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Abstract

We apply techniques from probabilistic learning theory to analyse theoretically the ac-
curacy of data classification techniques that are based on the use ofthreshold decision lists.

1 Introduction

Suppose that we have been given some data points inR
n, each classified as eitherpositive

(with an attached label of1) or negative(labelled0). The data points, together with the posi-
tive/negative classifications will be denotedD. An extensionof D is a Boolean functionf such
thatf agrees withD; that is, ifx is one of the data points given inD thenf(x) = 1 if and only
if x is classified as positive inD. The aim is to find an extension off which will, in a sense to
be made precise, be a good ‘generalization’ of the data. By this we mean that we should like
it to be the case that for most points that are not inD, the extensionf classifiesy correctly.
We might also considerpartial extensions, by which we mean functions that agree with a large
proportion–though not necessarily all–of the classifications of the points inD.

There are clearly very many extensions of a given data set. We shall analyse the performance
of methods based on the use ofthreshold decision lists. In doing so, we employ a probabilis-
tic framework that has been used extensively in the modelling of machine learning; see the
books [26, 27, 5, 4], for example.
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2 Threshold decision lists

2.1 Decision lists

We start by describingdecision lists, introduced by Rivest [22]. Suppose thatK be any set
of Boolean functions on{0, 1}n, for some fixedn. We shall usually suppose (for the sake of
simplicity) thatK contains the identically-1 functionT. A Boolean functionf with the same
domain asK is said to be adecision listbased onK if it can be evaluated as follows. Given an
exampley, we first evaluatef1(y) for some fixedf1 ∈ K. If f1(y) = 1, we assign a fixed value
c1 (either0 or 1) to f(y); if not, we evaluatef2(y) for a fixedf2 ∈ K, and iff2(y) = 1 we set
f(y) = c2, otherwise we evaluatef3(y), and so on. Ify fails to satisfy anyfi thenf(y) is given
the default value0. The evaluation of a decision listf can therefore be thought of as a sequence
of ‘if then else’ commands.

We defineDL(K), the class ofdecision lists based onK, to be the set of finite sequences

f = (f1, c1), (f2, c2), . . . , (fr, cr),

such thatfi ∈ K andci ∈ {0, 1} for 1 ≤ i ≤ r. The values off are defined byf(y) = cj where
j = min{i | fi(y) = 1}, or 0 if there are noj such thatfj(y) = 1. We call eachfj a test(or,
following Krause [16], aquery) and the pair(fj, cj) a termof the decision list.

2.2 Threshold functions and threshold decision lists

A function t : Rn → {0, 1} is athreshold functionif there arew ∈ Rn andθ ∈ R such that

t(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,

where〈w, x〉 is the standard inner product ofw andx. Thus,t(x) = sgn(〈w, x〉), where Given
suchw andθ, we say thatt is represented by[w, θ] and we writet ← [α, θ]. The vectorw is
known as theweight-vector, andθ is known as thethreshold.

We now consider the class of decision lists, in which the tests are threshold functions, and in
which the domain isRn rather than{0, 1}n. We shall call such decision liststhreshold decision
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lists, but they have also been calledneural decision lists [19] andlinear decision lists [25].
Formally, a threshold decision list

f = (f1, c1), (f2, c2), . . . , (fr, cr)

has eachfi : Rn → {0, 1} of the formfi(x) = sgn(〈w, x〉), wheresgn(x) = 1 if x ≥ 0 and
sgn(x) = 0 if x < 0. The value off on y ∈ Rn is f(y) = cj if j = min{i | fi(y) = 1} exists,
or 0 otherwise (that is, if there are noj such thatfj(y) = 1).

It is instructive to give a geometrical motivation for the use of threshold decision lists. Suppose
we are given some data points inRn, each one of which is labelled0 or 1. Of course, since
there are very few threshold functions, it is unlikely that the positive and negative points can
be separated by a hyperplane. But we can certainly use a hyperplane to separate off a set of
points all having the same classification (either all are positive points or all are negative points).
These points can then be removed from consideration and the procedure iterated until no points
remain. This procedure is similar in nature to one of Jeroslow [15], but at each stage in his
procedure, only positive examples may be ‘chopped off’ (not positiveor negative). We give
one example for illustration.

