But there is a converse relationship: the growth furictjom)

can be bounded by a polynomial functionraf and the degree of the polynomial is the VC-
dimensiond of H. Explicitly, we have the following theorem [21, 24], usually known as Sauer’s
Lemma (or the Sauer-Shelah Lemma).

Theorem 4.1 (Sauer's Lemma)Letd > 0 andm > 1 be given integers and |€f be a set of
{0, 1}-valued functions witV Cdim(H) = d > 1. Then

where the second inequality holds far> d.

Proof: Form < d, the inequality is trivially true since in that case the sur’is Assume that
m > dandfixasetS = {zy,...,z,} € X. We will make use of the correspondence between
{0, 1}-valued functions on a set and subsets of that set by defining the set system (or family of
sets)

F={{z;€8: f(x;)=1}: fe H}.

The proof proceeds, as in [25], by first creating a transformed vefSiaf F that is a down-set
with respect to the partial order induced by set-inclusion, and which has the same cardinality as
F. (To say thatF* is a down-set means thatdf € 7 andB C AthenB € F*.)

For an element of S, let T, denote the operator that, acting on a set system, removes the
elementr from all sets in the system, unless that would give a set that is already in the system:

T,(F)={A\{z} : Ae FtU{A e F: A\{z} € F}.

Note that|7,.(F)| = |F|. Consider nowf* = T, (Ty, (- - - Ty, (F) - - -)). Clearly,|F*| = |F]|.
Furthermore, for alk: in S, T,(F*) = F*. Clearly, 7* is a down-set. For, if it were not, there

10

would be som&” € F* and somer € C such thatC \ {z} ¢ F*. But we have applied the
operator];, to obtainF*; thus, ifC' € F*, then this is only becausé \ {z} is also inF*.

We can define the notion of shattering for a family of subsets, in the same way as for a family of
{0, 1}-valued functions. FoR C S, we say thatF shattersRif FNR={ANR: Aec F}is

the set of all subsets @tf. We next show that, whenevét* shatters a set, so dog&s It suffices

to show that, for any: € S, if 7,.(F) shatters a set, so dogs So suppose thatin S, R C S,
andT,(F) shattersk. If = is not in R, then, trivially, 7 shattersRk. If z is in R, then for all

A C Rwith z & A, sinceT, (F) shatters? we haveAd € T,.(F)NRandAU{z} € T,.(F)NR.

By the definition ofT, this impliesA € N RandA U {z} € F N R. This argument shows
thatF shattersk. It follows thatF* can only shatter sets of cardinality at mdsSinceF* is a
down-set, this means that the largest sefirhas cardinality no more thah (For, if there were

a set of cardinality/ + 1 in F*, all its subsets would be i#F* too, becausé ™ is a down-set,
d

and it would therefore be shattered.) We therefore h&ve < Z (m> , this expression being
7
=0
the number of subsets ¢f containing no more thad elements. The result follows, because
|F| = |F*|, and becaus& was chosen arbitrarily. For the second inequality, we have, as argued
in [6],

S ()< (E) <) (E) - @) ()

=0 1= 1=

Now, for allz > 0, (1 + (z/m))™ < €%, so this is bounded bym /d)%e? = (em/d)?, giving the
bound. 0

The first inequality of this theorem is tight. H corresponds to the set systefnconsisting
of all subsets of 1,2, ..., n} of cardinality at most/, thenVCdim(H) = d and|F| meets the
upper bound.

Now, Theorem 4.1 has the following consequence when we use the faptithatl; (2").

Theorem 4.2 For any classH of Boolean functions defined 40, 1},
1 H
VOdim(H) > g2 1
n + log, e
and if VCdim(H) > 3, thenVCdim(H) > log, |H|/n.

11

Given also the earlier bound, Theorem 3.2, we see that, essentially, for a Boolean class on
{0,1}", VCdim(H) andlog, |H| are within a factor of each other. This gap can be real. For
example, wherf{ = T, is the class of threshold functions, th€&dim(7,,) = n + 1, whereas

log, |T;,| > n?/2. (In fact, as shown by Zuev [31lbg, |T},| ~ n? asn — o00.)

5 VC-dimension and PAC learning

It turns out that the VC-dimension quantifies, in a more precise way than does the cardinality
of the hypothesis space, the sample complexity of PAC learning.

5.1 Upper bounds on sample complexity

The following results bound from above the sample complexity of PAC learning (in the general
and realizable cases, respectively). Itis obtained from a result of Vapnik and Chervonenkis [30];
see [2].

Theorem 5.1 Suppose thatl is a set of Boolean functions with VC-dimensibh 1 and let
be any SEM algorithm fof. ThenL is a PAC learning algorithm foff with sample complexity
bounded as follows:

mi(0,€) < mo(6,¢) = f—f <2d In (%) +in (%)) |

In fact, it is possible (using a result of Talagrand [26]; see [2]) to obtain an upper bound of order
(1/€?) (d +1n (1/4)) . (However, the constants involved are quite large.) For the realizable case,
from a result in [5], we have the following bound.

Theorem 5.2 Suppose that/ is a set of Boolean functions with VC-dimensibr 1 and letL
be any consistent learning algorithm féf. ThenL is a PAC learning algorithm fof in the
realizable case, with sample complexity bounded as follows:

mis.0e (am(2) o (2)).

