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Abstract

We apply techniques from probabilistic learning theory to analyse theoretically the ac-
curacy of data classification techniques that are based on the tisegifold decision lists

1 Introduction

Suppose that we have been given some data poini'jreach classified as eithgositive

(with an attached label df) or negative(labelled0). The data points, together with the posi-
tive/negative classifications will be denot&d An extensiorof D is a Boolean functiorf such

that f agrees withD; that is, ifz is one of the data points given in then f(z) = 1 if and only

if z is classified as positive il. The aim is to find an extension gfwhich will, in a sense to

be made precise, be a good ‘generalization’ of the data. By this we mean that we should like
it to be the case that for most points that are nobinthe extensiory classifiesy correctly.

We might also considgrartial extensionsby which we mean functions that agree with a large
proportion—though not necessarily all-of the classifications of the poiris in

There are clearly very many extensions of a given data set. We shall analyse the performance
of methods based on the usetbfeshold decision listsin doing so, we employ a probabilis-

tic framework that has been used extensively in the modelling of machine learning; see the
books [26, 27, 5, 4], for example.



2 Threshold decision lists

2.1 Decision lists

We start by describinglecision lists introduced by Rivest [22]. Suppose thidtbe any set

of Boolean functions 00, 1}", for some fixed:. We shall usually suppose (for the sake of
simplicity) that K contains the identically-functionT. A Boolean functionf with the same
domain asX is said to be aecision listbased onk if it can be evaluated as follows. Given an
exampley, we first evaluatef, (y) for some fixedf; € K. If fi(y) = 1, we assign a fixed value
c1 (either0 or 1) to f(y); if not, we evaluatef,(y) for a fixed f, € K, and if fo(y) = 1 we set
f(y) = cq, otherwise we evaluatg(y), and so on. If fails to satisfy anyf; then f(y) is given

the default valu®. The evaluation of a decision ligtcan therefore be thought of as a sequence
of ‘if then else’ commands.

We defineDL(K), the class otlecision lists based off, to be the set of finite sequences

f: (flvcl)a (f2702)7"'7 (fr‘acr)a

such thatf; € K ande¢; € {0,1} for 1 <i <r. The values off are defined by (y) = ¢; where
J = min{i | f;(y) = 1}, or 0 if there are ngj such thatf;(y) = 1. We call eachf; atest(or,
following Krause [16], aquery) and the paif f;, ¢;) atermof the decision list.

2.2 Threshold functions and threshold decision lists

Afunctiont : R* — {0, 1} is athreshold functiorif there arew € R™ andf € R such that

1 if (w,x) >0
t(@{ 0 if (w,z) <4,

where(w, x) is the standard inner product efandx. Thus,t(x) = sgn({(w, z)), where Given
suchw and#, we say that is represented bjw, §] and we writet — [«, §]. The vectorw is
known as theveight-vectorandd is known as thehreshold

We now consider the class of decision lists, in which the tests are threshold functions, and in
which the domain iR™ rather than{0, 1}". We shall call such decision listsreshold decision
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lists, but they have also been calleéural decision lists [19] andinear decision lists [25].
Formally, a threshold decision list

f = (f1701)7 (f2702)7 ceey (fracr)

has eacly; : R* — {0, 1} of the form f;(z) = sgn({w, x)), wheresgn(z) = 1if x > 0 and
sgn(z) = 0if x < 0. The value off ony € R™is f(y) = ¢; if j = min{i | f;(y) = 1} exists,
or 0 otherwise (that is, if there are rjosuch thatf;(y) = 1).

It is instructive to give a geometrical motivation for the use of threshold decision lists. Suppose
we are given some data pointsli¥, each one of which is labelle@ior 1. Of course, since

there are very few threshold functions, it is unlikely that the positive and negative points can
be separated by a hyperplane. But we can certainly use a hyperplane to separate off a set of
points all having the same classification (either all are positive points or all are negative points).
These points can then be removed from consideration and the procedure iterated until no points
remain. This procedure is similar in nature to one of Jeroslow [15], but at each stage in his
procedure, only positive examples may be ‘chopped off’ (not posdiveegative). We give

one example for illustration.