Example: Suppose the data setD consists of all points of{0, 1}n, labelled according to their
parity, so the classification is1 precisely when the point has an odd number of ones. We first
find a hyperplane such that all points on one side of the plane are either positive or negative. It is
clear that all we can do at this first stage is chop off one of the points since the nearest neighbours
of any given point have the opposite classification. Let us suppose that we decide to chop off
the origin. We may take as the first hyperplane the plane with equationy1 + y2 + · · · + yn =
1/2. We then ignore the origin and consider the remaining points. We can next chop off all
neighbours of the origin, all the points which have precisely one entry equal to1. All of these
are positive points and the hyperplaney1 +y2 + · · ·+yn = 3/2 will separate them from the other
points. These points are then deleted from consideration. We may continue in this manner. The
procedure iteratesn times, and at stagei in the procedure we ‘chop off’ all data points having
precisely(i − 1) ones, by using the hyperplaney1 + y2 + · · · + yn = i − 1/2, for example.
(These hyperplanes are in fact all parallel, but this is not in general necessary.)

We may regard the chopping procedure as a means of constructing a threshold decision list ex-
tension of the data set. If, at stagei of the procedure, the hyperplane with equation

∑n
i=1 αiyi =

θ chops off positive (negative) points, and these lie on the side of the hyperplane with equa-
tion

∑n
i=1 αiyi > θ, then we take as theith term of the threshold decision list the pair(fi, 1)

(resp.,(fi, 0)), wherefi ← [α, θ]; otherwise take theith term to be(gi, 1) (resp.,(gi, 0)), where
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gi ← [−α,−θ]. (We may assume that no point lies on any of the defining hyperplanes.)

If this construction is applied to the sequence of hyperplanes resulting from the Jeroslow method,
a restricted form of decision list results—one in which all terms are of the form(fi, 1). But such
a decision list is quite simply thedisjunctionf1 ∨ f2 ∨ . . . , where∨ means ‘or’. For Boolean
functions, the problem of decomposing a function into the disjunction of threshold functions
has been considered by Hammeret al. [14] and Zuev [29]. Hammeret al. defined thethreshold
numberof a Boolean function to be the minimums such thatf is a disjunction ofs threshold
functions, and they showed that there is an increasing function with threshold number

(
n
n/2

)
/n.

(A function is increasing if, whenf(x) = 1 andxi = 0, thenf(x+ ei) = 1 too.) Zuev showed
that almost all increasing functions have this order of threshold number, and that almost all
Boolean functions have a threshold number that isΩ(2n/2) andO(2n lnn/n).

The decision lists arising from the chopping procedure are more general than disjunctions of
threshold functions and may provide a more compact representation of the data. (That is, since
fewer hyperplanes might be used, the decision list could be smaller.) Indeed, Jeroslow’s method
requires2n−1 iterations in the parity-based Example given above, since at each stage it can only
‘chop off’ one positive point. Note that Jeroslow’s method [15] (described above) requires2n−1

iterations in this Example, since at each stage it can only ‘chop off’ one positive point.

The chopping procedure described above suggests that the use of threshold decision lists is
fairly natural, if one is to take an iterative approach to data classification. There are other
methods which similarly make use of such an iterative approach, by classifying some points
of the data set, removing these from consideration, and proceeding. Magasarian’s multisurface
method [18] also has this character. At each stage, it finds two parallel hyperplanes (as close
together as possible) such that the points not enclosed between the two planes all have the same
classification. It then removes these points and repeats. We can see that the MSM method
may be regarded as constructing a decision list, where the base functionsK are the indicator
functions of the regions which are the complements of the regions lying between two parallel
hyperplanes.

The chopping procedure as we have described it is in some ways merely a device to help us see
that threshold decision lists have a fairly natural geometric interpretation. But the practicalities
have been investigated by Marchandet al. [19, 20], who derive a greedy heuristic for construct-
ing a sequence of ‘chops’. This relies on an incremental heuristic for the NP-hard problem of
finding at each stage a hyperplane that chops off as many remaining points as possible. Reports
on the experimental performance of their method can be found in the papers cited.
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2.3 Multilevel threshold functions

We noted in the Example given above that the hyperplanes of the resulting threshold decision
list were parallel. By demanding that the hyperplanes are parallel, we obtain a special sub-
class of threshold decision lists, known as themultilevel threshold functions. These have been
considered in a number of papers, such as [10, 21, 24], for instance.

We define ans-level threshold functionf to be one that is representable by a threshold decision
list of length at mosts with the test hyperplanes parallel to each other. Any such function is
defined bys parallel hyperplanes, which divideRn into s + 1 regions. The function assigns
points in the same region the same value, either0 or 1. Equivalently (following Bohossion and
Bruck [10]),f is ans-level threshold function if there is a weight-vectorw = (w1, w2, . . . , wn)
such thatf(x) = F (

∑n
i=1 wixi) ,where the functionF : R→ {0, 1} is piecewise constant with

at mosts+1 pieces. Without any loss, we may suppose that the classifications assigned to points
in neighbouring regions are different (for, otherwise, at least one of the planes is redundant);
thus, the classifications alternate as we traverse the regions in the direction of the normal vector
common to the hyperplanes.