12

5.2 Lower bounds on sample complexity

Theorem 5.3 Suppose that! is a class of{0, 1}-valued functions with VC-dimensiah For
any PAC learning algorithni for H, the sample complexity:., (e, §) of L satisfies

5.6) >
mi(0,€) 2 3505

forall 0 < ¢,0 < 1/64. Furthermore, ifH contains at least two functions, we have

my,(6,€) = 2 {12_6262 In <8(5(11— 25))J

forall0 <e <land0 < d < 1/4.

The two bounds taken together imply a lower bound of ofdé¢?) (d + In (1/4)) .

For the realizable case, we have the following.

Theorem 5.4 Suppose that! is a class of 0, 1 }-valued functions of VC-dimensidn> 1. For
any PAC learning algorithnd. for H in the realizable model, the sample complexity(J, ¢)
of L satisfiesny(d,¢) > (d —1)/(32¢) forall 0 < e < 1/8 and0 < § < 1/100. Furthermore,
if H contains at least three functions, thery,(d,¢) > (1/2¢)In(1/§), for 0 < ¢ < 3/4 and
0<d<1.

Thus, in the realizable case, the sample complexity of a PAC learning algorithm is at least of

the order of . .
~(d+In(= .
(e (5))

Supposé€,, is a class of Boolean functions ¢f, 1}". Given the connections between cardinal-
ity and VC-dimension for Boolean classes, we see that any SEM algorithm is PAC and (for fixed

. Hn 1 Hn 1
0) has sample complexity at least of or(ﬁ%# and at most of ordeq%| In{-].(n
ne € €

fact, as noted earlier, we can omit the logarithmic factor in the upper bound at the expense of

13

worse constants.) In the realizable case, we can similarly see that any consistent algorithm is

. 1 H, 1 H, 1
PAC and has sample complexity of order at Ie%M and at mostM In (—)
ne € €

The cardinality therefore can be used to bound the sample complexity of learning, but the VC-
dimension provides tighter bounds. (Moreoever, the bounds based on VC-dimension remain
valid if we consider not Boolean classes but classes of functions mappingRfaim {0, 1}:

as long as such classes have finite VC-dimension—even if infinite cardinality—they are still
learnable by SEM algorithms, or consistent algorithms in the realizable model.)

6 VC-dimensions of Boolean classes

6.1 Boolean formulas

We shall not give here a detailed exposition of Boolean functions and formulae; full details may
be found in many texts. Any Boolean function (that is, any function fforni }™ to {0, 1} can
be expressed bydisjunctive normal formuléor DNF), usinditerals x1, x, ..., 2., T1, . . ., Tp,
where thez; are known asegated literals A disjunctive normal formula is one of the form

TYNVIyN -V T,

where eacl; is atermof the form

()M A)

for some disjoint subsetB8, N of {1,2,...,n}. A Boolean function is said to be drDNF if

it has a disjunctive normal formula in which, for each term, the number of litef&ls (V]) is

at mostl; it is said to be &-term{-DNF if there is such a formula in which, furthermore, the
number of termq; is at mostk.

14

6.2 Monomials

As an example of VC-dimension, we consider the/ggt of positive monomialsconsisting of
the simple conjunctions on non-negated literals.

Theorem 6.1 The classV/;" of positive monomials of0, 1}" has VC-dimension.

Proof: Since there ar@” such functions, we hav€Cdim(M,) < log,(2") = n. To show
that the VC-dimension is in fact exacth; we show that there is some setC {0,1}" such
that|S| = n andS is shattered by/;". Let S consist of al{0, 1}-vectors having exactly — 1
entries equal td, and denote by:; the element ok having a0 in position:. Let R be any
subset ofS and lethr € M, be the conjunction of the literals; for all j such that; ¢ R.
Thenhg(z) = 1forz € Randhg(z) = 0forz € S\ R. This showsS is shattered. O

6.3 Threshold functions

A Boolean functiort defined on{0, 1}" is athreshold functiornf there arew € R™ andf € R

such that f) > 0
1 1f (w,z) >
Hz) = { 0 if (w,z) <4,

where(w, z) = w’z is the standard inner product efandz. Given suchw andd, we say that
t is represented b, 6] and we writet — [w, §]. The vectonw is known as theveight-vector
andéd is known as thehreshold We denote the class of threshold functions{onl }" by T,,.
Note that any € T,, will satisfy ¢ < [w, 6] for ranges ofw andé.

Itis known [7] that ifT" = T, is the set of threshold functions ¢f, 1}", then

Hp(m) < t(n,m) =2 2; (m; 1)-

This result is proved by using the classical fact [7, 22] tNatyperplanes ifiR™, each passing
through the origin, divid®” into at mostC' (N, n) = 2 ZZ’.L;(} (N;l) regions. It follows directly
from this, since)(n,n + 1) = 2" andy(n,n + 2) < 2"*2, that the VC-dimension df,, is

15

at mostn + 1. In fact, the VC-dimension is exactly + 1, as we now show. (In the proof, an
alternative, more direct, way of seeing that the VC-dimension is at mest is given.)

