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Abstract

This report surveys some key results on the learning of Boolean functions in a proba-
bilistic model that is a generalization of the well-known ‘PAC’ model. A version of this
is to appear as a chapter in a book on Boolean functions, but the report itself is relatively
self-contained.

1 Introduction

This report explores thelearnability of Boolean functions. Broadly speaking, the problem of
interest is how to infer information about an unknown Boolean function given only information
about its values on some points, together with the information that it belongs to a particular
class of Boolean functions. This broad description can encompass many more precise formu-
lations, but here we focus on probabilistic models of learning, in which the information about

∗A version of this is to appear as a chapter inBoolean Functions: Volume II, edited by Yves Crama and Peter
Hammer
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the function value on points is provided through its values on some randomly drawn sample,
and in which the criteria for successful ‘learning’ are defined using probability theory. Other
approaches, such as ‘exact query learning’ (see [1, 16, 17], for instance) and ‘specification’,
‘testing’ or ‘learning with a helpful teacher’ (see [10, 4, 14, 18, 23]) are possible, and particu-
larly interesting in the context of Boolean functions. Here, however, we focus on probabilistic
models, and aim to give a fairly thorough account of what can be said in two such models.

In the probabilistic models discussed, there are two separate, but linked, issues of concern. First,
there is the question of how much information is needed about the values of a function on points
before a good approximation to the function can be found. Secondly, there is the question of
how, algorithmically, we might find a good approximation to the function. These two issues
are usually termed thesample complexityandcomputational complexityof learning. The report
breaks fairly naturally into, first, an exploration of sample complexity and then a discussion of
computational complexity.

2 Probabilistic modelling of learning

2.1 A probabilistic model

The primary probabilistic model of ‘supervised’ learning we discuss here is a variant of the
‘probably approximately correct’ (or PAC) model introduced by Valiant [27], and further de-
veloped by a number of many others; see [28, 11, 2], for example. The probabilistic aspects
of the model have their roots in work of Vapnik and Chervonenkis [29, 30], as was pointed out
by [5]. Valiant’s model additionally placed considerable emphasis also on the computational
complexity of learning.

In the model, it is assumed that we are using some classH of Boolean functions onX = {0, 1}n
(termed thehypothesis space) to find a good fit to a set of data. We assume that the (labeled)
data points take the form(x, b) for x ∈ {0, 1}n andb ∈ {0, 1} (though most of what we discuss
will apply also to the more general case in whichH maps fromRn to {0, 1} and the data are in
R
n × {0, 1}). The learning model is probabilistic: we assume that we are presented with some

randomly generated ‘training’ data points and that we choose a hypothesis on this basis.

The simplest assumption to make about the relationship betweenH and the data is that the data
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can indeed be exactly matched by some function inH, by which we mean that each data point
takes the form(x, t(x)) for some fixedt ∈ H (the target concept). In this realizablecase, we
assume that some numberm of (labeled) data points (orlabeled examples) are generated to form
a training samples = ((x1, t(x1)), . . . , (xm, t(xm)) as follows: eachxi is chosen independently
according to some fixed probability distributionµ onX. The learning problem is then, given
only s, and the knowledge that the data are labeled according tosometarget concept inH, to
produce someh ∈ H which is ‘close’ tot (in a sense to be formalized below).

A more general framework can usefully be developed to model the case in which the data cannot
necessarily be described completely by a function inH, or, indeed, when there is a stochastic,
rather than deterministic, labelling of the data points. In this more general formulation, it is
assumed that the data points(x, b) in the training sample are generated according to some
probability distributionP on the productX × {0, 1}. This formulation includes the realizable
case just described, but also permits a givenx to appear with the two different labels0 and1,
each with certain probability. The aim of learning in this case is to find a function fromh that
is a good predictor of the data labels (something we will shortly make precise). It is hoped that
such a function can be produced given only the training sample.

2.2 Definitions

We now formalize these outline descriptions of what is meant by learning. We place most
emphasis on the more general framework, the realizable one being a special case of this.

A training sample is some element ofZm, for somem ≥ 1, whereZ = X × {0, 1}, We may
therefore regard a learning algorithm as a functionL : Z∗ → H whereZ∗ =

⋃∞
m=1 Z

m is the
set of all possible training samples. (It is conceivable that we might want to defineL only on
part of this domain. But we could easily extend its domain to the whole ofZ∗ by assuming
some default output in cases outside the domain of interest.) We denote byL(s) the output
hypothesisof the learning algorithm after being presented with training samples.

Since there is assumed to be some probability distribution,P , on the setZ = X × {0, 1} of
all examples, we may define theerror, erP (h), of a functionh (with respect toP ) to be the
P -probability that, for a randomly chosen example, the label is not correctly predicted byh. In
other words,erP (h) = P ({(x, b) ∈ Z : h(x) 6= b}).
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The aim is to ensure that the error ofL(s) is ‘usually near-optimal’ provided the training sample
is ‘large enough’. Since each of them examples in the training sample is drawn randomly
and independently according toP , the samples is drawn randomly fromZm according to the
product probability distributionPm. Thus, more formally, we want it to be true that with high
Pm-probability the samples arising fromx is such that the output functionL(s) has near-
optimal error with respect toP . The smallest the error could be isoptP (H) = min{erP (h) :
h ∈ H}. (For a class of Boolean functions, sinceH is finite, the minimum is defined, but in
general we would use the infimum.)

This leads us to the following formal definition of a version of ‘PAC’, (probably approximately
correct) learning.

Definition 2.1 (PAC learning) The learning algorithmL is a PAC-learning algorithmfor the
classH of Boolean functions if for any givenδ, ε > 0 there is a sample lengthm0(δ, ε) such
that for all probability distributionsP onZ = X × {0, 1},

m > m0(δ, ε)⇒ Pm ({s ∈ Zm : erP (L(s)) ≥ optP (H) + ε}) < δ.

The smallest suitable value ofm0(δ, ε), denotedmL(δ, ε), is called thesample complexityof L.

The definition is fairly easy to understand in the realizable case. In this case,erP (h) is the
probability that a hypothesish disagrees with the target conceptt on a randomly chosen exam-
ple. So, here, informally speaking, a learning algorithm is PAC if, provided a random sample is
long enough (where ‘long enough’ is independent ofP ), then it is ‘probably’ the case that after
training on that sample, the output hypothesis is ‘approximately’ correct. We often refer toε as
theaccuracy parameterandδ as theconfidence parameter.

Note that the probability distributionP occurs twice in the definition: first in the requirement
that thePm-probability of a sample be small and secondly through the fact that the error ofL(s)
is measured with reference toP . The crucial feature of the definition is that we require that the
sample lengthm0(δ, ε) be independent ofP .
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2.3 A learnability result for Boolean classes

Forh ∈ H ands = (((x1, b1), . . . , (xm, bm)), thesample errorof h on s is

êrs(h) =
1

m
|{i : h(xi) 6= xi}| ,

and we say thatL is a SEM (sample-error minimization) algorithm if, for anys,

êrs(L(s)) = min{êrs(h) : h ∈ H}.

