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Abstract

This report is an exposition of decision lists and threshold decision lists. A version of
this is to appear as a chapter in a book on Boolean functions, but the report itself is relatively
self-contained. The key areas explored are the representation of Boolean functions by deci-
sion lists and threshold decision lists; properties of classes of decision list; and algorithmic
questions associated with decision lists.

1 Introduction

Decision lists provide a useful way of representing Boolean functions. Just as every Boolean
function can be represented by a DNF formula, we shall see that every Boolean function can also
be represented by a decision list. This representation is sometimes more compact. By placing
restrictions on the type of decision list considered, we obtain some interesting subclasses of
Boolean functions. As we shall see, these subclasses have some interesting properties, and
certain algorithmic questions can be settled for them.

∗A version of this is to appear as a chapter inBoolean Functions: Volume II, edited by Yves Crama and Peter
Hammer
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2 Boolean functions and decision lists

2.1 Boolean functions

We shall not give here a detailed exposition of Boolean functions and formulae; full details may
be found in many texts. Any Boolean function (that is, any function from{0, 1}n to {0, 1} can
be expressed by adisjunctive normal formula(or DNF), usingliteralsx1, x2, . . . , xn, x̄1, . . . , x̄n,
where thēxi are known asnegated literals. A disjunctive normal formula is one of the form

T1 ∨ T2 ∨ · · · ∨ Tk,

where eachTl is atermof the form

Tl =

(∧
i∈P

xi

)∧(∧
j∈N

x̄j

)
,

for some disjoint subsetsP,N of {1, 2, . . . , n}. A Boolean function is said to be anl-DNF if
it has a disjunctive normal formula in which, for each term, the number of literals (|P ∪N |) is
at mostl; it is said to be ak-term-l-DNF if there is such a formula in which, furthermore, the
number of termsTi is at mostk.

2.2 Definition of decision lists

Suppose thatK be any set of Boolean functions on{0, 1}n, n fixed. We shall usually suppose
(for the sake of simplicity) thatK contains the identically-1 function 1. A Boolean function
f with the same domain asK is said to be adecision listbased onK if it can be evaluated as
follows. Given an exampley, we first evaluatef1(y) for some fixedf1 ∈ K. If f1(y) = 1, we
assign a fixed valuec1 (either0 or 1) to f(y); if not, we evaluatef2(y) for a fixedf2 ∈ K, and
if f2(y) = 1 we setf(y) = c2, otherwise we evaluatef3(y), and so on. Ify fails to satisfy any
fi thenf(y) is given the default value0.

The evaluation of a decision listf can therefore be thought of as a sequence of‘if then
else’ commands:
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if f1(y) = 1 then setf(y) = c1

else if f2(y) = 1 then setf(y) = c2

. . .

. . .
else if fr(y) = 1 then setf(y) = cr

else setf(y) = 0.

We defineDL(K), the class ofdecision lists based onK, to be the set of finite sequences

f = (f1, c1), (f2, c2), . . . , (fr, cr),

such thatfi ∈ K andci ∈ {0, 1} for 1 ≤ i ≤ r. The values off are defined byf(y) = cj where
j = min{i | fi(y) = 1}, or 0 if there are noj such thatfj(y) = 1. We call eachfj a test(or,
following Krause [15], aquery) and the pair(fj, cj) a termof the decision list.

Decision lists were introduced by Rivest [19], where a key concern was develop a learning
algorithm for them. (This is discussed later in this report.)

Note that we do not always draw a strong distinction between a decision list as a Boolean
function, and a decision list arepresentationof a Boolean function. Strictly speaking, of course,
a decision list is a representation of a Boolean function, just as a DNF formula is.

There is no loss of generality in requiring that all testsfi occurring in a decision list are distinct.
This observation enables us to obtain the following bound:

|DL(K)| ≤
|K|∑
i=0

(
|K|
i

)
i!2i ≤ 2|K||K|!

|K|∑
i=0

1

(|K| − i)!
= 2|K||K|!

|K|∑
i=0

1

i!
≤ e2|K||K|!.

(Each decision list of lengthi is formed by choosingi functions ofK, in a particular order, and
assigning aci ∈ {0, 1} to each.)

Example: Suppose thatK = M3,2, the set of monomials (that is, simple conjunctions or terms)
of length at most two in three Boolean variables. Consider the decision list

(x2, 1), (x1x̄3, 0), (x̄1, 1).

Those examples for whichx2 is satisfied are assigned the value1: these are010, 011, 110, 111.
Next the remaining examples for whichx1x̄3 is satisfied are assigned the value0: the only such
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example is100. Finally, the remaining examples for which̄x1 is satisfied are assigned the value
1: this accounts for000 and001, leaving only the example101 which is assigned the value0. ut

Suppose thatK = Mn,k is the set of monomials (or terms) consisting of at mostk literals, so
each test is a simple conjunction of degree at mostk. Then, following Rivest [19],DL(K) is
usually denotedk-DL and we call such decision listsk-decision lists. It should be noted, how-
ever, that this terminology has also been used to mean something slightly different: Krause [15]
defines ak-decision list to be one in which each test involves at mostk variables, and this is a
more general class thank-DL.

Note that whenK = Mn,k, we have|K| ≤ (2n)k and hence

|k-DL| = |DL(Mn,k)| ≤ 2(2n)ke
(
(2n)k

)
! = 2O(nk logn),

for fixedk.

Later, we will want to considerK being the set ofthreshold functions, but unless it is explicitly
said so,K will either beMn,k for some fixedk, or simplyMn, the set of all monomials onn
variables.