Theorem 6.2 The class of threshold functions ¢, 1}™ has VC-dimension + 1.

Proof: Any threshold functior is described by a weight-vectar = (wy, ws, ..., w,) and
a threshold, so thath(z) = 1lifand only if >, w,z; > 6. Let.S be any subset of0, 1}"
with cardinalityn + 2. By Radon’s Theorem, there is a non-empty suligetf S such that
conv(R) Nconv(S\ R) # (), whereconv(X) denotes the convex hull of. Suppose that there
is a threshold function in T;, such that® is the set of true points @fin S. We may assume that
none of the points lies on the hyperplane defining.et H+ be the open half-space on whigh
is true andH — the open half-space on which it is false. TheniC H* andS \ R C H~. But
since half-spaces are convex subsetR'gfwe then have

conv(R) Nconv(S\R)C H' NH™ =1,

which is a contradiction. It follows that no su¢lexists and henc# is not shattered. But since
S was an arbitrary subset of cardinality+ 2, it follows thatVCdim(7;,) < n + 1. Now we
show thatVCdim(7,,) > n + 1. Let 0 denote the alB vector and, forl < i < n, lete; be the
point with al in theith coordinate and all other coordinatesWe shall show that,, shatters
the setS = {0, ey, e9,...,¢e,}. Suppose thak is any subset of. Fori = 1,2,...,n, let

[l ifeeR
Wi=\ —1, ife; R

and let
9—{_1/2’ if 0 € R;
~11/2, if0¢R.
Then it is straightforward to verify that fi is the threshold function with weight-vectorand
thresholdd, then the set of true points éfin S is preciselyR. ThereforeS is shattered by,
and, consequently/Cdim(7;,) > n + 1. The result now follows. O

6.4 k-DNF

The class of-DNF functions on{0, 1}" consists of all those functions representable by a DNF
in which the terms are of degree at mastLet D, ;, denote the set of-DNF functions ofn
variables. Then, for fixed, the VC-dimension oD, . is ©(n*), as shown in [8].

16

Theorem 6.3 Letk € N be fixed and leD,, ;. be the set ok-DNF functions on{0, 1}". Then
VCdim(D,, ;) = O(n").

Proof: The number of monomials or terms which are non-empty, not identically false, and
of degree at most is Zle (")2" which is, for fixedk, O(n*). Since anyk-DNF formula is
created by taking the disjunction of a set of such terms, the numbeiDMF formulas (and
hence D, 1,|) is 2°00"). ThereforeVCdim(D,, ;) < log, | Dyx| = O(n).

On the other hand, we can show that the VC-dimensidi(ig’) by proving that a sufficiently
large subset is shattered. Consider theSsef examples in{0, 1}" which have precisely:
entries equal ta. ThenS can be shattered by, .. Indeed, supposg is any subset of. For
eachy = (y1,49,...,y.) € R, form the term that is the conjunction of those literaJssuch
thaty, = 1. Sincey € S, this term has: literals; further,y is the only true point inS' of this
term. The disjunction of these terms, one for each membéy, of therefore a function i,
whose true points ity are precisely the members &f HenceS is shattered byD,, . Now,
S| = (}) which, for a fixedk, is Q(n*). O

7 Efficient PAC learning

7.1 Introduction

Up to now, a learning algorithm has been mainly described as a function which maps training
samples into output functions (or hypotheses). We will now be more specific about the com-
putational effectiveness of learning algorithms. If the process of PAC learning by an algorithm
L is to be of practical value, it should be possible to implement the algorithm ‘quickly’. We
discuss what should be meant by an efficient PAC learning algorithm, and we highlight an im-
portant connection between the existence of efficient PAC learning algorithms and the existence
of efficient procedures for producing hypotheses with small sample error. As mentioned earlier,
computational efficiency was a key aspect of Valiant’s learning model [27], and has been much
further explored for the models discussed here. The papers [5, 20] provided some of the impor-
tant initial results, and these are further explored in the books [16, 17, 3]. The treatment here
follows [2].

17

Consider the monomial learning algorithm (for the realizable case) described earlier. This is
an efficient algorithm: its running time on a training samplenofdata points in{0,1}" is
O(mn), which is linear in the size of the training sample. Furthermore, noting either that
VCdim(M,,) = O(n) or thatlog, |M,| = O(n), we can see that, for givenandd, we can
produce a hypothesis that, with probability at least §, has accuracy, in time of order
n?p(1/e,In(1/6)) = q(n,1/¢,In(1/§), wherep andq are (small degree) polynomials. This is

an example of what we mean by an efficient learning algorithm ssales, the time taken to
produce a PAC output hypothesis scales polynomially wijthdditionally, the running time is
polynomial in1/e andln(1/9).

7.2 Graded classes

In order to enable a more general discussion of efficient learning, we introduce the idea of a
gradedfunction class. Suppos#, is a set of Boolean functions defined éi 1}". Then we

say thatt/ = ;- , is agradedhypothesis space. The reason for introducing this idea is that we
want to analyse the running time (with respectjof what might be termed a ‘general’ learning
algorithm for a graded class of Boolean functions. This is an algorithm that works in essentially
the same manner on each of the clasdgs For example, the monomial learning algorithm
works onM,, for anyn in essentially the same way: there is no fundamental difference between
its actions on, say, the monomials wittvariables and those with) variables.

