Decision Lists and Threshold Decision Lists

Martin Anthony

December 2002
CDAM Research Report LSE-CDAM-2002-11

Abstract

This report is an exposition of decision lists and threshold decision lists. A version of
this is to appear as a chapter in a book on Boolean functions, but the report itself is relatively
self-contained. The key areas explored are the representation of Boolean functions by deci-
sion lists and threshold decision lists; properties of classes of decision list; and algorithmic
guestions associated with decision lists.

1 Introduction

Decision lists provide a useful way of representing Boolean functions. Just as every Boolean
function can be represented by a DNF formula, we shall see that every Boolean function can also
be represented by a decision list. This representation is sometimes more compact. By placing
restrictions on the type of decision list considered, we obtain some interesting subclasses of
Boolean functions. As we shall see, these subclasses have some interesting properties, and
certain algorithmic questions can be settled for them.

*A version of this is to appear as a chapteBioolean Functions: Volume,ledited by Yves Crama and Peter
Hammer

2 Boolean functions and decision lists

2.1 Boolean functions

We shall not give here a detailed exposition of Boolean functions and formulae; full details may
be found in many texts. Any Boolean function (that is, any function fformi }™ to {0, 1} can
be expressed bydisjunctive normal formuléor DNF), usinditerals z1, s, ..., ,, T1, . . ., Tn,
where thez; are known asiegated literals A disjunctive normal formula is one of the form

TNV Ty V-V T,

where eacl; is atermof the form

-(e)A (A7)

for some disjoint subset8, N of {1,2,...,n}. A Boolean function is said to be drDNF if

it has a disjunctive normal formula in which, for each term, the number of litefBlsI (V|) is

at most/; it is said to be &-term{-DNF if there is such a formula in which, furthermore, the
number of termq; is at mostk.

2.2 Definition of decision lists

Suppose thail be any set of Boolean functions ¢f, 1}", n fixed. We shall usually suppose
(for the sake of simplicity) thakl contains the identically-function 1. A Boolean function
f with the same domain a& is said to be alecision listbased onk if it can be evaluated as
follows. Given an example, we first evaluatef, (y) for some fixedf; € K. If fi(y) = 1, we
assign a fixed value, (either0 or 1) to f(y); if not, we evaluatef,(y) for a fixed f, € K, and

if fo(y) = 1 we setf(y) = ¢, otherwise we evaluatg(y), and so on. Iy fails to satisfy any
fi thenf(y) is given the default value.

The evaluation of a decision ligt can therefore be thought of as a sequencéf athen
else’ commands:

if fi(y)=1then setf(y)=ac
else if fa(y) = 1then setf(y) = ¢

.e‘lée if f.(y)=1then setf(y) =c,
else setf(y) =0.

We defineDL(K), the class otlecision lists based off, to be the set of finite sequences

f: (f1701), (f2762)a"'7 (fracr)a

such thatf; € K and¢; € {0,1} for 1 <i < r. The values of are defined by (y) = ¢; where
Jj =min{i | f;(y) = 1}, or 0 if there are ngj such thatf;(y) = 1. We call eachf; atest(or,
following Krause [15], aquery) and the paif f;, ¢;) atermof the decision list.

Decision lists were introduced by Rivest [19], where a key concern was develop a learning
algorithm for them. (This is discussed later in this report.)

Note that we do not always draw a strong distinction between a decision list as a Boolean
function, and a decision listrapresentatiorof a Boolean function. Strictly speaking, of course,
a decision list is a representation of a Boolean function, just as a DNF formula is.

There is no loss of generality in requiring that all tefteccurring in a decision list are distinct.
This observation enables us to obtain the following bound:

|K |K K|

K , 1 1
1 —1). 1.
1=0 i=0

=0

(Each decision list of lengthis formed by choosingfunctions of K, in a particular order, and
assigning a; € {0, 1} to each.)

Example: Suppose thak’ = M -, the set of monomials (that is, simple conjunctions or terms)
of length at most two in three Boolean variables. Consider the decision list

(22,1), (21Z5,0), (Z1,1).

Those examples for which, is satisfied are assigned the valughese ar€10,011, 110, 111.
Next the remaining examples for whighz; is satisfied are assigned the valughe only such

3

example isl00. Finally, the remaining examples for whigh is satisfied are assigned the value
1: this accounts fob00 and001, leaving only the exampl&)1 which is assigned the valuwe O

Suppose thakl = M,, ;. is the set of monomials (or terms) consisting of at mo8terals, so

each test is a simple conjunction of degree at mosthen, following Rivest [19]DL(K) is
usually denoted-DL and we call such decision listsdecision lists It should be noted, how-

ever, that this terminology has also been used to mean something slightly different: Krause [15]
defines &:-decision list to be one in which each test involves at nogriables, and this is a
more general class thanDL.

Note that wherk' = M,, ;, we have K| < (2n)* and hence
k-DL| = [DL(M,)| < 2@V"¢ ((2n)*)! = 200" logm),
for fixed k.

Later, we will want to consideK™ being the set ofhreshold functionsbut unless it is explicitly
said so,K will either be M,, ,, for some fixedk, or simply M, the set of all monomials on
variables.

2.3 Special types of decision list

By restricting the types of decision list considered, subclasses of decision list arise. We have
already witnessed this, when we consideredittiiecision lists; these arise from restricting the
degree of each test in the decision list to be no more thamter we shall look more closely at

the very special case in whiéh= 1.

Rather than restrict the degree of each individual test, a restriction could be placed on the total
number of terms in the decision list: arterm decision list is (a function representable by) a
decision list in which the number of terms is no more thaWe can also combine structural
restrictions on decision lists. For example, théerm k-DLs are those:-DLs in which the
number of terms is at most (So, here, there is a restriction both on the number of terms, and
on the degree of each test.)