This method of classification is reasonably powerful. For example, Bohossian and Bruck ob-
served that any Boolean function is a2n-level threshold function, an appropriate weight-vector
beingw = (2n−1, 2n−2, . . . , 2, 1). (For that reason, they paid particular attention to the question
of whether a function can be computed by a multilevel threshold function where the number of
levels is polynomial.)

3 Generalisation from random data

Recall that an extension of a labelled data setD is a functionf agreeing with the classifications
of the points inD, and that a partial extension is one agreeing with at least some proportion of
the classification inD. If a particularly simple type of extension (or a good partial extension) to
a fairly large data set can be found we might expect, given the success of this simple function in
explaining the large data set, that this extension will perform well on ‘most’ unseen data. (This
is, in some senses, an instance of the ‘Occam’s razor’ principle: we trust a simple explanation
of the data.) Issues such as these have been well-studied in ‘computational learning theory’ and
‘statistical learning theory’. (See [26, 4], for instance.) To formalise the ideas somewhat, we
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assume that the types of extension which can be produced all belong to a particular class,H, of
functions, known as thehypothesis space. The choice of hypothesis space might reflect either
our belief about the mechanism by which the data points are labelled (for example, by some
deterministictarget conceptof a particular type) or our intention only to accept simple types of
explanation of the data.

We shall apply some probabilistic techniques to analyse the performance of threshold decision
list classification of random data. These methods have been used in learning theory (see [5, 26,
9]) and originated in the work of Vapnik and Chervonenkis [28]. Following a form of the PAC
model of computational learning theory, we assume that the labelled data points(x, b) (where
x ∈ Rn andb ∈ {0, 1}) have been generated randomly (perhaps from some larger corpus of
data) according to a fixed probability distributionP onZ = Rn×{0, 1}. (Note that this includes
as a special case the situation in whichx is drawn according to a fixed distributionµ onRn and
the labelb is then given byb = t(x) wheret is some fixed function.) Thus, if there arem data
points inD, we may regard the data setD as a vector inZm, drawn randomly according to the
product probability distributionPm. (This suggests that we must attach some ordering to the
points, and clearly there is some ambiguity as to how to do this, but this will not turn out to
be a problem for the analysis of this paper.) Given any functionf ∈ H, we measure how well
f extends the data setD through itssample errorerD(f) = |D|−1|{(x, b) ∈ D : f(x) 6= b}|
(which is the proportion of points ofD incorrectly classified byf ) and we measure how wellf
performs on further examples by means of itserror

er(f) = P ({(x, b) ∈ Z : f(x) 6= b}) ,

the probability that a further randomly drawn labelled data point would be incorrectly classified
by f .

What we would wish for is some guarantee that the sample errorerD(f) is a good approximation
to the errorer(f) for all f , so that anf with small sample error will likely have small error and
therefore be a good model of the data labels. The following result provides such a guarantee for
threshold decision lists and multilevel threshold functions of at most a bounded lengths. (Thus,
the number of terms is no more thans.)

Theorem 3.1 Suppose thats andn are fixed positive integers and thatD is a data set ofm
labelled points(x, b) of Z = R

n × {0, 1}, each generated at random according to a fixed
probability distributionP onZ. Letδ be any positive number less than one. Then the following
hold with probability at least1− δ:

6



1. If f is a threshold decision list with at mosts terms, then the errorer(f) of f and its
sample error onD, erD(f) are such that

er(f) < erD(f) +

√
8

m

(
2s ln 2 + ns ln

(
e(2m− 1)

n

)
+ ln

(
8

δ

))
,

for m > n.

2. If f is ans-level threshold function, then

er(f) < erD(f) +

√
8

m

(
(n+ s− 1) ln

(
2ems

n+ s− 1

)
+ ln

(
8

δ

))
,

for m ≥ n+ s.

If there isf that is an extension ofD, with no sample errors—in particular, if the labels corre-
spond to a threshold decision list of length at mosts, or to ans-level threshold function—then
the following tighter bounds can be used.

Theorem 3.2 Suppose thats andn are fixed positive integers and thatD is a data set ofm
labelled points(x, b) of Z = R

n × {0, 1}, each generated at random according to a fixed
probability distributionP onZ. Letδ be any positive number less than one. Then the following
hold with probability at least1− δ:

1. If f is a threshold decision list with at mosts terms andf is an extension ofD (so that
erD(f) = 0), then

er(f) <
4

m

(
2s ln 2 + ns ln

(
e(2m− 1)

n

)
+ ln

(
4

δ

))
for m < n.