We now show thatL is a PAC learning algorithm provided it has this fairly natural property.

Theorem 2.2 Any SEM learning algorithmL for a setH of Boolean functions is PAC. More-
over, the sample complexity is bounded as follows:

mL(δ, ε) ≤ 2

ε2
ln

(
2|H|
δ

)
.

Proof: By Hoeffding’s inequality [12], for any particularh ∈ H,

Pm (|êrs(h)− erP (h)| ≥ ε/2) ≤ 2 exp(−ε2m/2).

So, for anyP andε,

Pm

{
max
h∈H
|êrs(h)− erP (h)| ≥ ε/2

}
= Pm

(⋃
h∈H

{s ∈ Zm : |êrs(h)− erP (h)| ≥ ε/2}

)
≤

∑
h∈H

Pm {|êrs(h)− erP (h)| ≥ ε/2}

≤ |H| 2 exp(−ε2m/2).

as required. Now supposeh∗ ∈ H is such thaterP (h∗) = optP (H). Then

Pm

{
max
h∈H
|êrs(h)− erP (h)| ≥ ε/2

}
≤ 2|H| exp

(
−ε2m/2

)
,
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and this is no more thanδ if m ≥ (2/ε2) (2|H|/δ) . In this case, with probability at least1− δ,
for everyh ∈ H, erP (h)− ε/2 < êrs(h) < erP (h) + ε/2, and so,

erP (L(s)) ≤ êrs(L(s)) + ε/2 = min
h∈H

êrs(h) + ε/2 ≤ êrs(h
∗) + ε/2

< (erP (h∗) + ε/2) + ε/2 = optP (H) + ε.

The result follows. ut

We have stated the result for classes of Boolean functions, but it clearly applies also tofinite
classes of{0, 1}-valued functions defined onRn.

The proof of Theorem 2.2 shows that, for anym > 0, with probability at least1− δ, L returns
a functionh with

erP (h) < optP (H) +

√
2

m
ln

(
2|H|
δ

)
.

Thus,ε0(δ,m) =

√
2

m
ln

(
2|H|
δ

)
may be thought of as a bound on theestimation errorof the

learning algorithm. The definitions and results can easily be stated in terms of estimation error
rather than sample complexity, but here we will mostly use sample complexity.

We state, without its proof (which is, in any case, simpler than the one just given, and may be
found in [5]), the following result for the realizable case. Note that, in the realizable case, the
optimal error is zero, so a SEM algorithm is what is called aconsistentalgorithm. That is, the
output hypothesish is consistent with the sample, meaning thath(xi) = t(xi) for eachi, where
t is the target concept.

Theorem 2.3 Suppose thatH is a set of Boolean functions. Then, for anym andδ, and any
target conceptt ∈ H, the following holds with probability at least1 − δ: if h ∈ H is any
hypothesis consistent with a training samples of lengthm, then with probability at least1− δ,

erP (h) <
1

m
ln

(
|H|
δ

)
.

In particular, for realizable learning problems, any consistent learning algorithmL is PAC and
has sample complexity bounded as follows:mL(δ, ε) ≤ (1/ε) ln (|H|/δ) .
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2.4 Learning monomials

We give a simple example of a PAC algorithm in the realizable case. Amonomialis a Boolean
function which can be represented by a formula that is a simple conjunction of literals. There
is a very simple learning algorithm for monomials, due to Valiant [27]. We begin with no
information, so we assume that every one of the2n literalsx1, x̄1, . . . , xn, x̄n can occur in the
target monomial. On presentation of a positive example(x, 1), the algorithm deletes literals as
necessary to ensure that the current hypothesis monomial is true on the example. The algorithm
takes no action on negative examples: it will always be the case that the current hypothesis
correctly classifies such examples as false points. The formal description is as follows. Suppose
we are given a training samples containing the labeled examples(xi, bi) (1 ≤ i ≤ m), where
each examplexi is ann–tuple of bits(xi)j. If we lethU denote the monomial formula containing
the literals in the setU , the algorithm can be expressed as follows.

setU = {x1, x̄1, . . . , xn, x̄n};
for i:= 1 to m do

if bi = 1 then
for j:= 1 to n do

if (xi)j = 1 then deletex̄j if present inU
else deletexj if present inU ;

L(s):= hU

It is easy to check that ifs is a training sample corresponding to a monomial, then the algorithm
outputs a monomial consistent withs. So the algorithm is a PAC algorithm for the realizable
case. Furthermore, since the number of monomials is at most3n + 1, the sample complexity of
L is bounded above by

1

ε
ln

(
ln(3n + 1)

δ

)
,

which, ignoring constants, is of order(n+ ln (1/δ)) /ε. The algorithm is also computationally
efficient, something we shall turn attention to later.
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2.5 Discussion

Theorem 2.2 and Theorem 2.3 show that the sample complexity of learning can be bounded
above using the cardinality ofH. But it is natural to ask if one can do better: that is, can we
obtain tighter upper bounds? Furthermore, we have not yet seen any lower bounds on the sample
complexity of learning. To deal with these concerns, we now look at theVC-dimension, which
turns out to give (often better) upper bounds, and also lower bounds, on sample complexity.

3 The growth function and VC-Dimension

3.1 The growth function of a function class

Suppose thatH is a set of Boolean functions defined onX = {0, 1}n. Letx = (x1, x2, . . . , xm)
be a sample (unlabeled) of lengthm of points ofX. As in [30, 5], we defineΠH(x), thenumber
of classifications ofx byH, to be the number of distinct vectors of the form

(f(x1), f(x2), . . . , f(xm)) ,

asf runs through all functions ofH. (This definition works more generally ifH is a set of
{0, 1}-valued functions defined on someRn, for although in this caseH may be infinite,ΠH(x)
will be finite.) Note that for any samplex of lengthm, ΠH(x) ≤ 2m. An important quantity,
and one which turns out to be crucial in PAC learning theory, is the maximum possible number
of classifications byH of a sample of a given length. We define thegrowth functionΠH by

ΠH(m) = max {ΠH(x) : x ∈ Xm} .

We have used the notationΠH for both the number of classifications and the growth function,
but this should cause no confusion.

3.2 VC-dimension

We noted that the number of possible classifications byH of a sample of lengthm is at most
2m, this being the number of binary vectors of lengthm. We say that a samplex of lengthm
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is shatteredby H, or thatH shattersx, if this maximum possible value is attained; that is, if
H gives all possible classifications ofx. We shall also find it useful to talk of a set of points,
rather than a sample, being shattered. The notion is the same: the set is shattered if and only
if a sample with those entries is shattered. To be shattered,x must clearly havem distinct
examples. Then,x is shattered byH if and only if for each subsetS of {x1, x2 . . . , xm}, there
is some functionfS in H such that for1 ≤ i ≤ m, fS(xi) = 1⇐⇒ xi ∈ S.