As observed by Guijarret al.[10], any function representable by a decision list with few terms
(but possibly high degree) is also representable by one with terms of low degree (but possibly

4

many terms).

Theorem 2.1 (Guijarro et al.[10]) Suppose thaf : {0,1}" — {0,1} is (representable by) a
decision list withr terms. Thery is also (representable by) andecision list.

Proof: Suppose the decision list

f = (fl?cl)v (f2762)7 SRR (fracr)

is given, where, as we may assume~= 1. We construct am-decision listg representing the
same function. First, for each choice of a literal from eaclof. . , f,, we have a term of of

the form (7', 0), whereT is the conjunction of the negations of these literals. We take all such
terms, in any order, as the first set of termgyofNote that each such is of degree no more
thanr. For example, iff is the decision list

(:L'27 1)7 (f1$4, O>7 (:L'IZEBa 1)7
then take the first four terms gf in any order, to be
(22171, 0), (227471, 0), (722173, 0), (727473, 0).

(In fact, the first term is vacuous and can be deleted.) Next, we consider in turn each of the
terms(f;, ¢;) asi is decreased fromto 2. Corresponding tg;, we form termg T, ¢;) of g by
choosing a literal from each preceding tefm. . ., f;_1 in f, and forming the conjunction of

the negations of these. (Note that these tests have degree no moie-thawhich is less than

r.) If ¢; = 0 we are then done; otherwise, we add1) as the last term of. For example, for

the example decision list, a final suitallés as follows:

(Z97471,0), (To2173,0), (T27473, 0), (T21, 1), (T274, 1), (22, 0), (1,1).
(We have deleted the redundant first term created above). O

Additionally, Bshouty [5] has obtained the following result, which gives a better dependence on
r (at the expense of some dependence)n

Theorem 2.2 (Bshouty [5]) Suppose thaf : {0,1}" — {0, 1} is (representable by) a decision
list with r terms. Thery is also (representable by)/adecision list, wheré = 4/nInnIn(r + 1).

5

The proof of Bshouty’s theorem (which is omitted here) relates decision lists to certain type of
decision tree (in which the leaves dralecision lists).

Another special type of decision list arises when the tests are required to be positive monomials.
Guijarroet al. [10] refer to such decision lists asonotone term decision listslere, we shall

instead call thenpositive-term decision listdNote that, even though the tests are positive, the
overall function computed by the decision list need not be positive. Guigred. studied a
number of aspects of this class, and, as we shall see later, discovered that there are efficient
algorithms for many problems associated with the class.

3 Representation of Boolean functions as decision lists

3.1 DNF and decision list representations

We first state a relationship betwegrdecision lists and special classes of Boolean functions.
For anyl < n, k-DNF denotes the Boolean functions which have a DNF formula in which
each term is of degree at mast dually, .-CNF denotes the set of functions having a CNF
representation in which each clause involves at rhdisérals.

The following result, noted by Rivest [19], is easily obtained.

Theorem 3.1 Let K be any set of Boolean functions. The disjunction of any set of functions in
K is a decision list based off. Explicitly, f; V fo vV -+ -V f, is represented by the decision list

(f17 1)7 (f27 1)7] (fm 1)‘

It follows immediately from this that any-DNF function, as the disjunction of terms of degree
at mostk, is also ak-decision list. It is easy to see, however, that, fox k& < n, there

are k-decision lists that are ndt-DNF functions. For example, the functighwith formula
T1T9 . .. T, IS certainly not &-DNF. (This is quite apparent: it has just one true point, whereas
anyk-DNF has at leas?”~* > 2 true points, since any one of its terms does.) Howefean

be expressed as the followingdecision list:

(%1,0), (Z2,0), ..., (Zn,0),(1,1).

6

If K contains the identically-function1, thenD L(K) is closed under complementation, since

(fl, - Cl)> (f2, - 02), e (fr7 1- Cr>7 (17 1)

is the complement of
(fh Cl)7 (f27 62)7 CICIEI) (f?“7 CT)'

Thus, in contrast to the DNF and CNF representations, the decision list representations of a
function and its negation are of the same size (but, possibly, for a difference of one additional
term).

In particular, sincé-CNF functions are the complementsiteDNF functions, and sinck-DL
containst-DNF, we have that-DL containsk-CNF also. (Here, by identifying it as a monomial
with no literals, we use also the fact that the identically-one function belongs e M,, ;.)

In fact, we have the following result, due to Rivest [19]. The fact that the containment is strict
demonstrates that thiedecision list representation is, in fact, more powerful thadDNF and
k-CNF representations.

Theorem 3.2 (Rivest [19])Forn > 2 andk > 1,
k-DNF U k-CNF C k-DL,

and the containment is strict for > 2 and0 < k£ < n.

Proof: The containment has been established in the arguments just given. It remains to show
that the containment is strict. We use the fact that if a Boolean function has a prime implicant
of degrees, then it does not belong to-DNF for anyk < s. We deal first with the case = 1.
Consider the functiorf represented by the-decision list

(Zlfl, 0), (132,].), (Ig, 1)

Sincef hasz,z, as a prime implicant, it is not it-DNF, and since the complemefihasz,z;

as an implicant,f is not in 1-DNF, and hencef is not in 1-CNF. Now suppose. > 2, that

1 < k < n and thatt is odd. (The case of evédncan be treated similarly.) Lei, denote the
parity function on the firsk variablesry, xo, . . ., x;, (thatis, the exclusive-or of them), regarded
as a function o0, 1}". Through its DNF representatiog, can be represented by:adecision
list, £. Consider the functiorf : {0,1}" — {0, 1} represented by thie-decision list

(-Tl'karla O>7 (mlkarla 1)7 L.