Example: Suppose the data sé consists of all points of0, 1}, labelled according to their
parity, so the classification is precisely when the point has an odd number of ones. We first
find a hyperplane such that all points on one side of the plane are either positive or negative. Itis
clear that all we can do at this first stage is chop off one of the points since the nearest neighbours
of any given point have the opposite classification. Let us suppose that we decide to chop off
the origin. We may take as the first hyperplane the plane with equatienys + --- 4+ y, =

1/2. We then ignore the origin and consider the remaining points. We can next chop off all
neighbours of the origin, all the points which have precisely one entry equalAd of these

are positive points and the hyperplane-ys+- - - +v, = 3/2 will separate them from the other
points. These points are then deleted from consideration. We may continue in this manner. The
procedure iterates times, and at stagein the procedure we ‘chop off’ all data points having
precisely(i — 1) ones, by using the hyperplane + y» + --- + y, = i — 1/2, for example.
(These hyperplanes are in fact all parallel, but this is not in general necessary.)

We may regard the chopping procedure as a means of constructing a threshold decision list ex-
tension of the data set. If, at stagef the procedure, the hyperplane with equafjotl | oy, =

0 chops off positive (negative) points, and these lie on the side of the hyperplane with equa-
tion > "  a;y; > 0, then we take as thah term of the threshold decision list the péj, 1)
(resp.,(fi,0)), wheref; < [a, 0]; otherwise take théth term to be(g;, 1) (resp.,(g;,0)), where
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g; — [—a, —0]. (We may assume that no point lies on any of the defining hyperplanes.)

If this construction is applied to the sequence of hyperplanes resulting from the Jeroslow method,
arestricted form of decision list results—one in which all terms are of the fgrn). But such

a decision list is quite simply thaisjunctionf, vV f, v ..., wherev means ‘or’. For Boolean
functions, the problem of decomposing a function into the disjunction of threshold functions
has been considered by Hamne¢al.[14] and Zuev [29]. Hammegt al. defined thehreshold
numberof a Boolean function to be the minimusnsuch thatf is a disjunction ofs threshold
functions, and they showed that there is an increasing function with threshold n(lmcin.

(A function is increasing if, wherf(z) = 1 andz; = 0, thenf(x + ¢;) = 1 too.) Zuev showed

that almost all increasing functions have this order of threshold number, and that almost all
Boolean functions have a threshold number th&t(@"/2) andO (2" Inn/n).

The decision lists arising from the chopping procedure are more general than disjunctions of
threshold functions and may provide a more compact representation of the data. (That is, since
fewer hyperplanes might be used, the decision list could be smaller.) Indeed, Jeroslow’s method
require2"~! iterations in the parity-based Example given above, since at each stage it can only
‘chop off’ one positive point. Note that Jeroslow’s method [15] (described above) requires
iterations in this Example, since at each stage it can only ‘chop off’ one positive point.

The chopping procedure described above suggests that the use of threshold decision lists is
fairly natural, if one is to take an iterative approach to data classification. There are other
methods which similarly make use of such an iterative approach, by classifying some points
of the data set, removing these from consideration, and proceeding. Magasarian’s multisurface
method [18] also has this character. At each stage, it finds two parallel hyperplanes (as close
together as possible) such that the points not enclosed between the two planes all have the same
classification. It then removes these points and repeats. We can see that the MSM method
may be regarded as constructing a decision list, where the base funktians the indicator
functions of the regions which are the complements of the regions lying between two parallel
hyperplanes.

The chopping procedure as we have described it is in some ways merely a device to help us see
that threshold decision lists have a fairly natural geometric interpretation. But the practicalities
have been investigated by Marchaetdal.[19, 20], who derive a greedy heuristic for construct-

ing a sequence of ‘chops’. This relies on an incremental heuristic for the NP-hard problem of
finding at each stage a hyperplane that chops off as many remaining points as possible. Reports
on the experimental performance of their method can be found in the papers cited.
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2.3 Multilevel threshold functions

We noted in the Example given above that the hyperplanes of the resulting threshold decision
list were parallel. By demanding that the hyperplanes are parallel, we obtain a special sub-
class of threshold decision lists, known as theltilevel threshold functionsThese have been
considered in a number of papers, such as [10, 21, 24], for instance.