Consistent with the intuitive notion that a setH of functions has high expressive power if it
can achieve all possible classifications of a large set of examples, following [30, 5], we use as
a measure of this power theVapnik-Chervonenkis dimension, or VC-dimension, of H, which is
defined to be the maximum length of a sample shattered byH. Using the notation introduced
above, we can say that the VC-dimension ofH, denotedVCdim(H), is given by

VCdim(H) = max {m : ΠH(m) = 2m} ,
We may state this definition formally, and in a slightly different form, as follows.

Definition 3.1 (VC-dimension) LetH be a set of Boolean functions from a setX to {0, 1}.
TheVC-dimensionofH is the maximal size of a subsetE ofX with the property that for each
S ⊆ E, there isfS ∈ H with fS(x) = 1 if x ∈ S andfS(x) = 0 if x ∈ E \ S.

The VC-dimension of a set of Boolean functions can easily be bounded in terms of its cardinal-
ity.

Theorem 3.2 For any setH of Boolean functions,VCdim(H) ≤ log2 |H|.

Proof: If d is the VC-dimension ofH andx ∈ Xd is shattered byH, then|H| ≥ |Hx| = 2d.
(Here,Hx denotes the restriction ofH to domainE = {x1, x2, . . . , xd}.) It follows thatd ≤
log2 |H|.

It should be noted that Theorem 3.2 is sometimes loose, as we shall shortly see. However,
it is reasonably tight: to see this, we need to explore further the relationship between growth
function and VC-dimension.

Note: All of the definitions in this section can be made more generally for (possibly infinite)
sets of functions mapping fromX = R

n to {0, 1}. The VC-dimension can then be infinite.
Theorem 3.2 applies to any finite such class.
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4 Relating growth function and VC-dimension

The growth functionΠH(m) is a measure of how many different classifications of anm-sample
into true and false points can be achieved by the functions ofH, while the VC-dimension of
H is the maximum value ofm for which ΠH(m) = 2m. Thus, the VC-dimension is defined in
terms of the growth function. But there is a converse relationship: the growth functionΠH(m)
can be bounded by a polynomial function ofm, and the degree of the polynomial is the VC-
dimensiond ofH. Explicitly, we have the following theorem [21, 24], usually known as Sauer’s
Lemma (or the Sauer-Shelah Lemma).

Theorem 4.1 (Sauer’s Lemma)Let d ≥ 0 andm ≥ 1 be given integers and letH be a set of
{0, 1}-valued functions withVCdim(H) = d ≥ 1. Then

ΠH(m) ≤
d∑
i=0

(
m

i

)
<
(em
d

)d
,

where the second inequality holds form ≥ d.

Proof: Form ≤ d, the inequality is trivially true since in that case the sum is2m. Assume that
m > d and fix a setS = {x1, . . . , xm} ⊆ X. We will make use of the correspondence between
{0, 1}-valued functions on a set and subsets of that set by defining the set system (or family of
sets)

F = {{xi ∈ S : f(xi) = 1} : f ∈ H} .

The proof proceeds, as in [25], by first creating a transformed versionF∗ ofF that is a down-set
with respect to the partial order induced by set-inclusion, and which has the same cardinality as
F . (To say thatF∗ is a down-set means that ifA ∈ F∗ andB ⊆ A thenB ∈ F∗.)

For an elementx of S, let Tx denote the operator that, acting on a set system, removes the
elementx from all sets in the system, unless that would give a set that is already in the system:

Tx(F) = {A \ {x} : A ∈ F} ∪ {A ∈ F : A \ {x} ∈ F} .

Note that|Tx(F)| = |F|. Consider nowF∗ = Tx1(Tx2(· · ·Txm(F) · · ·)). Clearly,|F∗| = |F|.
Furthermore, for allx in S, Tx(F∗) = F∗. Clearly,F∗ is a down-set. For, if it were not, there
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would be someC ∈ F∗ and somex ∈ C such thatC \ {x} 6∈ F∗. But we have applied the
operatorTx to obtainF∗; thus, ifC ∈ F∗, then this is only becauseC \ {x} is also inF∗.

We can define the notion of shattering for a family of subsets, in the same way as for a family of
{0, 1}-valued functions. ForR ⊆ S, we say thatF shattersR if F ∩R = {A ∩R : A ∈ F} is
the set of all subsets ofR. We next show that, wheneverF∗ shatters a set, so doesF . It suffices
to show that, for anyx ∈ S, if Tx(F) shatters a set, so doesF . So suppose thatx in S, R ⊆ S,
andTx(F) shattersR. If x is not inR, then, trivially,F shattersR. If x is in R, then for all
A ⊆ R with x 6∈ A, sinceTx(F) shattersR we haveA ∈ Tx(F)∩R andA∪{x} ∈ Tx(F)∩R.
By the definition ofTx, this impliesA ∈ F ∩ R andA ∪ {x} ∈ F ∩ R. This argument shows
thatF shattersR. It follows thatF∗ can only shatter sets of cardinality at mostd. SinceF∗ is a
down-set, this means that the largest set inF∗ has cardinality no more thand. (For, if there were
a set of cardinalityd + 1 in F∗, all its subsets would be inF∗ too, becauseF∗ is a down-set,

and it would therefore be shattered.) We therefore have|F∗| ≤
d∑
i=0

(
m

i

)
, this expression being

the number of subsets ofS containing no more thand elements. The result follows, because
|F| = |F∗|, and becauseS was chosen arbitrarily. For the second inequality, we have, as argued
in [6],

d∑
i=0

(
m

i

)
≤
(m
d

)d d∑
i=0

(
m

i

)(
d

m

)i
≤
(m
d

)d m∑
i=0

(
m

i

)(
d

m

)i
=
(m
d

)d(
1 +

d

m

)m
.

Now, for allx > 0, (1 + (x/m))m < ex, so this is bounded by(m/d)ded = (em/d)d, giving the
bound. ut

The first inequality of this theorem is tight. IfH corresponds to the set systemF consisting
of all subsets of{1, 2, . . . , n} of cardinality at mostd, thenVCdim(H) = d and|F| meets the
upper bound.

Now, Theorem 4.1 has the following consequence when we use the fact that|H| = ΠH(2n).

Theorem 4.2 For any classH of Boolean functions defined on{0, 1}n,

VCdim(H) ≥ log2 |H|
n+ log2 e

and if VCdim(H) ≥ 3, thenVCdim(H) ≥ log2 |H|/n.
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Given also the earlier bound, Theorem 3.2, we see that, essentially, for a Boolean class on
{0, 1}n, VCdim(H) andlog2 |H| are within a factorn of each other. This gap can be real. For
example, whenH = Tn is the class of threshold functions, thenVCdim(Tn) = n+ 1, whereas
log2 |Tn| > n2/2. (In fact, as shown by Zuev [31],log2 |Tn| ∼ n2 asn→∞.)

5 VC-dimension and PAC learning

It turns out that the VC-dimension quantifies, in a more precise way than does the cardinality
of the hypothesis space, the sample complexity of PAC learning.

5.1 Upper bounds on sample complexity

The following results bound from above the sample complexity of PAC learning (in the general
and realizable cases, respectively). It is obtained from a result of Vapnik and Chervonenkis [30];
see [2].