7

Then, f has degreék + 1) prime implicantr;Zsx3 . . . ZxTy11, and so is not irk-DNF. Fur-
thermore, the complement gfis not in k-DNF (and hencef is not in k-CNF) because the
complement has degréé-+ 1) prime implicantz,z; . . . TxZj1. O

As an interesting example of decision list representation, consider the furfgtiéor evenn,
with formula
fn:-771/\(372\/(.’I?g/\(---(ajn_l/\;gn)...).

For example,
fe=z1 N (22 V (x5 A (24 V (25 N 26)))).

The functionf,, is difficult to represent in DNF or CNF form: it is easily seen that bftfand
its complement have prime implicants of degree at le#8t so f,, cannot be represented by a
k-DNF or ak-CNF formula wherk < n/2. However,f,, is easily represented byladecision
list, for

fo = (21,0), (z9,1), (23,0), ..., (xp_2,1),(Zyn_1,0),(Z,,0), (1,1),

where we regard as being represented by the empty monomial (with no literals). Note that
this example almost demonstrates the strictness part of Theorem 3.2, and is, moreover, not just
in k-DL, butin 1-DL.

The inclusion ofk-DNF in k-DL shows that any Boolean function can be represented by a
decision list in which the tests are of sufficiently high degree; thatiBL is the set of all
Boolean functions 0q0,1}". So, in this sense, the decision list representation is universal.
Simple counting will show that most Boolean functions need decision lists of high degree. (As
we see later, using a result on polynomial threshold functions, almost every Boolean function
needs tests of degree at least |n/2| in any decision list representation.)

Explicit examples can also be given of functions which have reasonably compact representa-
tions as decision lists, but which have very long DNF or CNF representations.

Let COMP, denote the function frord0,1}** — {0, 1} given by COMB,(x,y) = 1 if and

only if (z) > (y), where, forz € {0,1}", (x) is the integer whose binary representation.is
(Thus,(z) =37 2" “z;.) Then, as noted in [15], for example, COlVi®an be represented by

a short decision list, but has no polynomial-sized DNF or CNF formula. (It is not in the circuit
complexity classACY.) A 2-DL representation of COMPis

(flyla 0)7 (xlgla 1)7 (j:QyQa 0)7 ($2g2a 1)7 sy (jnynv O)a (xngn7 1)

3.2 Universality of positive-term decision lists

As we have seen, every Boolean function has a decision list representation, obtained from any
DNF representation of the function. If, moreover, the function is positive and we use a positive
DNF representation, then we can obtain a positive-term decision list representation. But it is
fairly easy to see that any Boolean function (positive or not), can be represented by a positive-
term decision list, as the following result of Guijambal.[10] establishes.

Theorem 3.3 (Guijarro et al.[10]) Every Boolean function can be represented as a positive-
term decision list.

Proof: Supposef is a given Boolean function, and construct a positive-term decision list
as follows. Fory € {0,1}", let T, be the (positive) conjunction of all literals; which

are true ony (meaning thaty, = 1). Then, the first-term i§7}; 1, f(11...1)); that is,
(x122 ... 2y, f(11...1)). The nextn — 1 terms consist (in any order) of all termi$,,, f(y))

for thosey havingn — 1 ones. We continue in this way, dealing with thef weightn — 2,

and so on, until we reach = 00...0, so the final term of the decision list (if it is needed) is
(1, £(00...0)). Clearly, f is a positive-term decision list, and it computes

Note that the construction in this proof will result in a very long decision #sttérms) of high
degree). Some subsequent reduction in size of the list may be possible, but the question
naturally arises as to how long a positive-term decision list representation of a Boolean function
is compared to, say, the standard DNF and CNF representations. Geijaltabserved that

there is a sequences of functidrfs) such that the shortest length of a positive-term decision list
representing,, is exponential in the number of terms in the shortest DNF representatifn of

and that a corresponding result also holds for CNF representations. On the other hand, Guijarro
et al. (invoking results of Ehrenfeucht and Haussler [6] and Fredman and Khachiyan [9]) also
prove the following.

Theorem 3.4 ([10]) For a Boolean functiory, let|f|s,; and|f|..; denote, respectively, the
number of terms (clauses) in the shortest DNF (CNF) fomulae represefitiagd let| f| be
the larger of these two measures. Then there is a positive-term decision list represeatidg
having no more thanf|'°s” /! terms.

4 Algorithmic aspects of decision lists

4.1 Membership problems

For a clasg of functions, thgfunctional) membership problefar C is as follows.

MEMBERSHIF(C)
Instance: A DNF formula¢
Question: Does the functiorf represented by belong toC?

A useful general result due to Hegedus and Megiddo [13] showsvibBERSHIP(C) is NP-
complete for all classe$ satisfying certain properties. The following definition describes these
properties.

Definition 4.1 Suppose thaf = {C,,} is a class of Boolean functions. (Hex€, maps from
{0,1}™.) We say that a clags has the projection propertly

(i) C is closed under restrictions (so, all restrictions of a functior€ialso belong ta@);

(if) For everyn € N, the identicallyi function1 belongs taC,,;

(iii) There existst € N such that some Boolean function fi 1}* doesnotbelong toC;.

Then, we have the following result.

Theorem 4.2 (Hegedus and Megiddo [13]Suppose thaf is a class of Boolean functions
having the projection property. ThemeMBERSHIR(C) is NP-hard.

For anyk < n, the clasg-DL is easily seen to have the projection property, and hence the mem-
bership problem MEMBERSHIR-DL) is NP-hard. (In fact, it is co-NP-complete; see [8].)
(The same is true of positive-term decision lists.)