Denoting{0,1}" x {0,1} by Z,, alearning algorithmL for the graded spacH = J._, H,

is a mapping from J>~ , Z* to H with the property that it € Z* thenL(s) € H,. The only
difference between this definition and the basic notion of a learning algorithm for an ungraded
class is that we have now encapsulated some sense of the ‘generality’ of the algorithm in its
action over all theH,,. With this, we now state formally what is meant by a PAC learning
algorithm for a graded class.

Definition 7.1 If L is a learning algorithm forH = |J H,,, then we say thal, is PAC if
forall n € N andd, e € (0,1), there ismy(n, 0, €) such that ifm > mgy(n,d,¢) then, for
any probability distribution” on Z,, if s € Z™ is drawn randomly according to the product
probability distribution P™ on Z'", then with probability at least — ¢, the hypothesid.(s)
output byL satisfieserp(L(b,s)) < optp(H,) + €.

18

7.3 Definition of efficient learning

We now assume that learning algorithms are algorithms in the proper sense (that is, that they
are computable functions). Suppose thas a learning algorithm for a graded function class

H = |JH,. Aninputto L is a training sample, which consists:aflabeled binary vectors of
lengthn. It would be possible to use(n + 1) as the measure of input size, but we will find it
useful to consider dependencearandn separately. We use the notati&a (m, n) to denote

the worst-case running time @f on a training sample af: points of Z,,. Clearly,n is not the

only parameter with which the running time of the learning procedure as a whole should be
allowed to vary, since decreasing either the confidence parametehe accuracy parameter

e makes the learning task more difficult, requiring a larger size of sample. We shall ask that
the running time of a learning algorithmbe polynomial inm, and that the sample complexity
my(n,d,€) depend polynomially ot /e andln (1/4). If these conditions hold, then the running
time required to produce a ‘good’ output hypothesis will be polynomial,im(1/§) and1/e.

We now formally define what we mean by efiicient learning algorithnfior a graded function
class.

Definition 7.2 Let H = | J H,, be a graded class of Boolean functions and supposelthsia
learning algorithm forH. We say thal is efficientif:

e the worst-case running timg,(m, n) of L on samples € Z'™ is polynomial inm and
n,and

e the sample complexity..,(n, d, ¢) of L on H,, is polynomial inn, 1/e andln(1/6).

We have described the outputs of learning algorithms as hypotheses. But, more precisely, they
are representations of hypotheses. When discussing the complexity of learning, it is always

assumed that the output lies in a representation class for the hypothesis class. All this often
amounts to is that the output must be a formula of a particular type. For example, the monomial

learning algorithm outputs a monomial formula (and not some other representation). This is not

something we shall explore much further, but it is sometimes important.

19

7.4 Sufficient conditions for efficient learning

We define a SEM algorithm for a graded Boolean clAsg be an algorithm that given any
samples € Z'*, returns a functiorh € H, with minimal sample errofrs(h) ons. The

following result, which may be found in [5], follows directly from earlier results and shows that
the rate of growth withh of the VC-dimension determines the sample complexity of learning

algorithms.
Theorem 7.3 Let H = | J H,, be a graded Boolean function class.

e If VCdim(H,) is polynomial inn, then any SEM algorithm fof{ is a PAC learning
algorithm with sample complexityt, (n, €, §) polynomial inn, 1/e andIn(1/06).

e If there is an efficient PAC learning algorithm féf, thenVCdim(H,,) is polynomial in
n.

Note that, by Theorem 4.2, the same statement is trueWitthim (/,,) replaced byn | H,,|.

We now turn our attention to the running time of SEM algorithms. Having seen that, in many
circumstances, such algorithms yield PAC learning algorithms, we now investigatétiency

of these derived learning algorithms. We say that a SEM algorithm for the graded Boolean
function classH = J H,, is efficient if, given as inpus € Z'", it returns its output in time
polynomial inm andn. The following result is immediate.

Theorem 7.4 Suppose thall = | J H,, is a graded Boolean function class and thatdim(H,,)
is polynomial inn. Then, any efficient SEM algorithm féf is an efficient PAC learning algo-
rithm for H.

8 Randomized PAC and SEM algorithms

There may be some advantage in allowing learning algorithms to be randomized. Furthermore,
as we shall see, there are some fairly succinct characterizations of learnability provided we
permit algorithms to be randomized.

20

For our purposes, a randomized algorithihias available to it a random number generator that
produces a sequence of independent, uniformly distributed bits. The randomized algdrithm
uses these random bits as part of its input, but it is useful to think of this input as somehow ‘in-
ternal’ to the algorithm, and to think of the algorithm as defining a mapping from an ‘external’
input to a probability distribution over outputs. The computation carried out by the algorithm
is, of course, determined by its input, so that, in particular, it depends on the particular sequence
produced by the random number generator, as well as on the ‘external’ input. We may speak
of the ‘probability’ that.4 has a given outcome on an (external) inputoy which we mean

the probability that the stream of random numbers gives rise to that outcome when the exter-
nal input to the algorithm ig. It is useful to extend our concept of a PAC learning algorithm

to allow randomization. The definition of a randomized PAC learning for a graded class is as
in Definition 7.1, with the additional feature that the algorithm is randomized. £S@n no

longer be regarded as a deterministic function.)