2.3 Special types of decision list

By restricting the types of decision list considered, subclasses of decision list arise. We have
already witnessed this, when we considered thek-decision lists; these arise from restricting the
degree of each test in the decision list to be no more thank. Later we shall look more closely at
the very special case in whichk = 1.

Rather than restrict the degree of each individual test, a restriction could be placed on the total
number of terms in the decision list: anr-term decision list is (a function representable by) a
decision list in which the number of terms is no more thanr. We can also combine structural
restrictions on decision lists. For example, ther-term k-DLs are thosek-DLs in which the
number of terms is at mostr. (So, here, there is a restriction both on the number of terms, and
on the degree of each test.)

As observed by Guijarroet al. [10], any function representable by a decision list with few terms
(but possibly high degree) is also representable by one with terms of low degree (but possibly

4



many terms).

Theorem 2.1 (Guijarro et al. [10]) Suppose thatf : {0, 1}n → {0, 1} is (representable by) a
decision list withr terms. Thenf is also (representable by) anr-decision list.

Proof: Suppose the decision list

f = (f1, c1), (f2, c2), . . . , (fr, cr)

is given, where, as we may assume,cr = 1. We construct anr-decision listg representing the
same function. First, for each choice of a literal from each off1, . . . , fr, we have a term ofg of
the form(T, 0), whereT is the conjunction of the negations of these literals. We take all such
terms, in any order, as the first set of terms ofg. Note that each suchT is of degree no more
thanr. For example, iff is the decision list

(x2, 1), (x̄1x4, 0), (x1x3, 1),

then take the first four terms ofg, in any order, to be

(x̄2x1x̄1, 0), (x̄2x̄4x̄1, 0), (x̄2x1x̄3, 0), (x̄2x̄4x̄3, 0).

(In fact, the first term is vacuous and can be deleted.) Next, we consider in turn each of the
terms(fi, ci) asi is decreased fromr to 2. Corresponding tofi, we form terms(T, ci) of g by
choosing a literal from each preceding termf1, . . . , fi−1 in f , and forming the conjunction of
the negations of these. (Note that these tests have degree no more thani− 1, which is less than
r.) If c1 = 0 we are then done; otherwise, we add(1, 1) as the last term ofg. For example, for
the example decision list, a final suitableg is as follows:

(x̄2x̄4x̄1, 0), (x̄2x1x̄3, 0), (x̄2x̄4x̄3, 0), (x̄2x1, 1), (x̄2x̄4, 1), (x̄2, 0), (1, 1).

(We have deleted the redundant first term created above). ut

Additionally, Bshouty [5] has obtained the following result, which gives a better dependence on
r (at the expense of some dependence onn).

Theorem 2.2 (Bshouty [5]) Suppose thatf : {0, 1}n → {0, 1} is (representable by) a decision
list with r terms. Thenf is also (representable by) ak-decision list, wherek = 4

√
n lnn ln(r + 1).
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The proof of Bshouty’s theorem (which is omitted here) relates decision lists to certain type of
decision tree (in which the leaves arek-decision lists).

Another special type of decision list arises when the tests are required to be positive monomials.
Guijarroet al. [10] refer to such decision lists asmonotone term decision lists. Here, we shall
instead call thempositive-term decision lists. Note that, even though the tests are positive, the
overall function computed by the decision list need not be positive. Guijarroet al. studied a
number of aspects of this class, and, as we shall see later, discovered that there are efficient
algorithms for many problems associated with the class.

3 Representation of Boolean functions as decision lists

3.1 DNF and decision list representations

We first state a relationship betweenk-decision lists and special classes of Boolean functions.
For any1 ≤ n, k-DNF denotes the Boolean functions which have a DNF formula in which
each term is of degree at mostk; dually, k-CNF denotes the set of functions having a CNF
representation in which each clause involves at mostk literals.

The following result, noted by Rivest [19], is easily obtained.

Theorem 3.1 LetK be any set of Boolean functions. The disjunction of any set of functions in
K is a decision list based onK. Explicitly,f1 ∨ f2 ∨ · · · ∨ fr is represented by the decision list

(f1, 1), (f2, 1), . . . , (fr, 1).

It follows immediately from this that anyk-DNF function, as the disjunction of terms of degree
at mostk, is also ak-decision list. It is easy to see, however, that, for0 < k < n, there
arek-decision lists that are notk-DNF functions. For example, the functionf with formula
x1x2 . . . xn is certainly not ak-DNF. (This is quite apparent: it has just one true point, whereas
anyk-DNF has at least2n−k ≥ 2 true points, since any one of its terms does.) However,f can
be expressed as the following1-decision list:

(x̄1, 0), (x̄2, 0), . . . , (x̄n, 0), (1, 1).
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If K contains the identically-1 function1, thenDL(K) is closed under complementation, since

(f1, 1− c1), (f2, 1− c2), . . . (fr, 1− cr), (1, 1)

is the complement of
(f1, c1), (f2, c2), . . . , (fr, cr).

Thus, in contrast to the DNF and CNF representations, the decision list representations of a
function and its negation are of the same size (but, possibly, for a difference of one additional
term).

In particular, sincek-CNF functions are the complements ofk-DNF functions, and sincek-DL
containsk-DNF, we have thatk-DL containsk-CNF also. (Here, by identifying it as a monomial
with no literals, we use also the fact that the identically-one function belongs toK = Mn,k.)
In fact, we have the following result, due to Rivest [19]. The fact that the containment is strict
demonstrates that thek-decision list representation is, in fact, more powerful thank-DNF and
k-CNF representations.