However, in the case df-decision lists, Eiteet al. [8] have established that the membership
problem can be solved if the DNF is positive.

10

Theorem 4.3 Deciding whether gositive DNF formula¢ represents a function ih-DL can
be solved in polynomial time.

4.2 Extending and learning decision lists

It is often important to determine, given a géof points labelled ‘true’ and a st of points
labelled ‘false’, whether there is a Boolean function in a certain alasisat is anexten-

sion of the partially defined Boolean function pdBf’,). In other words, the problem is

to determine whether there i € C such thatf(y) = 0 fory € F and f(y) = 1 for

y € T. In many applications, it is also important to produce such an extension, efficiently.
Rivest [19] developed the followintgarning algorithm This takes as input a sequence (or
sample)s = ((y1,01),- -, (ym, b)) Of labelled points of{0,1}" (wherey; € {0,1}" and

b; € {0,1}), and finds, if one exists, a decision listin.(K') that is an extension of the sample
(or, if you like, of the pdBf corresponding to the sample). (We use an ordered sample of la-
belled points rather than simply two subsétg” because this is more natural in many learning
contexts. However, it should be noted that the decision list output by the following algorithm
does not depend on the ordering of the labelled points in the sample.)

The extension (or learning) algorithm may be described as follows. At each step in the con-
struction of the required decision list some of the examples have been deleted, while others
remain. The procedure is to run throughseeking a functioy € K and a bitc such that,

for all remaining pointsy;, whenevery(y;) = 1 thenb; is the constant Boolean value The

pair (g, c) is then selected as the next term of the sequence defining the decision list, and all the
examples satisfying are deleted. The procedure is repeated until all the examplesawe

been deleted.

Let{g1, g2, ..., 9,} be an enumeration of. The algorithm is as follows.

set/ = {1,2,...,m}; j;== 1;
repeat
if foralliel, g;(y;) =1impliesb; = c
then begin select(g;,c) ;
delete from/ all i for whichg,(y;) = 1;
j= 1 end
else j.= j+1;

11

until I =10

Note, of course, that the way in whicti is enumerated has an effect on the decision list output
by the algorithm: different orderings of the functionsfinpotentially lead to different decision
lists, as the following example demonstrates.

Example: Suppose we want to find2adecision list on five variables that is an extension of the
pdBf described by the following labelled sample:

S = ((ybbl)?(y27b2>7(y37b3)7(y47b4>7(y57b5)7(y6»b6))
= ((10000,0), (01110, 0), (11000, 0), (10101, 1), (01100, 1), (10111, 1)) .

Suppose we list the functions &f = M - in lexicographic (or dictionary) order, based on the
orderingxy, xo, 3, T4, T5, T1, To, T3, T4, T Of the literals. The first few entries in the list are:
the identicallyd monomiall, z, x,22, z123. Then the algorithm operates as follows. To begin,
we select the first item from the list which satisfies the required conditions. Cieavily not

do, because all the examples satisfy it but some have (ledoed some have labél Also z; will

not do, because (for examplg) andy, both satisfy it but; # b,. However,z,z, is satisfied
only by ys, andbs = 0, S0 we selectz; x5, 0) as the first term in the decision list, and delgie
The subsequent steps are as follows:

select(z;z3, 1), deletey, andys;

select(xq,0), deletey; ;

(
select(zq14,0), deleteys;
(

select(1, 1), deleteys.

In this case the output decision list is therefore
(1'11‘2, 0)7 ('le?n]-)7 (xla 0)7 (jll'éla 0)7 (1a 1)
Suppose instead that the functiongin= M; , were enumerated instead in such a way that the

smaller monomials came first; that is, we started witthen listed (in lexicographic order) all
monomials of length, then all of length:

17 X1, T2, T3, T4, Ts, jla f?a £37 'j‘47 */E57 X1T2, T1T3, T1T4y - - - -

12

In this case, the decision list output by the algorithm isttfeecision list

(x5a 1)a (xh 0)7 ($47 0)7 (xQ’ 1)'

This is simpler, in the sense that it id alecision list rather than 2zxdecision list.

It is easily verified that both decision lists are indeed extensions of the pdBf given by the sam-
ple. O

Correctness of the algorithm in general is easily established [19, 2].

Theorem 4.4 Suppose thalk(is a set of Boolean functions containing the identicalljunc-
tion, 1. Suppose that is a sample of labelled elements{af, 1}". If there is an extension in
DL(K) of the partially defined Boolean function describedsbthen the above algorithm will
produce such an extension.

The extension algorithm is also efficient: whéh = M, ;, so that the clas® L(K) is k-

DL, then the algorithm is easily seen to have running tid{e:n**!) for fixed k. There is no
guarantee, however, that the algorithm will necessarily produce a decision list that is nearly as
short as it could be, as Hancoekal.[12] have shown.

Eiteret al.[8] considered -decision lists in some detail and were able to find an improved (that
is, faster) extension algorithm. In fact, rather than a running-tim@(efin?), their algorithm

has linear running timé&(mn). They also develop polynomial delay algorithnfor generating

all 1-decision list extensions of a pdBf (when such extensions exist). Such an algorithm outputs,
one-by-one, and without repetition, all extensions of the pdBf in such a way that the running
time between outputs is polynomial inn. (This is a reasonable requirement: to ask for the
total time to generate all extensions to be polynomiakin would be inappropriate since the
number of extensions may well be exponentiakin.)

4.3 Algorithmic issues for positive-term decision lists

For positive-term decision lists, Guijaret al. [10] have shown that a number of problems
which are intractable for general decision lists become efficiently solvable.

13

The following result is useful. It shows that the question of whether two positive-term decision
lists are equivalent (that is, represent the same function) can be resolved quite simply.