We shall also be interested in randomized SEM algorithms.

Definition 8.1 A randomized algorithnd is an efficient randomized SEM algorithifior the
graded Boolean function clasd = (J H,, if given anys € Z, A halts in time polyno-
mial in n andm and outputsh € H,, which, with probability at least /2, satisfiesrs(h) =

mingeHn €rg (g) .

Suppose we run a randomized SEM algorithtimes on a fixed samplg), keeping the output
hypothesisf*) with minimal sample error among all tikehypotheses returned. In other words,

we take thebest ofk iterationsof the algorithm. Then the probability that*) has sample error

that isnotminimal is at most1/2)*. This is the basis of the following result, which shows that,

as far as its applications to learning are concerned, an efficient randomized SEM algorithm is
as useful as its deterministic counterpart. (The key idea in establishing this result is to take the
best ofk iterations of A for a suitablek, absorbing the randomness in the actiondoihto the

‘0’ of learning.)

Theorem 8.2 Suppose thall = J H,, is a graded Boolean function class and thatdim(H,,)
is polynomial inn. If there is an efficient randomized SEM algoritbdrfor H, then there is an
efficient randomized PAC learning algorithm fBrthat usesA as a subroutine.

21

9 Learning and existence of SEM algorithms

We have seen that efficient SEM algorithms (both deterministic and randomized) can in many
cases be used to construct efficient PAC learning algorithms. The next result proves, as a con-
verse, that if there is an efficient PAC learning algorithm for a graded classhéessarily

there is an efficient randomized SEM algorithm. (For the realizable case, this may be found
in [20, 5, 19].)

Theorem 9.1 If there is an efficient PAC learning algorithm for the graded binary cl&ss-
U H,, then there is an efficient randomized SEM algorithm.

Proof: SupposeL is an efficient PAC learning algorithm for the graded class= | J H,,.
We construct a randomized algorithuy, which will turn out to be an efficient randomized
SEM algorithm. Suppose the sample Z" is given as input tod. Let P be the probability
distribution that is uniform on the labeled examplessiand zero elsewhere of,. (This
probability is defined with multiplicity; that is, for instance, if there are two labeled examples in
s each equal ta, we assign the labeled examplprobability2 /m rather than /m.) We use the
randomization allowed i to form a sample of lengttv* = m(n, 1/m, 1/2), in which each
labeled example is drawn accordingfo Lets* denote the resulting sample. Feeds#ignto
the learning algorithm, we receive as outptit= L(s*) and we take this to be the output of the
algorithm4; that is, A(s, €) = h* = L(s*). By the fact that_ is a PAC learning algorithm, and
given thatm* = my(n,1/m, 1/2), with probability at least /2 erp(h*) < optp(H)+1/m. But
because” is discrete, with no probability mass less thamn, this meansrp(h*) = optp(H).
For anyh, by the definition ofP, erp(h) = erg(h). So with probability at least/2,

érs(h7) = erp(h”) = optp(F) = min erp(g) = min er(g).
This means thatl is a randomized SEM algorithm. Becausgs efficient,m* = my(n,1/m,1/2)
is polynomial inn andm. Since the samplg* has lengthn*, and sincel. is efficient, the time
taken byL to produceh* is polynomial inm* andn. HenceA has running time polynomial in
n andm, as required. O

We arrive at the following succinct characterization of PAC learnability (allowing randomized
algorithms).

22

Theorem 9.2 Suppose that! = | J H, is a graded Boolean function class. Then there is an
efficient randomized PAC learning algorithm farif and only if VCdim(H,,) is polynomial in
n andthere is an efficient randomized SEM algorithm fér

Given the connection of Theorem 4.2 between cardinality and VC-dimension, the same state-
ment withln | H,,| replacingVCdim(H,,) holds. (It should be noted, however, that Theorem 9.2
holds, more generally, in the case whéfg maps fromR™ to {0, 1}.)

10 Establishing hardness of learning

There are two quite natural decision problems associated with a graded Boolean function class
H = H,:

H-AIT
Instance:s € Z™ = ({0,1}" x {0,1})™ and an integek betweenl andm.
Question: Is thereh € H,, such thatrs(h) < k/m?

H-CONSISTENCY
Instance:s € Z™ = ({0,1}" x {0,1})™.
Question: Is thereh € H,, such thatrs(h) = 0?

Clearly H-CONSISTENCYIs a sub-problem of{-FIT, obtained by setting = 0. Thus, any

algorithm for H-FIT can be used also to solVé-CONSISTENCY. Note thatH-consistency is

the decision problem associated with finding an extensidih of the partially defined Boolean
function described by the sample

We say that a randomized algorithdsolves a decision problehhif the algorithm always halts
and produces an output—either ‘yes’ or ‘no’—such that if the answHrda the given instance

is ‘no’, the output ofA is ‘no’, and if the answer tdl on the given instance is ‘yes’ then, with
probability at leasti /2, the output ofA4 is ‘yes’. A randomized algorithm ipolynomial-time

if its worst-case running time (over all instances) is polynomial in the size of its input. The
class of decision problemd that can be solved by a polynomial-time randomized algorithm
is denoted byRP. One approach to proving that PAC learning is computationally intractable

23

for particular classes (in the general or realizable cases) is through showing that these decision
problems are hard. The reason is given in the following results.