Theorem 3.2 (Rivest [19])For n ≥ 2 andk ≥ 1,

k-DNF∪ k-CNF⊆ k-DL,

and the containment is strict forn > 2 and0 < k < n.

Proof: The containment has been established in the arguments just given. It remains to show
that the containment is strict. We use the fact that if a Boolean function has a prime implicant
of degrees, then it does not belong tok-DNF for anyk < s. We deal first with the casek = 1.
Consider the functionf represented by the1-decision list

(x1, 0), (x2, 1), (x3, 1).

Sincef hasx̄1x2 as a prime implicant, it is not in1-DNF, and since the complementf̄ hasx̄2x̄3

as an implicant,f̄ is not in 1-DNF, and hencef is not in 1-CNF. Now supposen > 2, that
1 < k < n and thatk is odd. (The case of evenk can be treated similarly.) Letgk denote the
parity function on the firstk variablesx1, x2, . . . , xk (that is, the exclusive-or of them), regarded
as a function on{0, 1}n. Through its DNF representation,gk can be represented by ak-decision
list, `. Consider the functionf : {0, 1}n → {0, 1} represented by thek-decision list

(x̄1xk+1, 0), (x1xk+1, 1), `.
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Then,f has degree-(k + 1) prime implicantx1x̄2x̄3 . . . x̄kx̄k+1, and so is not ink-DNF. Fur-
thermore, the complement off is not in k-DNF (and hencef is not in k-CNF) because the
complement has degree-(k + 1) prime implicantx̄1x̄2 . . . x̄kx̄k+1. ut

As an interesting example of decision list representation, consider the functionfn, for evenn,
with formula

fn = x1 ∧ (x2 ∨ (x3 ∧ (· · · (xn−1 ∧ xn) · · ·).

For example,
f6 = x1 ∧ (x2 ∨ (x3 ∧ (x4 ∨ (x5 ∧ x6)))).

The functionfn is difficult to represent in DNF or CNF form: it is easily seen that bothfn and
its complement have prime implicants of degree at leastn/2, sofn cannot be represented by a
k-DNF or ak-CNF formula whenk < n/2. However,fn is easily represented by a1-decision
list, for

fn = (x̄1, 0), (x2, 1), (x̄3, 0), . . . , (xn−2, 1), (x̄n−1, 0), (x̄n, 0), (1, 1),

where we regard1 as being represented by the empty monomial (with no literals). Note that
this example almost demonstrates the strictness part of Theorem 3.2, and is, moreover, not just
in k-DL, but in 1-DL.

The inclusion ofk-DNF in k-DL shows that any Boolean function can be represented by a
decision list in which the tests are of sufficiently high degree; that is,n-DL is the set of all
Boolean functions on{0, 1}n. So, in this sense, the decision list representation is universal.
Simple counting will show that most Boolean functions need decision lists of high degree. (As
we see later, using a result on polynomial threshold functions, almost every Boolean function
needs tests of degree at leastk ≥ bn/2c in any decision list representation.)

Explicit examples can also be given of functions which have reasonably compact representa-
tions as decision lists, but which have very long DNF or CNF representations.

Let COMPn denote the function from{0, 1}2n → {0, 1} given by COMPn(x, y) = 1 if and
only if 〈x〉 > 〈y〉, where, forx ∈ {0, 1}n, 〈x〉 is the integer whose binary representation isx.
(Thus,〈x〉 =

∑n
i=1 2n−ixi.) Then, as noted in [15], for example, COMPn can be represented by

a short decision list, but has no polynomial-sized DNF or CNF formula. (It is not in the circuit
complexity classAC0

2 .) A 2-DL representation of COMPn is

(x̄1y1, 0), (x1ȳ1, 1), (x̄2y2, 0), (x2ȳ2, 1), . . . , (x̄nyn, 0), (xnȳn, 1).
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3.2 Universality of positive-term decision lists

As we have seen, every Boolean function has a decision list representation, obtained from any
DNF representation of the function. If, moreover, the function is positive and we use a positive
DNF representation, then we can obtain a positive-term decision list representation. But it is
fairly easy to see that any Boolean function (positive or not), can be represented by a positive-
term decision list, as the following result of Guijarroet al. [10] establishes.

Theorem 3.3 (Guijarro et al. [10]) Every Boolean function can be represented as a positive-
term decision list.

Proof: Supposef is a given Boolean function, and construct a positive-term decision list
as follows. Fory ∈ {0, 1}n, let Ty be the (positive) conjunction of all literalsxi which
are true ony (meaning thatyi = 1). Then, the first-term is(T11...1, f(11 . . . 1)); that is,
(x1x2 . . . xn, f(11 . . . 1)). The nextn − 1 terms consist (in any order) of all terms(Ty, f(y))
for thosey havingn − 1 ones. We continue in this way, dealing with they of weightn − 2,
and so on, until we reachy = 00 . . . 0, so the final term of the decision list (if it is needed) is
(1, f(00 . . . 0)). Clearly,f is a positive-term decision list, and it computesf .

Note that the construction in this proof will result in a very long decision list (2n terms) of high
degree (n). Some subsequent reduction in size of the list may be possible, but the question
naturally arises as to how long a positive-term decision list representation of a Boolean function
is compared to, say, the standard DNF and CNF representations. Guijarroet al. observed that
there is a sequences of functions(fn) such that the shortest length of a positive-term decision list
representingfn is exponential in the number of terms in the shortest DNF representation offn;
and that a corresponding result also holds for CNF representations. On the other hand, Guijarro
et al. (invoking results of Ehrenfeucht and Haussler [6] and Fredman and Khachiyan [9]) also
prove the following.