2. If f is ans-level threshold function andf is an extension ofD, then

er(f) <
4

m

(
(n+ s− 1) ln

(
2ems

n+ s− 1

)
+ ln

(
4

δ

))
.
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The following variations of these results, in whichs is not prescribed in advance, are perhaps
more useful, since one does not necessarily knowa priori how many terms a suitable threshold
decision list will have.

Theorem 3.3 Suppose thatn is a fixed positive integer and thatD is a data set ofm labelled
points(x, b) of Z = R

n × {0, 1}, each generated at random according to a fixed probability
distributionP onZ. Letδ be any positive number less than one. Then the following holds with
probability at least1− δ:

1. If f is a threshold decision list, then

er(f) < erD(f) +

√
8

m

(
2s ln 2 + ns ln

(
e(2m− 1)

n

)
+ ln

(
14s2

δ

))
,

for m ≥ n+ s, wheres is the number of terms off .

2. If f is a multilevel threshold function, then

er(f) < erD(f) +

√
8

m

(
(n+ s− 1) ln

(
2ems

n+ s− 1

)
+ ln

(
14s2

δ

))
,

for m ≥ n+ s, wheres is the number of levels (planes) off .

3. If f is a threshold decision list andf is an extension ofD (so thaterD(f) = 0), then

er(f) <
4

m

(
2s ln 2 + ns ln

(
e(2m− 1)

n

)
+ ln

(
7s2

δ

))
for m > n, wheres is the number of terms off ;

4. If f is an multilevel threshold function andf is an extension ofD, then

er(f) <
4

m

(
(n+ s− 1) ln

(
2ems

n+ s− 1

)
+ ln

(
7s2

δ

))
,

for m ≥ n+ s, wheres is the number of terms off .
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4 Bounding error by bounding growth function

4.1 Bounding the error

To use results from statistical learning theory, we need to define thegrowth functionof a set of
functionsH mapping fromX = Rn to {0, 1}. Let ΠH : N→ N be given by

ΠH(m) = max{|H|S| : S ⊆ X, |S| = m},

whereH|S denotesH restricted to domainS. Note thatΠH(m) ≤ 2m for all m. The function
ΠH is known as the growth function ofH, and it measures how expressive the hypothesis class
H is. The key probability results we employ are the following bounds, due to Vapnik and
Chervonenkis [28] and Vapnik [27] (see also [7, 4]): for anyε, η ∈ (0, 1),

Pm ({D ∈ Zm : for all f ∈ H, er(f) < erD(f) + ε}) > 1− 4 ΠH(2m) e−mε
2/8,

and

Pm

({
D ∈ Zm : for all f ∈ H, er(f)− erD(f)√

er(f)
< η

})
> 1− 4 ΠH(2m) e−mη

2/4.

Thus, we can obtain (probabilistic) bounds on the errorer(f) of a (partial) extension from a
classH when we know something about the growth function ofH.

4.2 Growth function bounds

We start with general threshold decision lists. We consider the the set of threshold decision lists
onRn with at most some numbers of terms. (So, the length of the list is no more thans.) We
have the following bound.

Theorem 4.1 LetH be the set of threshold decision lists onRn with at mosts terms, where
n, s ∈ N. Then

ΠH(m) < 4s
(
e(m− 1)

n

)ns
,

for m > n.
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Proof: Let S be any given set ofm points inRn. Suppose we have two decision listsf =
(f1, c1), . . . , (fs, cs), g = (g1, d1), . . . , (gs, ds) in H, where eachfi andgj belong toK, the set
of threshold functions onRn. (We can assume both are of length exactlys by padding with the
term (T, 0) followed by any number of other terms, if necessary.) Certainly, if (i)ci = di for
eachi and (ii)fi(x) = gi(x) for all x ∈ S, thenf andg are equal onS. For fixedi, the condition
in (ii) is an equivalence relation among functions inK, and the number of equivalence classes
is |K|S| whereK is the set of threshold functions. This is bounded byΠK(m), which, it is
well-known [11, 9, 4], is bounded above as follows:

ΠK(m) = 2
n∑
i=0

(
m− 1

k

)
< 2

(
e(m− 1)

n

)n
.

We can therefore upper bound|H|S| as follows:

|H|S| ≤ 2s
(

2

(
e(m− 1)

n

)n)s
.