Theorem 10.1Let H = J H,, be a graded Boolean function class. If there is an efficient
learning algorithm forH then there is a polynomial-time randomized algorithm FbFIT; in
other words,H-FIT is in RP.

Proof: If H is efficiently learnable then, by Theorem 9.1, there exists an efficient randomized
SEM algorithmA for H. Using.4, we construct a polynomial-time randomized algoritBm

for H-FIT as follows. Suppose thate 7" andk together constitute an instancef@frFiT, and
hence an input té. The first step of the algorithri is to computeh = A(s), the output of4

ons. This function belongs td7,, and, with probability at leastt/2, €rs(h) is minimal among

all functions inH,,. The next step if8 is to check whethefrs(h) < k/m. If so, then the output

of B is ‘yes’ and, if not, the output is ‘no’. It is clear th#&t is a randomized algorithm for
H-FIT. Furthermore, sincgl runs in time polynomial inn andn, and since the time taken for

B to calculatesrs(h) is linear in the size of, 5 is a polynomial-time algorithm.

Theorem 10.2 Suppose thatl = |J H, is a graded Boolean function class.Af is efficiently
learnable in the realizable model, then there is a polynomial-time randomized algorithm for
H-CONSISTENCY, that is, H-CONSISTENCYis in RP.

In particular, therefore, we have the following.

Theorem 10.3 Suppose RE: NP. If H-FIT is NP-hard, then there is no efficient PAC learning
algorithm for H. Furthermore, ifH-CONSISTENCYis NP-hard then there is no efficient PAC
learning algorithm forH in the realizable case.

11 Hardness results

We now use the theory just developed to show that PAC learnability of threshold functions is
computationally intractable (although it is tractable in the realizable case). We also show the
intractability of PAC learning a particular class of Boolean functions in the realizable case.

24

11.1 Threshold functions

First, we note that it is well-known thatf, is the set of threshold Boolean functions{an1}",

then the graded class = |J 7, is efficiently PAC learnable in the realizable case. Indeed, the
VC-dimension of7}, is n + 1, which is linear, and there exist SEM algorithms based on linear
programming. (See [5, 2], for instance.) HoweVErjs not efficiently PAC learnable in the
general case, if R NP. This arises from the following result [9, 15, 13].

Theorem 11.1LetT = |J7,, be the graded class of threshold functions. THeRIT is NP-
hard.

We prove this by establishing that the problem it is at least as hard as the well-known NP-hard
VERTEX COVERproblem in graph theory.

We denote a typical graph iy = (V, E), whereV is the set of vertices an#l the edges. We
shall assume that the vertices are labeled with the numbeérs. ., n. Then, a typical edge
{1, j} will, for convenience, be denotes by. A vertex coveof the graph is a séf’ of vertices
such that for each edgeg of the graph, at least one of the vertices belongs toU. The
following decision problem is known to be NP-hard [9].

VERTEX COVER
Instance: A graphG = (V, E)) and an integek < |V|.
Question: Is there a vertex covéf C V such thatU| < k?

A typical instance of/ERTEX COVERIs a graphG = (V, E) together with an integer < |V|.
We shall assume, for simplicity, th&t = {1,2,...,n} and we shall denote the number of
edges|E|, byr. Notice that the size of an instance\®#RTEX COVERIs {2(r+n). We construct

s = s(G) € ({0,1}*>" x {0,1})>™ as follows. For any two distinct integefs; betweenl
and2n, lete; ; denote the binary vector of lengfr with ones in positionsg and; and zeroes
elsewhere. The sampi¢() consists of the labeled examples,,;, 1) fori =1,2,....n and,
for each edgej € E, the labeled examplés,; ;,0) and(e,4,,.+;,0). Note that the ‘size’ o is
(2r +n)(2n + 1), which is polynomial in the size of the original instancev&RTEX COVER,
and that:(G) can be computed in polynomial time.

25

For example, if a graplt has vertex set’ = {1,2,3,4} and edge sekl = {12,23, 14,13},
then the samplg(G) consists of the following 2 labeled examples:

(10001000, 1), (01000100, 1), (00100010, 1), (00010001, 1),
(11000000, 0), (00001100, 0), (01100000, 0), (00000110, 0),
(10100000, 0), (00001010, 0), (10010000, 0), (00001001, 0).

Lemma 11.2 Given any grapltz = (V, E') withn vertices, and any integér < n, lets = s(G)
be as defined above. Then, theréis T3, such thatsrs(h) < k/(2n) if and only if there is a
vertex cover of7 of cardinality at mosk.

Proof: Any threshold function is represented by some weight veataand threshold).
Suppose first that there is such arand that this is represented by the pair,§) = w =

(w1, wa, ..., way,, d). We construct a subsétof I as follows. Ifi(e; ,,+;) = 0, then we include
iin U; if, for ¢ # j, h(e;;) = 1 or h(entint;) = 1 then we includeeither oneof ¢, j in U.
Because is ‘wrong’ on at most: of the examples i, the setJ/ consists of at most vertices.