Theorem 3.4 ( [10]) For a Boolean functionf , let |f |dnf and |f |cnf denote, respectively, the
number of terms (clauses) in the shortest DNF (CNF) fomulae representingf , and let|f | be
the larger of these two measures. Then there is a positive-term decision list representingf and
having no more than|f |log2 |f | terms.
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4 Algorithmic aspects of decision lists

4.1 Membership problems

For a classC of functions, the(functional) membership problemfor C is as follows.

MEMBERSHIP(C)
Instance: A DNF formulaφ
Question: Does the functionf represented byφ belong toC?

A useful general result due to Hegedus and Megiddo [13] shows thatMEMBERSHIP(C) is NP-
complete for all classesC satisfying certain properties. The following definition describes these
properties.

Definition 4.1 Suppose thatC = {Cn} is a class of Boolean functions. (Here,Cn maps from
{0, 1}n.) We say that a classC has the projection propertyif
(i) C is closed under restrictions (so, all restrictions of a function inC also belong toC);
(ii) For everyn ∈ N, the identically-1 function1 belongs toCn;
(iii) There existsk ∈ N such that some Boolean function on{0, 1}k doesnotbelong toCk.

Then, we have the following result.

Theorem 4.2 (Hegedus and Megiddo [13])Suppose thatC is a class of Boolean functions
having the projection property. ThenMEMBERSHIP(C) is NP-hard.

For anyk < n, the classk-DL is easily seen to have the projection property, and hence the mem-
bership problem MEMBERSHIP(k-DL) is NP-hard. (In fact, it is co-NP-complete; see [8].)
(The same is true of positive-term decision lists.)

However, in the case of1-decision lists, Eiteret al. [8] have established that the membership
problem can be solved if the DNF is positive.
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Theorem 4.3 Deciding whether apositiveDNF formulaφ represents a function in1-DL can
be solved in polynomial time.

4.2 Extending and learning decision lists

It is often important to determine, given a setT of points labelled ‘true’ and a setF of points
labelled ‘false’, whether there is a Boolean function in a certain classC that is anexten-
sion of the partially defined Boolean function pdBf(T, F ). In other words, the problem is
to determine whether there isf ∈ C such thatf(y) = 0 for y ∈ F and f(y) = 1 for
y ∈ T . In many applications, it is also important to produce such an extension, efficiently.
Rivest [19] developed the followinglearning algorithm. This takes as input a sequence (or
sample)s = ((y1, b1), . . . , (ym, bm)) of labelled points of{0, 1}n (whereyi ∈ {0, 1}n and
bi ∈ {0, 1}), and finds, if one exists, a decision list inDL(K) that is an extension of the sample
(or, if you like, of the pdBf corresponding to the sample). (We use an ordered sample of la-
belled points rather than simply two subsetsT, F because this is more natural in many learning
contexts. However, it should be noted that the decision list output by the following algorithm
does not depend on the ordering of the labelled points in the sample.)

The extension (or learning) algorithm may be described as follows. At each step in the con-
struction of the required decision list some of the examples have been deleted, while others
remain. The procedure is to run throughK seeking a functiong ∈ K and a bitc such that,
for all remaining pointsyi, wheneverg(yi) = 1 thenbi is the constant Boolean valuec. The
pair (g, c) is then selected as the next term of the sequence defining the decision list, and all the
examples satisfyingg are deleted. The procedure is repeated until all the examples ins have
been deleted.

Let {g1, g2, . . . , gp} be an enumeration ofK. The algorithm is as follows.

setI = {1, 2, . . . ,m}; j:= 1;
repeat
if for all i ∈ I, gj(yi) = 1 impliesbi = c

then begin select(gj, c) ;
delete fromI all i for whichgj(yi) = 1;
j:= 1 end

else j:= j+1;
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until I = ∅

Note, of course, that the way in whichK is enumerated has an effect on the decision list output
by the algorithm: different orderings of the functions inK potentially lead to different decision
lists, as the following example demonstrates.

Example: Suppose we want to find a2-decision list on five variables that is an extension of the
pdBf described by the following labelled sample:

s = ((y1, b1), (y2, b2), (y3, b3), (y4, b4), (y5, b5), (y6, b6))

= ((10000, 0), (01110, 0), (11000, 0), (10101, 1), (01100, 1), (10111, 1)) .

Suppose we list the functions ofK = M5,2 in lexicographic (or dictionary) order, based on the
orderingx1, x2, x3, x4, x5, x̄1, x̄2, x̄3, x̄4, x̄5 of the literals. The first few entries in the list are:
the identically-1 monomial1, x1, x1x2, x1x3. Then the algorithm operates as follows. To begin,
we select the first item from the list which satisfies the required conditions. Clearly1 will not
do, because all the examples satisfy it but some have label0 and some have label1. Alsox1 will
not do, because (for example)y1 andy4 both satisfy it butb1 6= b4. However,x1x2 is satisfied
only byy3, andb3 = 0, so we select(x1x2, 0) as the first term in the decision list, and deletey3.
The subsequent steps are as follows:

• select(x1x3, 1), deletey4 andy6;

• select(x1, 0), deletey1;

• select(x2x4, 0), deletey2;

• select(1, 1), deletey5.

In this case the output decision list is therefore

(x1x2, 0), (x1x3, 1), (x1, 0), (x̄1x4, 0), (1, 1).

Suppose instead that the functions inK = M5,2 were enumerated instead in such a way that the
smaller monomials came first; that is, we started with1, then listed (in lexicographic order) all
monomials of length1, then all of length2:

1, x1, x2, x3, x4, x5, x̄1, x̄2, x̄3, x̄4, x̄5, x1x2, x1x3, x1x4, . . . .
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In this case, the decision list output by the algorithm is the1-decision list

(x5, 1), (x1, 0), (x4, 0), (x2, 1).