Theorem 5.1 Suppose thatH is a set of Boolean functions with VC-dimensiond ≥ 1 and letL
be any SEM algorithm forH. ThenL is a PAC learning algorithm forH with sample complexity
bounded as follows:

mL(δ, ε) ≤ m0(δ, ε) =
64

ε2

(
2d ln

(
12

ε

)
+ ln

(
4

δ

))
.

In fact, it is possible (using a result of Talagrand [26]; see [2]) to obtain an upper bound of order
(1/ε2) (d+ ln (1/δ)) . (However, the constants involved are quite large.) For the realizable case,
from a result in [5], we have the following bound.

Theorem 5.2 Suppose thatH is a set of Boolean functions with VC-dimensiond ≥ 1 and letL
be any consistent learning algorithm forH. ThenL is a PAC learning algorithm forH in the
realizable case, with sample complexity bounded as follows:

mL(δ, ε) ≤ 4

ε

(
d ln

(
12

ε

)
+ ln

(
2

δ

))
.
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5.2 Lower bounds on sample complexity

Theorem 5.3 Suppose thatH is a class of{0, 1}-valued functions with VC-dimensiond. For
any PAC learning algorithmL for H, the sample complexitymL(ε, δ) ofL satisfies

mL(δ, ε) ≥ d

320ε2

for all 0 < ε, δ < 1/64. Furthermore, ifH contains at least two functions, we have

mL(δ, ε) ≥ 2

⌊
1− ε2

2ε2
ln

(
1

8δ(1− 2δ)

)⌋
for all 0 < ε < 1 and0 < δ < 1/4.

The two bounds taken together imply a lower bound of order(1/ε2) (d+ ln (1/δ)) .

For the realizable case, we have the following.

Theorem 5.4 Suppose thatH is a class of{0, 1}-valued functions of VC-dimensiond ≥ 1. For
any PAC learning algorithmL for H in the realizable model, the sample complexitymL(δ, ε)
of L satisfiesmL(δ, ε) ≥ (d− 1)/(32ε) for all 0 < ε < 1/8 and0 < δ < 1/100. Furthermore,
if H contains at least three functions, thenmL(δ, ε) > (1/2ε) ln (1/δ) , for 0 < ε < 3/4 and
0 < δ < 1.

Thus, in the realizable case, the sample complexity of a PAC learning algorithm is at least of
the order of

1

ε

(
d+ ln

(
1

δ

))
.

SupposeHn is a class of Boolean functions on{0, 1}n. Given the connections between cardinal-
ity and VC-dimension for Boolean classes, we see that any SEM algorithm is PAC and (for fixed

δ) has sample complexity at least of order
log2 |Hn|
nε2

and at most of order
log2 |Hn|

ε2
ln

(
1

ε

)
. (In

fact, as noted earlier, we can omit the logarithmic factor in the upper bound at the expense of

13



worse constants.) In the realizable case, we can similarly see that any consistent algorithm is

PAC and has sample complexity of order at least
log2 |Hn|

nε
and at most

log2 |Hn|
ε

ln

(
1

ε

)
.

The cardinality therefore can be used to bound the sample complexity of learning, but the VC-
dimension provides tighter bounds. (Moreoever, the bounds based on VC-dimension remain
valid if we consider not Boolean classes but classes of functions mapping fromR

n to {0, 1}:
as long as such classes have finite VC-dimension—even if infinite cardinality—they are still
learnable by SEM algorithms, or consistent algorithms in the realizable model.)

6 VC-dimensions of Boolean classes

6.1 Boolean formulas

We shall not give here a detailed exposition of Boolean functions and formulae; full details may
be found in many texts. Any Boolean function (that is, any function from{0, 1}n to {0, 1} can
be expressed by adisjunctive normal formula(or DNF), usingliteralsx1, x2, . . . , xn, x̄1, . . . , x̄n,
where thēxi are known asnegated literals. A disjunctive normal formula is one of the form

T1 ∨ T2 ∨ · · · ∨ Tk,

where eachTl is atermof the form

Tl =

(∧
i∈P

xi

)∧(∧
j∈N

x̄j

)
,

for some disjoint subsetsP,N of {1, 2, . . . , n}. A Boolean function is said to be anl-DNF if
it has a disjunctive normal formula in which, for each term, the number of literals (|P ∪N |) is
at mostl; it is said to be ak-term-l-DNF if there is such a formula in which, furthermore, the
number of termsTi is at mostk.
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6.2 Monomials

As an example of VC-dimension, we consider the setM+
n of positive monomials, consisting of

the simple conjunctions on non-negated literals.

Theorem 6.1 The classM+
n of positive monomials on{0, 1}n has VC-dimensionn.

Proof: Since there are2n such functions, we haveVCdim(M+
n ) ≤ log2(2n) = n. To show

that the VC-dimension is in fact exactlyn, we show that there is some setS ⊆ {0, 1}n such
that|S| = n andS is shattered byM+

n . LetS consist of all{0, 1}-vectors having exactlyn− 1
entries equal to1, and denote byui the element ofs having a0 in position i. Let R be any
subset ofS and lethR ∈ M+

n be the conjunction of the literalsxj for all j such thatuj 6∈ R.
ThenhR(x) = 1 for x ∈ R andhR(x) = 0 for x ∈ S \R. This showsS is shattered. ut

6.3 Threshold functions

A Boolean functiont defined on{0, 1}n is a threshold functionif there arew ∈ Rn andθ ∈ R
such that

t(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where〈w, x〉 = wTx is the standard inner product ofw andx. Given suchw andθ, we say that
t is represented by[w, θ] and we writet← [w, θ]. The vectorw is known as theweight-vector,
andθ is known as thethreshold. We denote the class of threshold functions on{0, 1}n by Tn.
Note that anyt ∈ Tn will satisfy t← [w, θ] for ranges ofw andθ.

It is known [7] that ifT = Tn is the set of threshold functions on{0, 1}n, then

ΠT (m) ≤ ψ(n,m) = 2
n∑
i=0

(
m− 1

i

)
.

This result is proved by using the classical fact [7, 22] thatN hyperplanes inRn, each passing
through the origin, divideRn into at mostC(N, n) = 2

∑n−1
i=0

(
N−1
i

)
regions. It follows directly

from this, sinceψ(n, n + 1) = 2n+1 andψ(n, n + 2) < 2n+2, that the VC-dimension ofTn is
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at mostn + 1. In fact, the VC-dimension is exactlyn + 1, as we now show. (In the proof, an
alternative, more direct, way of seeing that the VC-dimension is at mostn+ 1 is given.)

Theorem 6.2 The class of threshold functions on{0, 1}n has VC-dimensionn+ 1.