Theorem 4.5 (Guijarro et al.[10]) There is an algorithm with running tim@(n(p + q)pq)
which, given two positive-term decision lists ervariables, involvingy and g tests, decides
whether or not the decision lists represent the same function.

Proof: Suppose the decision lists ake, L,. For any test” from L; and any test from L,
lety(T,S) € {0,1}" have ones in precisely those positianfer which z; appears ifl” or S.
Let f1, f> be the functions computed by, and L,. Supposef; # f> and letz be such that
fi(z) # fa(z). Let (T, c) be the first term of_; ‘activated’ by (meaning thaf’ is the first test
in L, passed by), The first term ofL, activated by: is then necessarily of the for®, 1 — ¢).
Then, as can easily be sedi(y(T,S)) = cand fo(y(T,S)) = 1 — c. Thus there exists tests
T andS of Ly, Lo, respectively, such thaf (y(7,S)) # f2(y(T,S)). Conversely, of course, if
suchT, S exist thenf; # f,. So it suffices to check, for each of the pairs (7, S), whether
fHiy(T,S)) = fo(y(T,S)) and, for each pair, this can be donedfin(p + ¢)) time. O

As Guijarroet al. observe, the existence of efficient algorithms for other problems follows from
this result. For example, to check whether a term is redundant (unecessary), simply remove
it and check the equivalence of the new decision list with the original. Furthermore, to check
whether a positive-term decision list represents a positive function, one can remove from the list
all redundant terms (using the redundancy-checking method just described) and check whether
the remaining terms all have labglthey do so if and only if the function is positive.

5 Properties of1-decision lists

5.1 Threshold functions andl-decision lists

A Boolean functiont defined on{0, 1}" is athreshold functionf there arew € R" andf € R
such that

where(w, z) = w’'z is the standard inner product efandz. Given suchw andd, we say that
t is represented blyw, 6] and we writet — [w, #]. The vectorw is known as theveight-vectoy
andd is known as thehreshold We denote the class of threshold functions{on1 }" by 7,,.
Note that any € T,, will satisfy ¢t < [w, 6] for ranges ofw andé.

We have the following connection betweéfrdecision lists and threshold functions [7] (see
also [3]).

Theorem 5.1 Any1-decision list is a threshold function.

Proof: We prove this by induction on the number of terms in the decision list. Since the
identically-one functiorl is regarded as a monomial of lengthwe may assume that decision

lists output Suppose, for the base case of the induction, that a decision list has just one term,
and is of the form(x;, 1), or (z;,1), or (1,1), wherel is the identicallyt function. (Note

that if it were of the form(x;,0), (z;,0), or (1,0) then, since a decision list outpuisby
default, the term is redundant, and the decision list computes the identidaihction, which

is certainly a threshold function.) In the first case, the function may be represented as a threshold
function by taking the weight-vector to i§e, ..., 0,2,0,...,0), where the non-zero entry is in
positioni, and by taking the threshold to ke In the second case, we may take weight-vector
(0,...,0,—2,0,...,0) and threshold-1. In the third case, the function is the identically-
function, and we may take as weight-vector theOallector, and threshold. Assume, as the
inductive hypothesis, that any decision list of lengtis a threshold function, and suppose we
have a decision list of length+ 1,

f = (617 Cl)7 (€2762>7 ey (gr-i-lacr-i-l)a

where eaclt; is a literal, possibly negated. We shall assume, without any loss of generality (for
one can simply rename the variables or, equivalently, permute the entries of the weight vector),
that/; = x; or z;. By the induction hypothesis, the decision list

(627 C2>7 R (£T+17 CT+1)

is a threshold function. Suppose it is represented by weight-vecter (w,...,w,) and
thresholdd, and let||wl||; = > ., |w,| be thel-norm of w. There are four possibilities for
(¢4, c1), as follows:

(x1,1), (21,0), (Z1,1), (1,0).

15

Denoting bye; the vector(1,0,...,0), and lettingM = |lwl|/; + |f] + 1, we claim that the
decision listf is a threshold function represented by the weight-veatfoand threshold’,
where, respectively,

w = w+ Me, 0 =0,
w = w— Me, 0 =0,
w = w—Me, 0 =0—M,
w = w+ Mey, 0 =0+ M.

This claim is easy to verify in each case. Consider, for example, the third case &, 1},
(W' z) = {(w— Mey,z) = (w,x) — My,
and thereforéw’, z) > 6’ = 6 — M if and only if
(w,x)y — Mxy > 60— M.

If z; = 0 (in which case the decision list outpuity this inequality becomegu, x) > 6 — M.
Now, for anyz € {0, 1}", —||wl|j; < (w,z) < ||w];, and

0—M=0—([[w] +0]+1) = =flw]i =1+ (0 = |0]) < —[w]y =1 < —lwl,
so in this case the inequality is certainly satisfied, and the output of the threshold fundtjon is
equal to the output of the decision list. Now suppose that 1. Then the inequality
(w,x) = Mxy > 60— M

becomesw,z) — M > 6 — M, which is(w,z) > 6. But, by the inductive assumption, the
decision list

=, ca), . (b1, crpa)
is a threshold function represented by the weight-veetand threshold. So in this case, the
output of the threshold function isif and only if the output of decision list’ is 1, which is
exactly howf calculates its output in this case. So we see that this representation is indeed
correct. The other cases can be verified similarly.

5.2 Characterizations ofl1-decision lists

Eiteret al.[8] obtain some results relating the clasd edecision lists closely to other classes of
Boolean function. To describe their results, we need a few more definitions concerning Boolean
functions.