This is simpler, in the sense that it is a1-decision list rather than a2-decision list.

It is easily verified that both decision lists are indeed extensions of the pdBf given by the sam-
ple. ut

Correctness of the algorithm in general is easily established [19, 2].

Theorem 4.4 Suppose thatK is a set of Boolean functions containing the identically-1 func-
tion, 1. Suppose thats is a sample of labelled elements of{0, 1}n. If there is an extension in
DL(K) of the partially defined Boolean function described bys, then the above algorithm will
produce such an extension.

The extension algorithm is also efficient: whenK = Mn,k, so that the classDL(K) is k-
DL, then the algorithm is easily seen to have running timeO(mnk+1) for fixed k. There is no
guarantee, however, that the algorithm will necessarily produce a decision list that is nearly as
short as it could be, as Hancocket al. [12] have shown.

Eiteret al. [8] considered1-decision lists in some detail and were able to find an improved (that
is, faster) extension algorithm. In fact, rather than a running-time ofO(mn2), their algorithm
has linear running timeO(mn). They also develop apolynomial delay algorithmfor generating
all 1-decision list extensions of a pdBf (when such extensions exist). Such an algorithm outputs,
one-by-one, and without repetition, all extensions of the pdBf in such a way that the running
time between outputs is polynomial innm. (This is a reasonable requirement: to ask for the
total time to generate all extensions to be polynomial inmn would be inappropriate since the
number of extensions may well be exponential inmn.)

4.3 Algorithmic issues for positive-term decision lists

For positive-term decision lists, Guijarroet al. [10] have shown that a number of problems
which are intractable for general decision lists become efficiently solvable.
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The following result is useful. It shows that the question of whether two positive-term decision
lists are equivalent (that is, represent the same function) can be resolved quite simply.

Theorem 4.5 (Guijarro et al. [10]) There is an algorithm with running timeO(n(p + q)pq)
which, given two positive-term decision lists onn variables, involvingp and q tests, decides
whether or not the decision lists represent the same function.

Proof: Suppose the decision lists areL1, L2. For any testT from L1 and any testS from L2,
let y(T, S) ∈ {0, 1}n have ones in precisely those positionsi for which xi appears inT or S.
Let f1, f2 be the functions computed byL1 andL2. Supposef1 6= f2 and letz be such that
f1(z) 6= f2(z). Let (T, c) be the first term ofL1 ‘activated’ byz (meaning thatT is the first test
in L1 passed byz), The first term ofL2 activated byz is then necessarily of the form(S, 1− c).
Then, as can easily be seen,f1(y(T, S)) = c andf2(y(T, S)) = 1 − c. Thus there exists tests
T andS of L1, L2, respectively, such thatf1(y(T, S)) 6= f2(y(T, S)). Conversely, of course, if
suchT, S exist thenf1 6= f2. So it suffices to check, for each of thepq pairs(T, S), whether
f1(y(T, S)) = f2(y(T, S)) and, for each pair, this can be done inO(n(p+ q)) time. ut

As Guijarroet al. observe, the existence of efficient algorithms for other problems follows from
this result. For example, to check whether a term is redundant (unecessary), simply remove
it and check the equivalence of the new decision list with the original. Furthermore, to check
whether a positive-term decision list represents a positive function, one can remove from the list
all redundant terms (using the redundancy-checking method just described) and check whether
the remaining terms all have label1; they do so if and only if the function is positive.

5 Properties of1-decision lists

5.1 Threshold functions and1-decision lists

A Boolean functiont defined on{0, 1}n is a threshold functionif there arew ∈ Rn andθ ∈ R
such that

t(x) =

{
1 if 〈w, x〉 ≥ θ
0 if 〈w, x〉 < θ,
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where〈w, x〉 = wTx is the standard inner product ofw andx. Given suchw andθ, we say that
t is represented by[w, θ] and we writet← [w, θ]. The vectorw is known as theweight-vector,
andθ is known as thethreshold. We denote the class of threshold functions on{0, 1}n by Tn.
Note that anyt ∈ Tn will satisfy t← [w, θ] for ranges ofw andθ.

We have the following connection between1-decision lists and threshold functions [7] (see
also [3]).

Theorem 5.1 Any1-decision list is a threshold function.

Proof: We prove this by induction on the number of terms in the decision list. Since the
identically-one function1 is regarded as a monomial of length0, we may assume that decision
lists output Suppose, for the base case of the induction, that a decision list has just one term,
and is of the form(xi, 1), or (x̄i, 1), or (1, 1), where1 is the identically-1 function. (Note
that if it were of the form(xi, 0), (x̄i, 0), or (1, 0) then, since a decision list outputs0 by
default, the term is redundant, and the decision list computes the identically-0 function, which
is certainly a threshold function.) In the first case, the function may be represented as a threshold
function by taking the weight-vector to be(0, . . . , 0, 2, 0, . . . , 0), where the non-zero entry is in
positioni, and by taking the threshold to be1. In the second case, we may take weight-vector
(0, . . . , 0,−2, 0, . . . , 0) and threshold−1. In the third case, the function is the identically-1
function, and we may take as weight-vector the all-0 vector, and threshold0. Assume, as the
inductive hypothesis, that any decision list of lengthr is a threshold function, and suppose we
have a decision list of lengthr + 1,

f = (`1, c1), (`2, c2), . . . , (`r+1, cr+1),

where each̀i is a literal, possibly negated. We shall assume, without any loss of generality (for
one can simply rename the variables or, equivalently, permute the entries of the weight vector),
that`1 = x1 or x̄1. By the induction hypothesis, the decision list