Proof: Any threshold functionh is described by a weight-vectorw = (w1, w2, . . . , wn) and
a thresholdθ, so thath(x) = 1 if and only if

∑n
i=1 wixi ≥ θ. Let S be any subset of{0, 1}n

with cardinalityn + 2. By Radon’s Theorem, there is a non-empty subsetR of S such that
conv(R)∩ conv(S \R) 6= ∅, whereconv(X) denotes the convex hull ofX. Suppose that there
is a threshold functionh in Tn such thatR is the set of true points ofh in S. We may assume that
none of the points lies on the hyperplane definingh. LetH+ be the open half-space on whichh
is true andH− the open half-space on which it is false. ThenR ⊆ H+ andS \ R ⊆ H−. But
since half-spaces are convex subsets ofR

n, we then have

conv(R) ∩ conv(S \R) ⊆ H+ ∩H− = ∅,

which is a contradiction. It follows that no sucht exists and henceS is not shattered. But since
S was an arbitrary subset of cardinalityn + 2, it follows thatVCdim(Tn) ≤ n + 1. Now we
show thatVCdim(Tn) ≥ n + 1. Let 0 denote the all-0 vector and, for1 ≤ i ≤ n, let ei be the
point with a1 in the ith coordinate and all other coordinates0. We shall show thatTn shatters
the setS = {0, e1, e2, . . . , en} . Suppose thatR is any subset ofS. For i = 1, 2, . . . , n, let

wi =

{
1, if ei ∈ R;
−1, if ei 6∈ R;

and let

θ =

{
−1/2, if 0 ∈ R;
1/2, if 0 6∈ R.

Then it is straightforward to verify that ifh is the threshold function with weight-vectorw and
thresholdθ, then the set of true points ofh in S is preciselyR. ThereforeS is shattered byTn
and, consequently,VCdim(Tn) ≥ n+ 1. The result now follows. ut

6.4 k-DNF

The class ofk-DNF functions on{0, 1}n consists of all those functions representable by a DNF
in which the terms are of degree at mostk. LetDn,k denote the set ofk-DNF functions ofn
variables. Then, for fixedk, the VC-dimension ofDn,k is Θ(nk), as shown in [8].
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Theorem 6.3 Let k ∈ N be fixed and letDn,k be the set ofk-DNF functions on{0, 1}n. Then
VCdim(Dn,k) = Θ(nk).

Proof: The number of monomials or terms which are non-empty, not identically false, and
of degree at mostk is

∑k
i=1

(
n
i

)
2i which is, for fixedk, O(nk). Since anyk-DNF formula is

created by taking the disjunction of a set of such terms, the number ofk-DNF formulas (and
hence|Dn,k|) is 2O(nk). ThereforeVCdim(Dn,k) ≤ log2 |Dn,k| = O(nk).

On the other hand, we can show that the VC-dimension isΩ(nk) by proving that a sufficiently
large subset is shattered. Consider the setS of examples in{0, 1}n which have preciselyk
entries equal to1. ThenS can be shattered byDn,k. Indeed, supposeR is any subset ofS. For
eachy = (y1, y2, . . . , yn) ∈ R, form the term that is the conjunction of those literalsxi such
thatyi = 1. Sincey ∈ S, this term hask literals; further,y is the only true point inS of this
term. The disjunction of these terms, one for each member ofR, is therefore a function inDn,k

whose true points inS are precisely the members ofR. HenceS is shattered byDn,k. Now,
|S| =

(
n
k

)
which, for a fixedk, is Ω(nk). ut

7 Efficient PAC learning

7.1 Introduction

Up to now, a learning algorithm has been mainly described as a function which maps training
samples into output functions (or hypotheses). We will now be more specific about the com-
putational effectiveness of learning algorithms. If the process of PAC learning by an algorithm
L is to be of practical value, it should be possible to implement the algorithm ‘quickly’. We
discuss what should be meant by an efficient PAC learning algorithm, and we highlight an im-
portant connection between the existence of efficient PAC learning algorithms and the existence
of efficient procedures for producing hypotheses with small sample error. As mentioned earlier,
computational efficiency was a key aspect of Valiant’s learning model [27], and has been much
further explored for the models discussed here. The papers [5, 20] provided some of the impor-
tant initial results, and these are further explored in the books [16, 17, 3]. The treatment here
follows [2].
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Consider the monomial learning algorithm (for the realizable case) described earlier. This is
an efficient algorithm: its running time on a training sample ofm data points in{0, 1}n is
O(mn), which is linear in the size of the training sample. Furthermore, noting either that
VCdim(Mn) = O(n) or that log2 |Mn| = O(n), we can see that, for givenε andδ, we can
produce a hypothesis that, with probability at least1 − δ, has accuracyε, in time of order
n2p(1/ε, ln(1/δ)) = q(n, 1/ε, ln(1/δ), wherep andq are (small degree) polynomials. This is
an example of what we mean by an efficient learning algorithm: asn scales, the time taken to
produce a PAC output hypothesis scales polynomially withn; additionally, the running time is
polynomial in1/ε andln(1/δ).

7.2 Graded classes

In order to enable a more general discussion of efficient learning, we introduce the idea of a
gradedfunction class. SupposeHn is a set of Boolean functions defined on{0, 1}n. Then we
say thatH =

⋃∞
n=1 is agradedhypothesis space. The reason for introducing this idea is that we

want to analyse the running time (with respect ton) of what might be termed a ‘general’ learning
algorithm for a graded class of Boolean functions. This is an algorithm that works in essentially
the same manner on each of the classesHn. For example, the monomial learning algorithm
works onMn for anyn in essentially the same way: there is no fundamental difference between
its actions on, say, the monomials with5 variables and those with50 variables.

Denoting{0, 1}n × {0, 1} by Zn, a learning algorithmL for the graded spaceH =
⋃∞
n=1 Hn

is a mapping from
⋃∞
n=1 Z

∗
n to H with the property that ifs ∈ Z∗n thenL(s) ∈ Hn. The only

difference between this definition and the basic notion of a learning algorithm for an ungraded
class is that we have now encapsulated some sense of the ‘generality’ of the algorithm in its
action over all theHn. With this, we now state formally what is meant by a PAC learning
algorithm for a graded class.

Definition 7.1 If L is a learning algorithm forH =
⋃
Hn, then we say thatL is PAC if

for all n ∈ N and δ, ε ∈ (0, 1), there ism0(n, δ, ε) such that ifm ≥ m0(n, δ, ε) then, for
any probability distributionP onZn, if s ∈ Zm

n is drawn randomly according to the product
probability distributionPm on Zm

n , then with probability at least1 − δ, the hypothesisL(s)
output byL satisfieserP (L(b, s)) < optP (Hn) + ε.
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7.3 Definition of efficient learning

We now assume that learning algorithms are algorithms in the proper sense (that is, that they
are computable functions). Suppose thatL is a learning algorithm for a graded function class
H =

⋃
Hn. An input toL is a training sample, which consists ofm labeled binary vectors of

lengthn. It would be possible to usem(n + 1) as the measure of input size, but we will find it
useful to consider dependence onm andn separately. We use the notationRL(m,n) to denote
the worst-case running time ofL on a training sample ofm points ofZn. Clearly,n is not the
only parameter with which the running time of the learning procedure as a whole should be
allowed to vary, since decreasing either the confidence parameterδ or the accuracy parameter
ε makes the learning task more difficult, requiring a larger size of sample. We shall ask that
the running time of a learning algorithmL be polynomial inm, and that the sample complexity
mL(n, δ, ε) depend polynomially on1/ε andln (1/δ). If these conditions hold, then the running
time required to produce a ‘good’ output hypothesis will be polynomial inn, ln(1/δ) and1/ε.