16

Fori betweenl andn, lete; € {0, 1}"™ haveith entryl and all other entrie8. Then, a Boolean
function is said to b@-monotoniaf for each pair; and;j betweenl andn, either

for all x with z; = 0 and x; = 1, f(z) < f(z + e; — €;),

or
for all x with ; = 0 and z; =1, f(x) > f(z + e; — €;).

It is easily seen that threshold functions @&renonotonic. (However, there atemonotonic
functions that are not threshold functions.)

A Boolean function igead-onceif there is a Boolean formula representifign which each
variable appears at most once. (So, for eade formula contains either; at most once, or
z; at most once, but not both.)

A DNF formula isHorn if each term contains at most one negated literal and a function is said
to be Horn if it has a representation as a Horn DNF. Given a dlae§Boolean functions, the
renaming closuref H is the set of all Boolean functions obtained fraimby replacing every
occurrence of some literals by their complements. (For example, we might replace:etgry

Z1 and everyz; by z;.)

Eiteret al. [8] obtained the following characterisations (among others):

Theorem 5.2 The classl-DL coincides with the following classes:

e the class of alk-monotonic read-once functions;
e the class of all read-once threshold functions;

e the renaming closure of the class of functighsuch thatf and f are Horn.

In particular, while Theorem 5.1 establishes thatecision lists are threshold functions, the
theorem just given states that thelecision lists are precisely those threshold functions that are
also read-once.

Eiter et al. show that these characterisations do not extend-Bd. for £ > 1. They do,
however, have one characterisatiorkdDL. Given a clasd? of Boolean functions, the class of

17

nested differencas H is defined as the set of all Boolean functions of the form

ha\ (ha \ (- (hia \)

for hi, ho,...,hy € H. Eiteret al. prove thatk-DL coincides with the nested differences of
clauses with at most-literals. (They show too that-DL is the set of nested differences of
k-CNF.)

For k > 1, k-decision lists are not necessarily threshold functions, but they can be described
in terms ofpolynomial threshold functions convenient generalization of threshold functions.
Let [n](9) denote the set of all subsets of at masibjects from[n] = {1,2,...,n}. For any

x = (x1,29,...,2,) € {0,1}", x5 shall denote the product of the for i € S. For example,
Tpag = r1xax3. WhenS = (), the empty set, we interprets as the constant. With this
notation, a Boolean functiofi defined on{0, 1}" is apolynomial threshold functioof degree

d if there are real numberss, one for eactt € [n]@, such that

flz) =1 Z wgxg > 0.
Sen](@

This may be written

Sen](@

where thesign functionsgn is such thatgn(x) = 1if > 0 andsgn(z) = 0if x < 0.

Theorem 5.1 shows thatdecision lists are threshold functions. An analogous argument estab-
lishes the following.

Theorem 5.3 Any k-decision list is a polynomial threshold function of degkee

It is known [1] that almost every Boolean function has threshold order at |@ed&t. This,
together with Theorem 5.3, means that almost every Boolean function willineedn /2] in
order to be ink-DL.

18

6 Threshold decision lists

6.1 Definition and geometrical interpretation

We now consider the class of decision lists in which the individual tests are themselves threshold
functions. We shall call such decision lidgtweshold decision listsbut they have also been
calledneuraldecision lists [16] andinear decision lists [21].

Suppose we are given the points{in 1}", each one labelled by the value of a Boolean function

f. Of course, since there are very few threshold functions, it is unlikely that the true and false
points of f can be separated by a hyperplane. One possible alternative is to try a separator of
higher degree, representirfgas a polynomial threshold function. Here we consider a different
approach, in which we successively ‘chop off’ like points (that is, points all possessing the same
label). We first use a hyperplane to separate off a set of points all having the same classification
(either all are true points or all are false points). These points are then removed from consid-
eration and the procedure is iterated until no points remain. For simplicity, we assume that at
each stage, no data point lies on the hyperplane. This procedure is similar in nature to one of
Jeroslow [14], but at each stage in his procedure, only positive examples may be ‘chopped off’
(not positiveor negative). We give one example for illustration.

Example: Suppose the functiori is the parity function, so that the true points are precisely
those with an odd number of ones. We first find a hyperplane such that all points on one side
of the plane are either positive or negative. It is clear that all we can do at this first stage is
chop off one of the points since the nearest neighbours of any given point have the opposite
classification. Let us suppose that we decide to chop off the origin. We may take as the first
hyperplane the plane with equation+ y» + - - - + y,, = 1/2. (Of course, there are infinitely
many other choices of hyperplane which would achieve the same effect with respect to the data
points.) We then ignore the origin and consider the remaining points. We can next chop off all
neighbours of the origin, all the points which have precisely one entry equalAd of these

are positive points and the hyperplane-ys+- - - + v, = 3/2 will separate them from the other
points. These points are then deleted from consideration. We may continue in this manner. The
procedure iterates times, and at stagein the procedure we ‘chop off’ all data points having
precisely(i — 1) ones, by using the hyperplane + y» + --- + y, = i — 1/2, for example.
(These hyperplanes are in fact all parallel, but this is not necessary.) ad

19

Note that, by contrast, Jeroslow’s method [14] (described above) reqtiiregerations in this
example, since at each stage it can only ‘chop off’ one positive point.