(`2, c2), . . . , (`r+1, cr+1)

is a threshold function. Suppose it is represented by weight-vectorw = (w1, . . . , wn) and
thresholdθ, and let‖w‖1 =

∑n
i=1 |wn| be the1-norm ofw. There are four possibilities for

(`1, c1), as follows:
(x1, 1), (x1, 0), (x̄1, 1), (x̄1, 0).
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Denoting bye1 the vector(1, 0, . . . , 0), and lettingM = ‖w‖1 + |θ| + 1, we claim that the
decision listf is a threshold function represented by the weight-vectorw′ and thresholdθ′,
where, respectively,

w′ = w +Me1, θ′ = θ,

w′ = w −Me1, θ′ = θ,

w′ = w −Me1, θ′ = θ −M,

w′ = w +Me1, θ′ = θ +M.

This claim is easy to verify in each case. Consider, for example, the third case. Forx ∈ {0, 1}n,

〈w′, x〉 = 〈w −Me1, x〉 = 〈w, x〉 −Mx1,

and therefore〈w′, x〉 ≥ θ′ = θ −M if and only if

〈w, x〉 −Mx1 ≥ θ −M.

If x1 = 0 (in which case the decision list outputs1), this inequality becomes〈w, x〉 ≥ θ −M .
Now, for anyx ∈ {0, 1}n,−‖w‖1 ≤ 〈w, x〉 ≤ ‖w‖1, and

θ −M = θ − (‖w‖1 + |θ|+ 1) = −‖w‖1 − 1 + (θ − |θ|) ≤ −‖w‖1 − 1 < −‖w‖1,

so in this case the inequality is certainly satisfied, and the output of the threshold function is1,
equal to the output of the decision list. Now suppose thatx1 = 1. Then the inequality

〈w, x〉 −Mx1 ≥ θ −M

becomes〈w, x〉 −M ≥ θ −M , which is 〈w, x〉 ≥ θ. But, by the inductive assumption, the
decision list

f ′ = (`2, c2), . . . , (`r+1, cr+1)

is a threshold function represented by the weight-vectorw and thresholdθ. So in this case, the
output of the threshold function is1 if and only if the output of decision listf ′ is 1, which is
exactly howf calculates its output in this case. So we see that this representation is indeed
correct. The other cases can be verified similarly.

5.2 Characterizations of1-decision lists

Eiteret al.[8] obtain some results relating the class of1-decision lists closely to other classes of
Boolean function. To describe their results, we need a few more definitions concerning Boolean
functions.
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For i between1 andn, let ei ∈ {0, 1}n haveith entry1 and all other entries0. Then, a Boolean
function is said to be2-monotonicif for each pairi andj between1 andn, either

for all x with xi = 0 and xj = 1, f(x) ≤ f(x+ ei − ej),

or
for all x with xi = 0 and xj = 1, f(x) ≥ f(x+ ei − ej).

It is easily seen that threshold functions are2-monotonic. (However, there are2-monotonic
functions that are not threshold functions.)

A Boolean function isread-onceif there is a Boolean formula representingf in which each
variable appears at most once. (So, for eachj, the formula contains eitherxj at most once, or
x̄j at most once, but not both.)

A DNF formula isHorn if each term contains at most one negated literal and a function is said
to be Horn if it has a representation as a Horn DNF. Given a classH of Boolean functions, the
renaming closureof H is the set of all Boolean functions obtained fromH by replacing every
occurrence of some literals by their complements. (For example, we might replace everyx1 by
x̄1 and everȳx1 by x1.)

Eiteret al. [8] obtained the following characterisations (among others):

Theorem 5.2 The class1-DL coincides with the following classes:

• the class of all2-monotonic read-once functions;

• the class of all read-once threshold functions;

• the renaming closure of the class of functionsf such thatf and f̄ are Horn.

In particular, while Theorem 5.1 establishes that1-decision lists are threshold functions, the
theorem just given states that the1-decision lists are precisely those threshold functions that are
also read-once.

Eiter et al. show that these characterisations do not extend tok-DL for k > 1. They do,
however, have one characterisation ofk-DL. Given a classH of Boolean functions, the class of
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nested differencesof H is defined as the set of all Boolean functions of the form

h1 \ (h2 \ (. . . (hl−1 \ hl)))

for h1, h2, . . . , hl ∈ H. Eiter et al. prove thatk-DL coincides with the nested differences of
clauses with at mostk-literals. (They show too thatk-DL is the set of nested differences of
k-CNF.)

For k > 1, k-decision lists are not necessarily threshold functions, but they can be described
in terms ofpolynomial threshold functions, a convenient generalization of threshold functions.
Let [n](d) denote the set of all subsets of at mostd objects from[n] = {1, 2, . . . , n}. For any
x = (x1, x2, . . . , xn) ∈ {0, 1}n, xS shall denote the product of thexi for i ∈ S. For example,
x{1,2,3} = x1x2x3. WhenS = ∅, the empty set, we interpretxS as the constant1. With this
notation, a Boolean functionf defined on{0, 1}n is apolynomial threshold functionof degree
d if there are real numberswS, one for eachS ∈ [n](d), such that

f(x) = 1⇐⇒
∑

S∈[n](d)

wSxS > 0.

This may be written

f(x) = sgn

 ∑
S∈[n](d)

wSxS

 ,

where thesign functionsgn is such thatsgn(x) = 1 if x > 0 andsgn(x) = 0 if x ≤ 0.

Theorem 5.1 shows that1-decision lists are threshold functions. An analogous argument estab-
lishes the following.