We now formally define what we mean by anefficient learning algorithmfor a graded function
class.

Definition 7.2 LetH =
⋃
Hn be a graded class of Boolean functions and suppose thatL is a

learning algorithm forH. We say thatL is efficient if:

• the worst-case running timeRL(m,n) of L on sampless ∈ Zm
n is polynomial inm and

n, and

• the sample complexitymL(n, δ, ε) ofL onHn is polynomial inn, 1/ε andln(1/δ).

We have described the outputs of learning algorithms as hypotheses. But, more precisely, they
are representations of hypotheses. When discussing the complexity of learning, it is always
assumed that the output lies in a representation class for the hypothesis class. All this often
amounts to is that the output must be a formula of a particular type. For example, the monomial
learning algorithm outputs a monomial formula (and not some other representation). This is not
something we shall explore much further, but it is sometimes important.
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7.4 Sufficient conditions for efficient learning

We define a SEM algorithm for a graded Boolean classH to be an algorithm that given any
samples ∈ Zm

n , returns a functionh ∈ Hn with minimal sample error̂ers(h) on s. The
following result, which may be found in [5], follows directly from earlier results and shows that
the rate of growth withn of the VC-dimension determines the sample complexity of learning
algorithms.

Theorem 7.3 LetH =
⋃
Hn be a graded Boolean function class.

• If VCdim(Hn) is polynomial inn, then any SEM algorithm forH is a PAC learning
algorithm with sample complexitymL(n, ε, δ) polynomial inn, 1/ε and ln(1/δ).

• If there is an efficient PAC learning algorithm forH, thenVCdim(Hn) is polynomial in
n.

Note that, by Theorem 4.2, the same statement is true withVCdim(Hn) replaced byln |Hn|.

We now turn our attention to the running time of SEM algorithms. Having seen that, in many
circumstances, such algorithms yield PAC learning algorithms, we now investigate theefficiency
of these derived learning algorithms. We say that a SEM algorithm for the graded Boolean
function classH =

⋃
Hn is efficient if, given as inputs ∈ Zm

n , it returns its output in time
polynomial inm andn. The following result is immediate.

Theorem 7.4 Suppose thatH =
⋃
Hn is a graded Boolean function class and thatVCdim(Hn)

is polynomial inn. Then, any efficient SEM algorithm forH is an efficient PAC learning algo-
rithm forH.

8 Randomized PAC and SEM algorithms

There may be some advantage in allowing learning algorithms to be randomized. Furthermore,
as we shall see, there are some fairly succinct characterizations of learnability provided we
permit algorithms to be randomized.
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For our purposes, a randomized algorithmA has available to it a random number generator that
produces a sequence of independent, uniformly distributed bits. The randomized algorithmA
uses these random bits as part of its input, but it is useful to think of this input as somehow ‘in-
ternal’ to the algorithm, and to think of the algorithm as defining a mapping from an ‘external’
input to a probability distribution over outputs. The computation carried out by the algorithm
is, of course, determined by its input, so that, in particular, it depends on the particular sequence
produced by the random number generator, as well as on the ‘external’ input. We may speak
of the ‘probability’ thatA has a given outcome on an (external) inputx, by which we mean
the probability that the stream of random numbers gives rise to that outcome when the exter-
nal input to the algorithm isx. It is useful to extend our concept of a PAC learning algorithm
to allow randomization. The definition of a randomized PAC learning for a graded class is as
in Definition 7.1, with the additional feature that the algorithm is randomized. (So,L can no
longer be regarded as a deterministic function.)

We shall also be interested in randomized SEM algorithms.

Definition 8.1 A randomized algorithmA is an efficient randomized SEM algorithmfor the
graded Boolean function classH =

⋃
Hn if given anys ∈ Zm

n , A halts in time polyno-
mial in n andm and outputsh ∈ Hn which, with probability at least1/2, satisfiesêrs(h) =
ming∈Hn êrs(g).

Suppose we run a randomized SEM algorithmk times on a fixed sample(s), keeping the output
hypothesisf (k) with minimal sample error among all thek hypotheses returned. In other words,
we take thebest ofk iterationsof the algorithm. Then the probability thatf (k) has sample error
that isnotminimal is at most(1/2)k. This is the basis of the following result, which shows that,
as far as its applications to learning are concerned, an efficient randomized SEM algorithm is
as useful as its deterministic counterpart. (The key idea in establishing this result is to take the
best ofk iterations ofA for a suitablek, absorbing the randomness in the action ofA into the
‘δ’ of learning.)

Theorem 8.2 Suppose thatH =
⋃
Hn is a graded Boolean function class and thatVCdim(Hn)

is polynomial inn. If there is an efficient randomized SEM algorithmA for H, then there is an
efficient randomized PAC learning algorithm forH that usesA as a subroutine.
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9 Learning and existence of SEM algorithms

We have seen that efficient SEM algorithms (both deterministic and randomized) can in many
cases be used to construct efficient PAC learning algorithms. The next result proves, as a con-
verse, that if there is an efficient PAC learning algorithm for a graded class thennecessarily
there is an efficient randomized SEM algorithm. (For the realizable case, this may be found
in [20, 5, 19].)

Theorem 9.1 If there is an efficient PAC learning algorithm for the graded binary classH =⋃
Hn, then there is an efficient randomized SEM algorithm.

Proof: SupposeL is an efficient PAC learning algorithm for the graded classH =
⋃
Hn.

We construct a randomized algorithmA, which will turn out to be an efficient randomized
SEM algorithm. Suppose the samples ∈ Zm

n is given as input toA. Let P be the probability
distribution that is uniform on the labeled examples ins and zero elsewhere onZn. (This
probability is defined with multiplicity; that is, for instance, if there are two labeled examples in
s each equal toz, we assign the labeled examplez probability2/m rather than1/m.) We use the
randomization allowed inA to form a sample of lengthm∗ = mL(n, 1/m, 1/2), in which each
labeled example is drawn according toP . Let s∗ denote the resulting sample. Feedings∗ into
the learning algorithm, we receive as outputh∗ = L(s∗) and we take this to be the output of the
algorithmA; that is,A(s, ε) = h∗ = L(s∗). By the fact thatL is a PAC learning algorithm, and
given thatm∗ = mL(n, 1/m, 1/2), with probability at least1/2 erP (h∗) < optP (H)+1/m. But
becauseP is discrete, with no probability mass less than1/m, this meanserP (h∗) = optP (H).
For anyh, by the definition ofP , erP (h) = êrs(h). So with probability at least1/2,

êrs(h
∗) = erP (h∗) = optP (F ) = min

g∈Hn
erP (g) = min

g∈Hn
êrs(g).