We define ars-level threshold functiorf to be one that is representable by a threshold decision
list of length at mosk with the test hyperplanes parallel to each other. Any such function is
defined bys parallel hyperplanes, which divide” into s + 1 regions. The function assigns
points in the same region the same value, either 1. Equivalently (following Bohossion and
Bruck [10]), f is ans-level threshold function if there is a weight-vector= (wy, wo, . .., w,)
suchthatf(z) = F (3_._, w;z;) , where the functio : R — {0, 1} is piecewise constant with

at mosts+ 1 pieces. Without any loss, we may suppose that the classifications assigned to points
in neighbouring regions are different (for, otherwise, at least one of the planes is redundant);
thus, the classifications alternate as we traverse the regions in the direction of the normal vector
common to the hyperplanes.

This method of classification is reasonably powerful. For example, Bohossian and Bruck ob-
served that any Boolean function i®'&level threshold function, an appropriate weight-vector
beingw = (271,272 ..., 2,1). (For that reason, they paid particular attention to the question
of whether a function can be computed by a multilevel threshold function where the number of
levels is polynomial.)

3 Generalisation from random data

Recall that an extension of a labelled data/3e$ a functionf agreeing with the classifications

of the points inD, and that a partial extension is one agreeing with at least some proportion of
the classification irD. If a particularly simple type of extension (or a good partial extension) to

a fairly large data set can be found we might expect, given the success of this simple function in
explaining the large data set, that this extension will perform well on ‘most’ unseen data. (This
is, in some senses, an instance of the ‘Occam’s razor’ principle: we trust a simple explanation
of the data.) Issues such as these have been well-studied in ‘computational learning theory’ and
‘statistical learning theory’. (See [26, 4], for instance.) To formalise the ideas somewhat, we
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assume that the types of extension which can be produced all belong to a particulat clafss,
functions, known as thibypothesis spacelhe choice of hypothesis space might reflect either
our belief about the mechanism by which the data points are labelled (for example, by some
deterministidarget concepof a particular type) or our intention only to accept simple types of
explanation of the data.

We shall apply some probabilistic techniques to analyse the performance of threshold decision
list classification of random data. These methods have been used in learning theory (see [5, 26,
9]) and originated in the work of Vapnik and Chervonenkis [28]. Following a form of the PAC
model of computational learning theory, we assume that the labelled data oibtgwhere

x € R*andb € {0,1}) have been generated randomly (perhaps from some larger corpus of
data) according to a fixed probability distributi®ron Z = R" x {0, 1}. (Note that this includes

as a special case the situation in whicts drawn according to a fixed distributipnon R™ and

the labelb is then given by = t(x) wheret is some fixed function.) Thus, if there aredata

points in D, we may regard the data sBtas a vector irZ™, drawn randomly according to the
product probability distributiorP™. (This suggests that we must attach some ordering to the
points, and clearly there is some ambiguity as to how to do this, but this will not turn out to
be a problem for the analysis of this paper.) Given any funcfien H, we measure how well

f extends the data sé through itssample errorerp(f) = |D|7'|{(z,b) € D : f(z) # b}

(which is the proportion of points @b incorrectly classified by) and we measure how well
performs on further examples by means ofitsor

er(f) = P({(z,0) € Z: f(x) # b}),

the probability that a further randomly drawn labelled data point would be incorrectly classified
by f.

What we would wish for is some guarantee that the sample @rsdy ) is a good approximation

to the errorer(f) for all f, so that anf with small sample error will likely have small error and
therefore be a good model of the data labels. The following result provides such a guarantee for
threshold decision lists and multilevel threshold functions of at most a bounded ker{gtius,

the number of terms is no more than

Theorem 3.1 Suppose that and n are fixed positive integers and théat is a data set oin
labelled points(z,b) of Z = R" x {0,1}, each generated at random according to a fixed
probability distributionP on Z. Letd be any positive number less than one. Then the following
hold with probability at leasi — ¢:



1. If f is a threshold decision list with at mostterms, then the erroer(f) of f and its
sample error onD, erp( f) are such that

er(f) <erD(f)+\/% (251n2+nsln (W) +1In (;))

for m > n.