We claim thatlJ is a vertex cover. To show this, we need to verify that given any eflgeF,

at least one of, j belongs taU. It is clear from the manner in whidli is constructed that this

is true if eitherh(e; ,1;) = 0 or h(e;,4;) = 0, SO suppose that neither of these holds; in other
words, suppose thate; ,,+;) = 1 = h(e;,+;). Then we may deduce that

Wi + Wrgg > 97 w; +wn+j > 0,
and so
Wi+ Wj + Wy + Woyj = 20

that is,
(wi +w;) + (Whps + Wy j) > 26.

From this, we see that either, + w; > 6 or w,,4; + w,4+; > 6 (or both); thush(e; ;) = 1 or
h(en+int+j) = 1, Or both. Because of the way in whi¢his constructed, it follows that at least
one of the vertices j belongs tdJ. Sinceij was an arbitrary edge of the graph, this shows that
U is indeed a vertex cover.

We now show, conversely, that if there is a vertex covezafonsisting of at most vertices,
then there is a function i, with sample error at mogt/(2n) ons(G). Supposé’ is a vertex

26

cover andU| < k. Define a statev = (wq, wo, ..., wsy,) andd as follows: letd = 1 and, for

1=1,2,...,n,
B [-1 ifieU
wi—w"“—{ 1 ifigU.
We claim that if% is the threshold function represented dyand 6, theners(h) < k/(2n).
Observe that ifj; € F, then, sincdJ is a vertex cover, at least one ©f; belongs toU and
hence the inner products’ e; ; andw?’e,, 1 ,+; are both eithed or —2, less thar, soh(e; ;) =
h(entint;) = 0. The functionh is therefore correct on all the examplessiitz) arising from
the edges ofs. We now consider the other types of labeled exampl @): those of the form
(€intis 1). Now, w’le;,; is —2if i € U and is2 otherwise, sdi(e; ;) = 0if i € U and
h(e;n+;) = 1 otherwise. It follows that is ‘wrong’ only on the examples;, ,,.; for i € U and
hence
oy = U< &
2n 2n

as claimed.

This result shows that the answerZerIT on the instancés(G), k) is the same as the answer
to VERTEX COVER on instance(G, k). Given thats(G) can be computed frond in time
polynomial in the size of7, we have therefore established tdaEIT is NP-hard.

11.2 k-clause CNF

Pitt and Valiant [20] were the first to give an example of a Boolean cladsr which the
consistency probleni/-coNsISTENCYis NP-hard. LeC*, the set ofi-clause CNF functions,

be the set of Boolean functions ¢f, 1} that can be represented as the conjunction of at most
k clauses.

We show that, for fixed: > 3, the consistency problem far* = | J C* is NP-hard. Thus, if
NP+ RP, then can be no efficient PAC learning algorithm@brin the realizable case.

The reduction in this case is TBRAPH K-COLORABILITY. Suppose we are given a graph
G = (V,E),withV = {1,2,...,n}. We construct a training sampiG), as follows. For
each vertex € V we take as a negative example the vectarhich hasl in theith coordinate
position and0’s elsewhere. For each edge € F we take as a positive example the vector
v; + ;.

27

Lemma 11.3 There is a function if€* which is consistent with the training samplg>) if and
only if the graph(- is k-colorable.

Proof: Suppose that € C* is consistent with the training sample. By definitionjs a
conjunction
h=hiNhy A...N\hg

of clauses. For each vertéxf G, h(v;) = 0, and so there must be at least one clausél <
f < k) for which hs(v;) = 0. Thus we may define a functionfrom V' to {1,2,....k} as
follows:

x(i) = min{ f : hy(v;) = 0}.
We claim thaty is a coloring ofG. Suppose that(i) = x(j) = f, so thath(v;) = hy(v;) = 0.
Sincely is a clause, every literal occurring in it must®en v; and onv;. Now v; has al only
in the ith position, and s&(v;) = 0 implies that the only negated literal which can occur in
hy is z;. Since the same is true far, we conclude that; contains only some literals;, with
l #1,7. Thushs(v; +v;) = 0 andh(v; +v;) = 0. Now if ij were an edge afs, then we should
haveh(v; +v;) = 1, because we assumed thas consistent withs(G). Thusij is not an edge
of G, andy is a coloring, as claimed.

Conversely, suppose we are given a coloingV’ — {1,2,...,k}. Forl < f < k, defineh;
to be the clauség/x(l.)# x;, and defineh = hy A ho A ... A hy. We claim thath is consistent
with s(G).

First, given a vertex suppose thaf(i) = g. The clausey, is defined to contain only those
(non-negated) literals corresponding to vertinescoloredg, and saoz; does not occur irk,,.
It follows thath,(v;) = 0 andh(v;) = 0. Secondly, let; be any edge ofi. For each coloff,
there is at least one a@f j which is not coloredf; denote an appropriate choice Hy). Then
hy contains the literak;), which is1 onv; + v;. Thus every clauséy is 1 onwv; + v;, and
h(v; +v;) = 1, as required. 0

Note that wherk = 1, we haveC! = C,,, and there is a polynomial time learning algorithm for
C,, dual to the monomial learning algorithm. The consistency problem (and hence intractability
of learning) remains, however, whén= 2: to show this, the consistency problem can be
related to the NP-completeeT-SPLITTING problem; see [20].