This means thatA is a randomized SEM algorithm. BecauseL is efficient,m∗ = mL(n, 1/m, 1/2)
is polynomial inn andm. Since the samples∗ has lengthm∗, and sinceL is efficient, the time
taken byL to produceh∗ is polynomial inm∗ andn. HenceA has running time polynomial in
n andm, as required. ut

We arrive at the following succinct characterization of PAC learnability (allowing randomized
algorithms).
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Theorem 9.2 Suppose thatH =
⋃
Hn is a graded Boolean function class. Then there is an

efficient randomized PAC learning algorithm forH if and only ifVCdim(Hn) is polynomial in
n andthere is an efficient randomized SEM algorithm forH.

Given the connection of Theorem 4.2 between cardinality and VC-dimension, the same state-
ment withln |Hn| replacingVCdim(Hn) holds. (It should be noted, however, that Theorem 9.2
holds, more generally, in the case whereHn maps fromRn to {0, 1}.)

10 Establishing hardness of learning

There are two quite natural decision problems associated with a graded Boolean function class
H =

⋃
Hn:

H-FIT

Instance: s ∈ Zm
n = ({0, 1}n × {0, 1})m and an integerk between1 andm.

Question: Is thereh ∈ Hn such thatêrs(h) ≤ k/m?

H-CONSISTENCY

Instance: s ∈ Zm
n = ({0, 1}n × {0, 1})m.

Question: Is thereh ∈ Hn such thatêrs(h) = 0?

ClearlyH-CONSISTENCY is a sub-problem ofH-FIT, obtained by settingk = 0. Thus, any
algorithm forH-FIT can be used also to solveH-CONSISTENCY. Note thatH-consistency is
the decision problem associated with finding an extension inH of the partially defined Boolean
function described by the samples.

We say that a randomized algorithmA solves a decision problemΠ if the algorithm always halts
and produces an output—either ‘yes’ or ‘no’—such that if the answer toΠ on the given instance
is ‘no’, the output ofA is ‘no’, and if the answer toΠ on the given instance is ‘yes’ then, with
probability at least1/2, the output ofA is ‘yes’. A randomized algorithm ispolynomial-time
if its worst-case running time (over all instances) is polynomial in the size of its input. The
class of decision problemsΠ that can be solved by a polynomial-time randomized algorithm
is denoted byRP. One approach to proving that PAC learning is computationally intractable

23



for particular classes (in the general or realizable cases) is through showing that these decision
problems are hard. The reason is given in the following results.

Theorem 10.1 Let H =
⋃
Hn be a graded Boolean function class. If there is an efficient

learning algorithm forH then there is a polynomial-time randomized algorithm forH-FIT; in
other words,H-FIT is in RP.

Proof: If H is efficiently learnable then, by Theorem 9.1, there exists an efficient randomized
SEM algorithmA for H. UsingA, we construct a polynomial-time randomized algorithmB
for H-FIT as follows. Suppose thats ∈ Zm

n andk together constitute an instance ofH-FIT, and
hence an input toB. The first step of the algorithmB is to computeh = A(s), the output ofA
on s. This function belongs toHn and, with probability at least1/2, êrs(h) is minimal among
all functions inHn. The next step inB is to check whether̂ers(h) ≤ k/m. If so, then the output
of B is ‘yes’ and, if not, the output is ‘no’. It is clear thatB is a randomized algorithm for
H-FIT. Furthermore, sinceA runs in time polynomial inm andn, and since the time taken for
B to calculateêrs(h) is linear in the size ofs, B is a polynomial-time algorithm.

Theorem 10.2 Suppose thatH =
⋃
Hn is a graded Boolean function class. IfH is efficiently

learnable in the realizable model, then there is a polynomial-time randomized algorithm for
H-CONSISTENCY; that is,H-CONSISTENCYis in RP.

In particular, therefore, we have the following.

Theorem 10.3 Suppose RP6= NP. IfH-FIT is NP-hard, then there is no efficient PAC learning
algorithm forH. Furthermore, ifH-CONSISTENCYis NP-hard then there is no efficient PAC
learning algorithm forH in the realizable case.

11 Hardness results

We now use the theory just developed to show that PAC learnability of threshold functions is
computationally intractable (although it is tractable in the realizable case). We also show the
intractability of PAC learning a particular class of Boolean functions in the realizable case.
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11.1 Threshold functions

First, we note that it is well-known that ifTn is the set of threshold Boolean functions on{0, 1}n,
then the graded classT =

⋃
Tn is efficiently PAC learnable in the realizable case. Indeed, the

VC-dimension ofTn is n + 1, which is linear, and there exist SEM algorithms based on linear
programming. (See [5, 2], for instance.) However,T is not efficiently PAC learnable in the
general case, if RP6= NP. This arises from the following result [9, 15, 13].

Theorem 11.1 Let T =
⋃
Tn be the graded class of threshold functions. ThenT -FIT is NP-

hard.

We prove this by establishing that the problem it is at least as hard as the well-known NP-hard
VERTEX COVERproblem in graph theory.

We denote a typical graph byG = (V,E), whereV is the set of vertices andE the edges. We
shall assume that the vertices are labeled with the numbers1, 2, . . . , n. Then, a typical edge
{i, j} will, for convenience, be denotes byij. A vertex coverof the graph is a setU of vertices
such that for each edgeij of the graph, at least one of the verticesi, j belongs toU . The
following decision problem is known to be NP-hard [9].

VERTEX COVER

Instance: A graphG = (V,E) and an integerk ≤ |V |.
Question: Is there a vertex coverU ⊆ V such that|U | ≤ k?

A typical instance ofVERTEX COVER is a graphG = (V,E) together with an integerk ≤ |V |.
We shall assume, for simplicity, thatV = {1, 2, . . . , n} and we shall denote the number of
edges,|E|, byr. Notice that the size of an instance ofVERTEX COVERis Ω(r+n). We construct
s = s(G) ∈ ({0, 1}2n × {0, 1})2r+n as follows. For any two distinct integersi, j between1
and2n, let ei,j denote the binary vector of length2n with ones in positionsi andj and zeroes
elsewhere. The samples(G) consists of the labeled examples(ei,n+i, 1) for i = 1, 2, . . . , n and,
for each edgeij ∈ E, the labeled examples(ei,j, 0) and(en+i,n+j, 0). Note that the ‘size’ ofs is
(2r + n)(2n + 1), which is polynomial in the size of the original instance ofVERTEX COVER,
and thatz(G) can be computed in polynomial time.
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For example, if a graphG has vertex setV = {1, 2, 3, 4} and edge setE = {12, 23, 14, 13},
then the samples(G) consists of the following12 labeled examples:

(10001000, 1), (01000100, 1), (00100010, 1), (00010001, 1),

(11000000, 0), (00001100, 0), (01100000, 0), (00000110, 0),

(10100000, 0), (00001010, 0), (10010000, 0), (00001001, 0).