We may regard the chopping procedure as deriving a representation of the function by a thresh-
old decision list. If, at stage of the procedure, the hyperplane with equatjo)} , w;y; = 6

chops off true (false) points, and these lie on side of the hyperplane with eqdafiqnu,y; >

g, then we take as thé&h term of the threshold decision list the paif;, 1) (respectively,
(fi,0)), wheref; — [w, 0]; otherwise take théh term to be(g;, 1) (respectively(g;, 0)), where

9i {_w7 _8]

If one applies this construction to the series of hyperplanes resulting from the Jeroslow method,
a restricted form of decision list results—one in which all terms are of the fgym). But, as

we saw earlier, such a decision list is quite simplydiggunctionf; Vv f; vV The problem of
decomposing a function into the disjunction of threshold functions has been considered also by
Hammeret al. [11] and Zuev [22]. Hammeet al. defined thehreshold numbeof a Boolean
function to be the minimunms such thatf is a disjunction ofs threshold functions, and they
showed that there is a positive function with threshold nunﬁ%b /n. Zuev [22] showed that
almost all positive functions have threshold number of this order, and that almost all Boolean
functions have a threshold number tha®i®" /n) andO(2" Inn/n).

The decision lists arising from the chopping procedure are more general than disjunctions of
threshold functions, just as-decision lists are more general thesDNF. Such threshold de-
cision lists may provide a more compact representation of the function. (That is, since fewer
hyperplanes might be used, the decision list could be smaller.)

6.2 Algorithmics and heuristics of the chopping procedure

The chopping procedure described above was in some ways merely a device to help us see that
threshold decision lists have a fairly natural geometric interpretation. Furthermore, since all
points of {0, 1}™ are labelled, it is clear that the method, if implemented, would generally be
inefficient. However, if only some of the points are labelled, so that we have a partially-defined
Boolean function, then the chopping procedure might constitute a heuristic for building a thresh-
old decision list extension of the pdBf. This was considered by Marchand and Golea [16]. (See
also [17].) Marchanckt al. derive a greedy heuristic for constructing a sequence of ‘chops’.
This relies on an incremental heuristic for the NP-hard problem of finding at each stage a hy-

20

perplane that chops off as many remaining points as possible. Reports on the experimental
performance of their method can be found in the papers cited.

7 Threshold network representations

We now show how we can make use of the chopping procedure to find a threshold network
(the simplest type of artificial neural network network) representing a given Boolean function.
We use linear threshold networks having just one hidden layer. Such a network will consist of
k ‘hidden nodes’, each of which computes a threshold function ohtimputs. The (binary-
valued) outputs of these hidden nodes are then used as the inputs to the output node, which
calculates a threshold function of these. Thus, the neural network computes a threshold function
of the outputs of theé: threshold functions computed by the hidden nodes. If the threshold
function computed by the output node is described by weight-vetorR* and threshold,

and the threshold function computed by hidden nodef; « [w®, @], then the threshold
network as a whole computes the functibnR” — {0, 1} given by

k
fly) =1 Z@fz(y) > ¢;
i=1
that is, .
f(1y2 ... yn) = sgn (Z B sgn (i w§i)yj — @(i)> — ¢> :
=1 j=1
wheresgn(z) = 1if x > 0 andsgn(z) = 0 if z < 0.

It is well-known that any Boolean function can be represented by a linear threshold network
with one hidden layer (albeit with potentially a large number of nodes in the hidden layer).
The standard way of doing so is based directly on the function’s disjunctive normal form. The
threshold decision list representation of a function gives rise to a different method of represent-
ing Boolean functions by threshold networks.

We have seen that adecision list is a threshold function and thak-@ecision list is a poly-
nomial threshold function of degrée In an easy analogue of this, we see that any threshold
decision list is a threshold function of threshold functions. But a threshold function of threshold
functions is nothing more than a two-layer threshold network of the type considered here. So,

21

by representing a function by a threshold decision list and then representing this as a threshold
function over the threshold functions in the decision list, we obtain another method for finding
a threshold network representation of a Boolean function. It is clear that the resulting repre-
sentation is in general different from the standard DNF-based one. For example, the standard
representation of the parity function @A, 1}™ will require a neural network witB"~! hidden

units, whereas the representation derived from the procedure described here will require only
hidden units.

Marchandet al. [16] drew attention to (essentially) this link between threshold decision lists
and threshold networks. (Their networks were, however, slightly different, in that they had
connections between nodes in the hidden layer.)

8 Representational power of threshold decision lists

8.1 A function with long threshold decision list representation

Turan and Vatan gave a specific example of a function with a necessarily long threshold decision
list representation. The inner-product modaléunctionIP, : {0,1}*" — {0,1} is given by
IPy(z,y) = D), ziy;, for z,y € {0,1}", where@® denotes addition modul®. Turan and

Vatan proved the following.

Theorem 8.1 In any threshold decision list representationlf,, the number of terms satis-
fiess > 2/2 — 1.

8.2 Multi-level threshold functions

We saw in the earlier example that the parity function can be represented by a threshold deci-
sion list withn terms. We also noted that the hyperplanes in that example were parallel. By
demanding that the hyperplanes are parallel, we obtain a special subclass of threshold decision
lists, known as thenulti-level threshold functionsThese have been considered in a number of
papers, such as [4, 18, 20], for instance.

22

We define the class of-level threshold functions to be the set of Boolean functions repre-
sentable by a threshold decision list of length at mamtd having the test hyperplanes parallel
to each other.

Geometrically, a Boolean function is anlevel threshold function if there are parallel hy-
perplanes with the property that thet 1 regions defined by these hyperplanes each contain
only true points or only false points. Equivalently (following Bohossion and Bruck f4ig,an
s-level threshold function if there is a weight-vector= (w;, ws, . .. ,w,) such that

flx)=F (Z wz‘%))

where the functiorF : R — {0, 1} is piecewise constant with at most- 1 pieces.

Bohossian and Bruck observed that any Boolean functior2islavel threshold function, an
appropriate weight-vector being = (2"~!,2"=2 ... 2,1). For that reason, they paid particu-

lar attention to the question of whether a function can be computed by a multi-level threshold
function where the number of levels is polynomial. A related question considered by Bohossian
and Bruck is whether a function can be computed by such a function, with polynomial weights
(in addition to the restriction that the number of levels be polynomial).