Theorem 5.3 Anyk-decision list is a polynomial threshold function of degreek.

It is known [1] that almost every Boolean function has threshold order at leastbn/2c. This,
together with Theorem 5.3, means that almost every Boolean function will needk ≥ bn/2c in
order to be ink-DL.
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6 Threshold decision lists

6.1 Definition and geometrical interpretation

We now consider the class of decision lists in which the individual tests are themselves threshold
functions. We shall call such decision liststhreshold decision lists, but they have also been
calledneuraldecision lists [16] andlinear decision lists [21].

Suppose we are given the points in{0, 1}n, each one labelled by the value of a Boolean function
f . Of course, since there are very few threshold functions, it is unlikely that the true and false
points off can be separated by a hyperplane. One possible alternative is to try a separator of
higher degree, representingf as a polynomial threshold function. Here we consider a different
approach, in which we successively ‘chop off’ like points (that is, points all possessing the same
label). We first use a hyperplane to separate off a set of points all having the same classification
(either all are true points or all are false points). These points are then removed from consid-
eration and the procedure is iterated until no points remain. For simplicity, we assume that at
each stage, no data point lies on the hyperplane. This procedure is similar in nature to one of
Jeroslow [14], but at each stage in his procedure, only positive examples may be ‘chopped off’
(not positiveor negative). We give one example for illustration.

Example: Suppose the functionf is the parity function, so that the true points are precisely
those with an odd number of ones. We first find a hyperplane such that all points on one side
of the plane are either positive or negative. It is clear that all we can do at this first stage is
chop off one of the points since the nearest neighbours of any given point have the opposite
classification. Let us suppose that we decide to chop off the origin. We may take as the first
hyperplane the plane with equationy1 + y2 + · · · + yn = 1/2. (Of course, there are infinitely
many other choices of hyperplane which would achieve the same effect with respect to the data
points.) We then ignore the origin and consider the remaining points. We can next chop off all
neighbours of the origin, all the points which have precisely one entry equal to1. All of these
are positive points and the hyperplaney1 +y2 + · · ·+yn = 3/2 will separate them from the other
points. These points are then deleted from consideration. We may continue in this manner. The
procedure iteratesn times, and at stagei in the procedure we ‘chop off’ all data points having
precisely(i − 1) ones, by using the hyperplaney1 + y2 + · · · + yn = i − 1/2, for example.
(These hyperplanes are in fact all parallel, but this is not necessary.) ut
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Note that, by contrast, Jeroslow’s method [14] (described above) requires2n−1 iterations in this
example, since at each stage it can only ‘chop off’ one positive point.

We may regard the chopping procedure as deriving a representation of the function by a thresh-
old decision list. If, at stagei of the procedure, the hyperplane with equation

∑n
i=1 wiyi = θ

chops off true (false) points, and these lie on side of the hyperplane with equation
∑n

i=1 wiyi >
θ, then we take as theith term of the threshold decision list the pair(fi, 1) (respectively,
(fi, 0)), wherefi ← [w, θ]; otherwise take theith term to be(gi, 1) (respectively,(gi, 0)), where
gi ← [−w,−θ].

If one applies this construction to the series of hyperplanes resulting from the Jeroslow method,
a restricted form of decision list results—one in which all terms are of the form(fi, 1). But, as
we saw earlier, such a decision list is quite simply thedisjunctionf1 ∨ f2 ∨ . . .. The problem of
decomposing a function into the disjunction of threshold functions has been considered also by
Hammeret al. [11] and Zuev [22]. Hammeret al. defined thethreshold numberof a Boolean
function to be the minimums such thatf is a disjunction ofs threshold functions, and they
showed that there is a positive function with threshold number

(
n
n/2

)
/n. Zuev [22] showed that

almost all positive functions have threshold number of this order, and that almost all Boolean
functions have a threshold number that isΩ(2n/n) andO(2n lnn/n).

The decision lists arising from the chopping procedure are more general than disjunctions of
threshold functions, just ask-decision lists are more general thank-DNF. Such threshold de-
cision lists may provide a more compact representation of the function. (That is, since fewer
hyperplanes might be used, the decision list could be smaller.)

6.2 Algorithmics and heuristics of the chopping procedure

The chopping procedure described above was in some ways merely a device to help us see that
threshold decision lists have a fairly natural geometric interpretation. Furthermore, since all
points of{0, 1}n are labelled, it is clear that the method, if implemented, would generally be
inefficient. However, if only some of the points are labelled, so that we have a partially-defined
Boolean function, then the chopping procedure might constitute a heuristic for building a thresh-
old decision list extension of the pdBf. This was considered by Marchand and Golea [16]. (See
also [17].) Marchandet al. derive a greedy heuristic for constructing a sequence of ‘chops’.
This relies on an incremental heuristic for the NP-hard problem of finding at each stage a hy-
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perplane that chops off as many remaining points as possible. Reports on the experimental
performance of their method can be found in the papers cited.

7 Threshold network representations

We now show how we can make use of the chopping procedure to find a threshold network
(the simplest type of artificial neural network network) representing a given Boolean function.
We use linear threshold networks having just one hidden layer. Such a network will consist of
k ‘hidden nodes’, each of which computes a threshold function of then inputs. The (binary-
valued) outputs of these hidden nodes are then used as the inputs to the output node, which
calculates a threshold function of these. Thus, the neural network computes a threshold function
of the outputs of thek threshold functions computed by the hidden nodes. If the threshold
function computed by the output node is described by weight-vectorβ ∈ Rk and thresholdφ,
and the threshold function computed by hidden nodei is fi ← [w(i), θ(i)], then the threshold
network as a whole computes the functionf : Rn → {0, 1} given by

f(y) = 1⇐⇒
k∑
i=1

βifi(y) > φ;

that is,

f(y1y2 . . . yn) = sgn

(
k∑
i=1

βk sgn

(
n∑
j=1

w
(i)
j yj − θ(i)

)
− φ

)
,

wheresgn(x) = 1 if x > 0 andsgn(x) = 0 if x < 0.