Lemma 11.2 Given any graphG = (V,E) withn vertices, and any integerk ≤ n, lets = s(G)
be as defined above. Then, there ish ∈ T2n such thatêrs(h) ≤ k/(2n) if and only if there is a
vertex cover ofG of cardinality at mostk.

Proof: Any threshold function is represented by some weight vectorw and thresholdθ.
Suppose first that there is such anh and that this is represented by the pair(w, θ) = ω =
(w1, w2, . . . , w2n, θ). We construct a subsetU of V as follows. Ifh(ei,n+i) = 0, then we include
i in U ; if, for i 6= j, h(ei,j) = 1 or h(en+i,n+j) = 1 then we includeeither oneof i, j in U .
Becauseh is ‘wrong’ on at mostk of the examples ins, the setU consists of at mostk vertices.
We claim thatU is a vertex cover. To show this, we need to verify that given any edgeij ∈ E,
at least one ofi, j belongs toU . It is clear from the manner in whichU is constructed that this
is true if eitherh(ei,n+i) = 0 or h(ej,n+j) = 0, so suppose that neither of these holds; in other
words, suppose thath(ei,n+i) = 1 = h(ej,n+j). Then we may deduce that

wi + wn+i ≥ θ, wj + wn+j ≥ θ,

and so
wi + wj + wn+i + wn+j ≥ 2θ;

that is,
(wi + wj) + (wn+i + wn+j) ≥ 2θ.

From this, we see that eitherwi + wj ≥ θ or wn+i + wn+j ≥ θ (or both); thus,h(ei,j) = 1 or
h(en+i,n+j) = 1, or both. Because of the way in whichU is constructed, it follows that at least
one of the verticesi, j belongs toU . Sinceij was an arbitrary edge of the graph, this shows that
U is indeed a vertex cover.

We now show, conversely, that if there is a vertex cover ofG consisting of at mostk vertices,
then there is a function inT2n with sample error at mostk/(2n) ons(G). SupposeU is a vertex
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cover and|U | ≤ k. Define a statew = (w1, w2, . . . , w2n) andθ as follows: letθ = 1 and, for
i = 1, 2, . . . , n,

wi = wn+i =

{
−1 if i ∈ U
1 if i 6∈ U .

We claim that ifh is the threshold function represented byw andθ, then êrs(h) ≤ k/(2n).
Observe that ifij ∈ E, then, sinceU is a vertex cover, at least one ofi, j belongs toU and
hence the inner productswT ei,j andwT en+i,n+j are both either0 or−2, less thanθ, soh(ei,j) =
h(en+i,n+j) = 0. The functionh is therefore correct on all the examples ins(G) arising from
the edges ofG. We now consider the other types of labeled example ins(G): those of the form
(ei,n+i, 1). Now, wT ei,n+i is −2 if i ∈ U and is2 otherwise, soh(ei,n+i) = 0 if i ∈ U and
h(ei,n+i) = 1 otherwise. It follows thath is ‘wrong’ only on the examplesei,n+i for i ∈ U and
hence

êrs(h) =
|U |
2n
≤ k

2n
,

as claimed.

This result shows that the answer toT -FIT on the instance(s(G), k) is the same as the answer
to VERTEX COVER on instance(G, k). Given thats(G) can be computed fromG in time
polynomial in the size ofG, we have therefore established thatT -FIT is NP-hard.

11.2 k-clause CNF

Pitt and Valiant [20] were the first to give an example of a Boolean classH for which the
consistency problemH-CONSISTENCYis NP-hard. LetCk

n, the set ofk-clause CNF functions,
be the set of Boolean functions on{0, 1}n that can be represented as the conjunction of at most
k clauses.

We show that, for fixedk ≥ 3, the consistency problem forCk =
⋃
Ck
n is NP-hard. Thus, if

NP6= RP, then can be no efficient PAC learning algorithm forCk in the realizable case.

The reduction in this case is toGRAPH K-COLORABILITY . Suppose we are given a graph
G = (V,E), with V = {1, 2, . . . , n}. We construct a training samples(G), as follows. For
each vertexi ∈ V we take as a negative example the vectorvi which has1 in theith coordinate
position and0’s elsewhere. For each edgeij ∈ E we take as a positive example the vector
vi + vj.
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Lemma 11.3 There is a function inCk
n which is consistent with the training samples(G) if and

only if the graphG is k-colorable.

Proof: Suppose thath ∈ Ck
n is consistent with the training sample. By definition,h is a

conjunction
h = h1 ∧ h2 ∧ . . . ∧ hk

of clauses. For each vertexi of G, h(vi) = 0, and so there must be at least one clausehf (1 ≤
f ≤ k) for which hf (vi) = 0. Thus we may define a functionχ from V to {1, 2, . . . , k} as
follows:

χ(i) = min{f : hf (vi) = 0}.
We claim thatχ is a coloring ofG. Suppose thatχ(i) = χ(j) = f , so thathf (vi) = hf (vj) = 0.
Sincehf is a clause, every literal occurring in it must be0 onvi and onvj. Now vi has a1 only
in the ith position, and sohf (vi) = 0 implies that the only negated literal which can occur in
hf is x̄i. Since the same is true for̄xj, we conclude thathf contains only some literalsxl, with
l 6= i, j. Thushf (vi + vj) = 0 andh(vi + vj) = 0. Now if ij were an edge ofG, then we should
haveh(vi + vj) = 1, because we assumed thath is consistent withs(G). Thusij is not an edge
of G, andχ is a coloring, as claimed.

Conversely, suppose we are given a coloringχ : V → {1, 2, . . . , k}. For1 ≤ f ≤ k, definehf
to be the clause

∨
χ(i) 6=f xi, and defineh = h1 ∧ h2 ∧ . . . ∧ hk. We claim thath is consistent

with s(G).

First, given a vertexi suppose thatχ(i) = g. The clausehg is defined to contain only those
(non-negated) literals corresponding to verticesnot coloredg, and soxi does not occur inhg.
It follows thathg(vi) = 0 andh(vi) = 0. Secondly, letij be any edge ofG. For each colorf ,
there is at least one ofi, j which is not coloredf ; denote an appropriate choice byi(f). Then
hf contains the literalxi(f), which is1 on vi + vj. Thus every clausehf is 1 on vi + vj, and
h(vi + vj) = 1, as required. ut

Note that whenk = 1, we haveC1
n = Cn, and there is a polynomial time learning algorithm for

Cn dual to the monomial learning algorithm. The consistency problem (and hence intractability
of learning) remains, however, whenk = 2: to show this, the consistency problem can be
related to the NP-completeSET-SPLITTING problem; see [20].

This hardness result is ‘representation-dependent’: part of the difficulty arises from the need
to output a formula ink-clause-CNF form. Now, anyk-clause-CNF formula can simply be
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rewritten as an equivalentk-DNF formula. So any function inCk
n is also ak-DNF function; that

is, using the notation from earler, it belongs toDn,k. But there is a simple efficient PAC learning
algorithm forDn,k; see [27, 3]. SoCk

n is learnable if the output hypotheses are permitted to be
drawn from the larger classDn,k (or, more precisely, if the output formula is ak-DNF).
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