2. If f is ans-level threshold function, then

e <o 5 e (2 o)

form >n + s.

If there is f that is an extension @b, with no sample errors—in particular, if the labels corre-
spond to a threshold decision list of length at mgstr to ans-level threshold function—then
the following tighter bounds can be used.

Theorem 3.2 Suppose that andn are fixed positive integers and that is a data set ofn
labelled points(z,b) of Z = R" x {0,1}, each generated at random according to a fixed
probability distributionP on Z. Let) be any positive number less than one. Then the following
hold with probability at least — §:

1. If f is a threshold decision list with at mosterms andf is an extension ob (so that
erp(f) = 0), then

< 4 (2ot (20 (1))

2. If f is ans-level threshold function andl is an extension ab, then

er(f) < % ((n+s—1)1n (%) +In (%))

7
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The following variations of these results, in whighs not prescribed in advance, are perhaps
more useful, since one does not necessarily kagsiori how many terms a suitable threshold
decision list will have.

Theorem 3.3 Suppose that is a fixed positive integer and th&l is a data set ofn labelled
points(z,b) of Z = R™ x {0, 1}, each generated at random according to a fixed probability
distribution P on Z. Letd be any positive number less than one. Then the following holds with
probability at leastl — ¢:

1. If fis a threshold decision list, then

er(f) < erp(f) + \/% (231n2+nsln (e(zmT_U) +1In (14252)),

for m > n + s, wheres is the number of terms gf.

2. If f is a multilevel threshold function, then

er(f) <erD(f)+\/% ((n+s—1)ln (%) +In (%’52))

for m > n + s, wheres is the number of levels (planes) pf

3. If f is a threshold decision list anflis an extension ab (so thater(f) = 0), then

er(f) < % (231n2+n51n (@) +In (%82))

for m > n, wheres is the number of terms gf;

4. If f is an multilevel threshold function anflis an extension ab, then

er(f) < % ((n—i—s—l)ln (%) +In (%52»

for m > n + s, wheres is the number of terms gf.



4 Bounding error by bounding growth function

4.1 Bounding the error

To use results from statistical learning theory, we need to defingrdveth functionof a set of
functionsH mapping fromX = R" to {0, 1}. LetIly : N — N be given by

Iy (m) =max{|H|g| : S C X, |S| =m},

whereH | s denotesH restricted to domaiy. Note thatlly (m) < 2™ for all m. The function

Iy is known as the growth function @f, and it measures how expressive the hypothesis class
H is. The key probability results we employ are the following bounds, due to Vapnik and
Chervonenkis [28] and Vapnik [27] (see also [7, 4]): for any € (0,1),

P"({D e z™:forall f € H, er(f) < erp(f) +e}) > 1— 4T, (2m) e ™73,

and

pP™ ({D e Z™ forall f e H, er(f) —erp(f) < 77}) > 1— 410y (2m) e ™/,
er(f)

Thus, we can obtain (probabilistic) bounds on the eergy) of a (partial) extension from a
classH when we know something about the growth functionof

4.2 Growth function bounds

We start with general threshold decision lists. We consider the the set of threshold decision lists
onR™ with at most some numberof terms. (So, the length of the list is no more thranWe
have the following bound.

Theorem 4.1 Let H be the set of threshold decision lists B with at mosts terms, where
n,s € N. Then
e(m—1) ) "

n

Iy (m) < 4° <

for m > n.



Proof: Let S be any given set ofn points InR™. Suppose we have two decision ligts=
(fi,c1)s-oos (fsscs)s g = (g1,dh), ..., (9s,ds) in H, where eacly; andg; belong toX, the set

of threshold functions ofR™. (We can assume both are of length exasthy padding with the
term (T, 0) followed by any number of other terms, if necessary.) Certainly, i (|- d; for
eachi and (i) f;(x) = g;(x) forall x € S, thenf andg are equal or$. For fixedi, the condition

in (ii) is an equivalence relation among functionsin and the number of equivalence classes
is |K|s| where K is the set of threshold functions. This is boundedIby(m), which, it is
well-known [11, 9, 4], is bounded above as follows:

[ (m) = Qg (mk_ 1) <2 (@)n

We can therefore upper bounfl|s| as follows:

H|s| < 2° (z (%))

Here, the firsR® factor corresponds to the number of possible sequencesnél the remaining
factor bounds the number of ways of choosing an equivalence class (with respecbto
threshold functions, for eaghfrom 1 to s. The result follows. O

There is a useful connection between certain types of decision list and threshold functions. We
say that a decision list defined ¢, 1}" is al-decision listif the Boolean function in each test

is given by a single literal. (So, for ea¢hthere is somé; such thatither f;(y) = 1 if and

only if y,, = 1, or fi(y) = 1 ifand only ify,, = 0. Then, it is known [13] (see also [6, 2]) that
any 1-decision list is a threshold function. In an easy analogue of this, any threshold decision
list is a threshold function of threshold functions [3]. But a threshold function of threshold
functions is nothing more than a two-layer threshold network, one of the simplest types of
artificial neural network. (A similar observation was made by Marchetnal. [19, 20], who
construct a ‘cascade’ network from a threshold decision list.) So another way of bounding the
growth function of threshold decision lists is to use this fact in combination with some known
bounds [8, 4] for the growth functions of linear threshold networks. This gives a similar, though
slightly looser, upper bound.

To bound the growth function of the subclass consisting-lafvel threshold functions, we use

a result from [1], which shows that the number of ways in which aSsef m points can be
n+s—1

partitioned bys parallel hyperplanes is at mosE (Sm) (For fixedn ands, this bound is
1

1=0
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tight to within a constant, as a function of.) Noting that we may assume adjacent regions
to have different labels, there corresponds to each such partition at mostiéewel threshold
functions (defined on the domain restrictedsjoand we therefore have the following bound.

Theorem 4.2 Let H be the set of-level threshold functions dR™. Then

n+s—1 sm, ems n+s—1
mam <2 3 (1) <2 (1)

forn > n 4+ s.

4.3 Proofs of the generalization bounds

From the bound
P"({D e Z™ forall f € H, er(f) <erp(f)+e€})>1—4T15(2m) e—m62/87

it follows that with probability at least — ¢, for all f € H,

ex(f) < erp(f) + \/ > (w oy +1 ().

Theorem 3.1 now follows upon using Theorem 4.1 and Theorem 4.2, respectively.

From the bound

pP™ ({D eZ™: forall f e H, er(f) — ern(f) < e}) > 1—4T4(2m) e~/
er(f)

it follows that

P™({D € Z™ : there existsf € H, such thaerp(f) =0,er(f) > €})

< pm ({D € Z™ : there existsf € H, er(f) — ern(f) > \/E})

er(f)
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< 4Ty (2m) e W4 = 4T, (2m) e /4,
So, with probability at least — ¢, for any f € H with erp(f) = 0, we have

er(f) < % (ln(HH(Qm)) +n (%)) |

Theorem 3.2 now follows from Theorem 4.1 and Theorem 4.2.

To obtain Theorem 3.3 we use a well-known technique often found in discussions of ‘structural
risk minimization’ and model selection (see [27, 23, 17, 12, 4], for instance.) We indicate how
to obtain the first part of Theorem 3.3 (the proof of the other parts being very similar).

Fors € N, let H, denote the set of threshold decision lists of length at mosiVe know,
by Theorem 3.1 that, with probability at lealst- 6, any f € H, satisfieser(f) < erp(f) +
eo(m, s,0), where

ot )= [2 (e e (22T 1 (5))

Now let (ps)$2, be any sequence of positive numbers such¥idt, p, = 1. Then, the proba-
bility that there is som¢ € H, with er(f) > erp(f)+eo(m, s, ps0) is less thamp,o. Therefore,

P™({D € Z™ : thereiss € N such that for somg € Hg, er(f) > erp(f) + eo(m, s,ps6)})

< ipsé =9.
s=1

The first part of Theorem 3.3 follows on takipg = 6/(7%s?). (It should be clear that other
choices can be made, suchas= 1/2°"!, for example. The type of sequence chosen can
reflect a prior belief about the likelihood of there being a ‘small’ partial extension with low
error, or can be thought of as a choice of penalty for having chosen a classifier involving a large
number of hyperplanes.)
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