It is well-known that any Boolean function can be represented by a linear threshold network
with one hidden layer (albeit with potentially a large number of nodes in the hidden layer).
The standard way of doing so is based directly on the function’s disjunctive normal form. The
threshold decision list representation of a function gives rise to a different method of represent-
ing Boolean functions by threshold networks.

We have seen that a1-decision list is a threshold function and that ak-decision list is a poly-
nomial threshold function of degreek. In an easy analogue of this, we see that any threshold
decision list is a threshold function of threshold functions. But a threshold function of threshold
functions is nothing more than a two-layer threshold network of the type considered here. So,

21



by representing a function by a threshold decision list and then representing this as a threshold
function over the threshold functions in the decision list, we obtain another method for finding
a threshold network representation of a Boolean function. It is clear that the resulting repre-
sentation is in general different from the standard DNF-based one. For example, the standard
representation of the parity function on{0, 1}n will require a neural network with2n−1 hidden
units, whereas the representation derived from the procedure described here will require onlyn
hidden units.

Marchandet al. [16] drew attention to (essentially) this link between threshold decision lists
and threshold networks. (Their networks were, however, slightly different, in that they had
connections between nodes in the hidden layer.)

8 Representational power of threshold decision lists

8.1 A function with long threshold decision list representation

Turan and Vatan gave a specific example of a function with a necessarily long threshold decision
list representation. The inner-product modulo2 function IP2 : {0, 1}2n → {0, 1} is given by
IP2(x, y) =

⊕n
i=1 xiyi, for x, y ∈ {0, 1}n, where

⊕
denotes addition modulo2. Turan and

Vatan proved the following.

Theorem 8.1 In any threshold decision list representation ofIP2, the numbers of terms satis-
fiess ≥ 2n/2 − 1.

8.2 Multi-level threshold functions

We saw in the earlier example that the parity function can be represented by a threshold deci-
sion list withn terms. We also noted that the hyperplanes in that example were parallel. By
demanding that the hyperplanes are parallel, we obtain a special subclass of threshold decision
lists, known as themulti-level threshold functions. These have been considered in a number of
papers, such as [4, 18, 20], for instance.
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We define the class ofs-level threshold functions to be the set of Boolean functions repre-
sentable by a threshold decision list of length at mosts and having the test hyperplanes parallel
to each other.

Geometrically, a Boolean function is ans-level threshold function if there ares parallel hy-
perplanes with the property that thes + 1 regions defined by these hyperplanes each contain
only true points or only false points. Equivalently (following Bohossion and Bruck [4]),f is an
s-level threshold function if there is a weight-vectorw = (w1, w2, . . . , wn) such that

f(x) = F

(
n∑
i=1

wixi

)
,

where the functionF : R→ {0, 1} is piecewise constant with at mosts+ 1 pieces.

Bohossian and Bruck observed that any Boolean function is a2n-level threshold function, an
appropriate weight-vector beingw = (2n−1, 2n−2, . . . , 2, 1). For that reason, they paid particu-
lar attention to the question of whether a function can be computed by a multi-level threshold
function where the number of levels is polynomial. A related question considered by Bohossian
and Bruck is whether a function can be computed by such a function, with polynomial weights
(in addition to the restriction that the number of levels be polynomial).

It was explained earlier that, through the chopping procedure, a threshold decision list and,
subsequently, a threshold network, could be produced representing a given Boolean function.
The translation from threshold decision list to threshold network is established by an analogue
of Theorem 5.1. From the proof of that theorem, it emerges that the weights in the resulting
threshold network are, necessarily, exponential in size. It is often useful to focus on networks
of the same structure, which is to say, having one ‘hidden’ layer, but which are restricted to
have integer weights polynomial inn. (Any such network can, insofar as it is regarded as
computing a Boolean function, be assumed to have integer weights: we can simply scale up
rational weights appropriately; and there is never a need for irrational weights since the domain
is discrete.) The class of functions that can be computed by threshold networks with one hidden
layer (that is, of depth2) is denotedLT2, and the subset of those in which the (integer) weights
can be polynomial in the number of inputs (or variables),n, is denotedL̂T2. Let LTM denote
the set of Boolean functionsf (or, more precisely, the set of sequences of Boolean functions
(fn) wheref maps from{0, 1}n) that can be computed by a multi-level threshold function with
a polynomial number of levels. Then the following inclusion is valid.
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Theorem 8.2 (Bohossian and Bruck [4])LetLTM denote the set of Boolean functions realis-
able by multi-level threshold functions with a polynomial number of levels. ThenLTM ⊆ L̂T2.

Bohossian and Bruck also obtain ‘separation’ results, which show that there are functions in
L̂T2 but not inLTM; and that there are functions inLTM, but which are not representable with
polynomial-sized weights.

9 Conclusions

In this report, we have looked at decision lists, a powerful and versatile way of representing
Boolean functions. Decision lists have a number of interesting properties. There are, more-
over, efficient algorithms for certain problems associated with classes of decision list. Allowing
decision lists to be based on threshold functions allows greater generality, and draws connec-
tions with threshold networks. There are still many open problems concerning decision lists,
particularly, threshold decision lists.
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