This hardness result is ‘representation-dependent’: part of the difficulty arises from the need
to output a formula irk-clause-CNF form. Now, any-clause-CNF formula can simply be

28

rewritten as an equivaleatDNF formula. So any function i6'* is also ak-DNF function; that

is, using the notation from earler, it belongsig ;. But there is a simple efficient PAC learning
algorithm for D, ;; see [27, 3]. S&* is learnable if the output hypotheses are permitted to be
drawn from the larger clasS,, ;. (or, more precisely, if the output formula istaDNF).

References

[1] D. Angluin. Queries and concept learnirigachine Learning2(4), 1988: 319-342.

[2] M. Anthony and P. L. BartlettNeural Network Learning: Theoretical Foundatiotzam-
bridge University Press, 1999.

[3] Martin Anthony and Norman L. Bigg€Computational Learning Theory: An Introduc-
tion. Cambridge Tracts in Theoretical Computer Science, 30, 1992. Cambridge Univer-
sity Press, Cambridge, UK.

[4] M. Anthony, G. Brightwell and J. Shawe-Taylor. On specifying Boolean functions by
labelled exampleDiscrete Applied Mathematic61, 1995: 1-25.

[5] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth: Learnability and the
Vapnik-Chervonenkis dimensiodournal of the ACM36(4), 1989: 929-965.

[6] S. Chari, P. Rohatgi and A. Srinivasan. Improved algorithms via approximations of prob-
ability distributions (Extended Abstract). IRroceedings of the Twenty-Sixth Annual
ACM Symposium on the Theory of ComputingM Press, New York, NY, 1994: 584—
592.

[7] T. M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities
with Applications in Pattern RecognitiolEEE Trans. on Electronic ComputefsC-14,
1965: 326-334.

[8] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the
number of examples needed for learnihdormation and Computatiqr82, 1989: 247—
261.

[9] M. Garey and D. JohnsorComputers and Intractibility: A Guide to the Theory of NP-
Completenesg~-reemans, San Francisco, 1979.

29

[10] S. A. Goldman and M. J. Kearns. On the complexity of teachiogrnal of Computer
and System SciengésO(1), 1995: 20-31.

[11] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applicationdnformation and ComputatiqriOQ(1), 1992: 78—150.

[12] W. Hoeffding: Probability inequalities for sums of bounded random variabBtagnal
of the American Statistical Associatid8(301), 1963: 13-30.

[13] K.-U. Hoffgen, H. U. Simon and K. S. V. Horn. Robust trainability of single neurons.
Journal of Computer and System Scienégg1), 1995: 114-125.

[14] J. Jackson and A. Tomkins. A computational model of teaching. Proceedings of 5th An-
nual Workshop on Comput. Learning Theory, ACM Press, New York, NY, 1992: 319—-
326.

[15] D. S. Johnson and F. P. Preparata. The densest hemisphere prob&nretical Com-
puter Scienceb, 1978: 93-107.

[16] M. J. Kearns.The Computational Complexity of Machine Learnid§M Distinguished
Dissertation Series. The MIT Press, Cambridge, MA., 1989.

[17] M. J. Kearns and U. Vaziranintroduction to Computational Learning TheorMIT
Press, Cambridge, MA, 1995.

[18] S. A. Goldman and H. D. Mathias. Teaching a smarter leadoernal of Computer and
System Sciences2(2), 1996: 255-267.

[19] B. K. Natarajan. On learning sets and functiodgchine Learning4(1), 1989: 67-97.

[20] L. Pitt and L. Valiant. Computational limitations on learning from examplesirnal of
the ACM 35, 1988: 965-984.

[21] N. Sauer. On the density of families of selsurnal of Combinatorial Theory (A3,
1972: 145-147.

[22] L. Schifli. Gesammelte Mathematische Abhandlungdirkhauser, Basel, 1950.

[23] R. Servedio. On the Limits of Efficient Teachabilityformation Processing Letters
79(6), 2001: 267-272.

30

[24] S. Shelah: A combinatorial problem: Stability and order for models and theories in
infinitary languagesPacific Journal of Mathematic41, 1972: 247-261.

[25] J. M. Steele. Existence of submatrices with all possible coludmgnal of Combinato-
rial Theory, Series A24, 1978: 84—-88.

[26] M. Talagrand. Sharper bounds for Gaussian and empirical procésseals of Proba-
bility, 22, 1994: 28-76.

[27] L. G. Valiant. A theory of the learnabl€€ommunications of the ACN27(11), 1984
1134-1142.

[28] V. N. Vapnik: Statistical Learning Theoryiley, 1998.

[29] V. N. Vapnik. Estimation of Dependences Based on Empirical D&jaringer-Verlag,
New York, 1982.

[30] V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilitie3.heory of Probability and its Applicationd6(2), 1971:
264—280.

[31] Y. A. Zuev. Asymptotics of the logarithm of the number of threshold functions of the
algebra of logicSoviet Mathematics Doklad$9, 1989: 512-513.

31