Here, the first2s factor corresponds to the number of possible sequences ofci and the remaining
factor bounds the number of ways of choosing an equivalence class (with respect toS) of
threshold functions, for eachi from 1 to s. The result follows. ut

There is a useful connection between certain types of decision list and threshold functions. We
say that a decision list defined on{0, 1}n is a1-decision listif the Boolean function in each test
is given by a single literal. (So, for eachi, there is someli such thateither fi(y) = 1 if and
only if yli = 1, or fi(y) = 1 if and only if yli = 0. Then, it is known [13] (see also [6, 2]) that
any1-decision list is a threshold function. In an easy analogue of this, any threshold decision
list is a threshold function of threshold functions [3]. But a threshold function of threshold
functions is nothing more than a two-layer threshold network, one of the simplest types of
artificial neural network. (A similar observation was made by Marchandet al. [19, 20], who
construct a ‘cascade’ network from a threshold decision list.) So another way of bounding the
growth function of threshold decision lists is to use this fact in combination with some known
bounds [8, 4] for the growth functions of linear threshold networks. This gives a similar, though
slightly looser, upper bound.

To bound the growth function of the subclass consisting ofs-level threshold functions, we use
a result from [1], which shows that the number of ways in which a setS of m points can be

partitioned bys parallel hyperplanes is at most
n+s−1∑
i=0

(
sm

i

)
. (For fixedn ands, this bound is
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tight to within a constant, as a function ofm.) Noting that we may assume adjacent regions
to have different labels, there corresponds to each such partition at most twos-level threshold
functions (defined on the domain restricted toS) and we therefore have the following bound.

Theorem 4.2 LetH be the set ofs-level threshold functions onRn. Then

ΠH(m) ≤ 2
n+s−1∑
i=0

(
sm

i

)
< 2

(
ems

n+ s− 1

)n+s−1

,

for n ≥ n+ s.

4.3 Proofs of the generalization bounds

From the bound

Pm ({D ∈ Zm : for all f ∈ H, er(f) < erD(f) + ε}) > 1− 4 ΠH(2m) e−mε
2/8,

it follows that with probability at least1− δ, for all f ∈ H,

er(f) < erD(f) +

√
8

m

(
ln (ΠH(2m))) + ln

(
4

δ

))
.

Theorem 3.1 now follows upon using Theorem 4.1 and Theorem 4.2, respectively.

From the bound

Pm

({
D ∈ Zm : for all f ∈ H, er(f)− erD(f)√

er(f)
< ε

})
> 1− 4 ΠH(2m) e−mη

2/4,

it follows that

Pm ({D ∈ Zm : there existsf ∈ H, such thaterD(f) = 0, er(f) ≥ ε})

≤ Pm

({
D ∈ Zm : there existsf ∈ H, er(f)− erD(f)√

er(f)
≥
√
ε

})
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< 4 ΠH(2m) e−m(
√
ε)2/4 = 4 ΠH(2m) e−mε/4.

So, with probability at least1− δ, for anyf ∈ H with erD(f) = 0, we have

er(f) <
4

ε

(
ln(ΠH(2m)) + ln

(
4

δ

))
.

Theorem 3.2 now follows from Theorem 4.1 and Theorem 4.2.

To obtain Theorem 3.3 we use a well-known technique often found in discussions of ‘structural
risk minimization’ and model selection (see [27, 23, 17, 12, 4], for instance.) We indicate how
to obtain the first part of Theorem 3.3 (the proof of the other parts being very similar).

For s ∈ N, let Hs denote the set of threshold decision lists of length at mosts. We know,
by Theorem 3.1 that, with probability at least1 − δ, anyf ∈ Hs satisfieser(f) < erD(f) +
ε0(m, s, δ), where

ε0(m, s, δ) =

√
8

m

(
2s ln 2 + ns ln

(
e(2m− 1)

n

)
+ ln

(
8

δ

))
.

Now let (ps)
∞
s=1 be any sequence of positive numbers such that

∑∞
s=1 ps = 1. Then, the proba-

bility that there is somef ∈ Hs with er(f) ≥ erD(f)+ε0(m, s, psδ) is less thanpsδ. Therefore,

Pm ({D ∈ Zm : there iss ∈ N such that for somef ∈ Hs, er(f) ≥ erD(f) + ε0(m, s, psδ)})

≤
∞∑
s=1

psδ = δ.

The first part of Theorem 3.3 follows on takingps = 6/(π2s2). (It should be clear that other
choices can be made, such asps = 1/2s+1, for example. The type of sequence chosen can
reflect a prior belief about the likelihood of there being a ‘small’ partial extension with low
error, or can be thought of as a choice of penalty for having chosen a classifier involving a large
number of hyperplanes.)
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