It was explained earlier that, through the chopping procedure, a threshold decision list and,
subsequently, a threshold network, could be produced representing a given Boolean function.
The translation from threshold decision list to threshold network is established by an analogue
of Theorem 5.1. From the proof of that theorem, it emerges that the weights in the resulting
threshold network are, necessarily, exponential in size. It is often useful to focus on networks
of the same structure, which is to say, having one ‘hidden’ layer, but which are restricted to
have integer weights polynomial im. (Any such network can, insofar as it is regarded as
computing a Boolean function, be assumed to have integer weights: we can simply scale up
rational weights appropriately; and there is never a need for irrational weights since the domain
is discrete.) The class of functions that can be computed by threshold networks with one hidden
layer (that is, of deptR) is denoted.T,, and the subset of those in which the (integer) weights
can be polynomial in the number of inputs (or variables)is denoted.T,. Let LTM denote

the set of Boolean functionsg (or, more precisely, the set of sequences of Boolean functions
(f») wheref maps from{0, 1}") that can be computed by a multi-level threshold function with

a polynomial number of levels. Then the following inclusion is valid.

23

Theorem 8.2 (Bohossian and Bruck [4])Let LTM denote the set of Boolean functions realis-
able by multi-level threshold functions with a polynomial number of levels. Thah C LT,.

Bohossian and Bruck also obtain ‘separation’ results, which show that there are functions in
LT, but not inLTM; and that there are functionsifi'M, but which are not representable with
polynomial-sized weights.

9 Conclusions

In this report, we have looked at decision lists, a powerful and versatile way of representing
Boolean functions. Decision lists have a number of interesting properties. There are, more-
over, efficient algorithms for certain problems associated with classes of decision list. Allowing
decision lists to be based on threshold functions allows greater generality, and draws connec-
tions with threshold networks. There are still many open problems concerning decision lists,
particularly, threshold decision lists.

References

[1] Martin Anthony. Classification by polynomial surfacé&iscrete Applied Mathematics
61, 1995: 91-103.

[2] Martin Anthony and Norman L. BiggComputational Learning Theory: An Introduc-
tion, Cambridge University Press, Cambridge, UK, 1992.

[3] Martin Anthony, Graham Brightwell and John Shawe-Taylor. On specifying Boolean
functions by labelled exampleBiscrete Applied Mathematic61, 1995: 1-25.

[4] V. Bohossian and J. Bruck. Multiple threshold neural logicAblvances in Neural Infor-
mation Processing, Volume 10: NIPS’'19%%ichael Jordan, Michael Kearns, Sara Solla
(eds), MIT Press, 1998.

[5] Nader Bshouty. A subexponential exact learning algorithm for DNF using equivalence
queriesInformation Processing Lette&9(1), 1996: 37-39.

24

[6] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random exam-
ples.Information and Computatiqr82, 1989: 231-246.

[7] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A general
lower bound on the number of examples needed for learimfigrmation and Computa-
tion, 82, 1989: 247-261.

[8] Thomas Eiter, Toshihide Ibaraki and Kazuhisa Makino. Decision lists and related
Boolean functionsTheoretical Computer Scienc270(1-2), 2002: 493-524.

[9] M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive
normal form.Journal of Algorithms21, 1996: 618-628.

[10] David Guijarro, Victor Lain and Vijay Raghavan. Monotone term decision ligtseo-
retical Computer Scien¢g@56, 2001: 549-575.

[11] P. L Hammer, T. Ibaraki and U. N. Peled. Threshold numbers and threshold completions.
Annals of Discrete Mathematidd, 1981: 125-145.

[12] T. Hancock, T. Jiang, M. Li and J. Tromp. Lower bounds on learning decision lists and
trees.Information and Computatiqri26(2), 1996: 114-122.

[13] T. Hegedis and N. Megiddo. On the geometric separability of Boolean functidiss.
crete Applied Mathematic$6, 1996: 205-218.

[14] R.G. Jeroslow. On defining sets of vertices of the hypercube by linear inequddittes.
crete Mathematigsll, 1975: 119-124.

[15] Matthias Krause. On the Computational Power of Boolean Decision Lists. In Proceedings
of the 19th Annual Symposium of Theoretical Aspects of Computer Science (STACS),
2002.

[16] Mario Marchand and Mostefa Golea. On learning simple neural concepts: from halfspace
intersections to neural decision listéetwork: Computation in Neural Systems 1993:
67-85.

[17] M. Marchand, M. Golea and P. Rar). A convergence theorem for sequential learning in
two-layer perceptrongurophys. Lettl1, 1990, 487.

[18] S. Olafsson and Y. S. Abu-Mostafa. The capacity of multilevel threshold functi6E&
Transactions on Pattern Analysis and Machine Intelligeri€e(2), 1988: 277-281.

25

[19] Ronald R. Rivest. Learning Decision Lisiachine Learning (3), 1987: 229-246.

[20] R. Takiyama. The separating capacity of a multi-threshold elen€BE Transactions
on Pattern Analysis and Machine Intelligende 1985: 112-116.

[21] Gyorgy Tu@n and Farrokh Vatan. Linear decision lists and partitioning algorithms for the
construction of neural networks. Foundations of Computational Mathematics: selected
papers of a conference held at Rio de Janeiro, Springer 1997, pp 414-423

[22] A. Zuev and L. I. Lipkin. Estimating the efficiency of threshold representations of
Boolean functionsCybernetic4, 1988: 713-723. (Translated from Kibernetika (Kiev),
6, 1988: 29-37.)

26

