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Abstract

A new upper bound is given on the number of ways in which a seV gjoints in
R™ can be partitioned by parallel hyperplanes. This bound improves upon a result of
Olafsson and Abu-MostafdfEE Trans. Pattern Analysis and Machine Intelligerdi€%?),
1988: 277-281]; it agrees with the known (tight) result for the dase 1; and it is, for
fixed k andn, tight to within a constant. A previously published claimed improvement to
the bound of Olafsson and Abu-Mostafa is shown to be incorrect.

1 Introduction

The partitioning of points im-space by a single hyperplane has been well-studied. (Here, by a
hyperplane | mean afn — 1)-flat; it need not contain the origin.) The question of how many
such partitions are possible arises naturally in the theory of pattern classification and machine
learning [13, 9, 3, 8, 18], and is an interesting problem in its own right. It is known [6] that the
number of ways in whichV points inR™ can be partitioned into two blocks separated by an
(n — 1)-dimensional hyperplane is at most
2”: <N — 1)

. .
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Furthermore, this is tight, with the maximum number of partitions being achieved when the
points are ingeneral position meaning that ne-flat for » < n containsr + 2 of the points.

This proof of this result uses the classical fact [6, 16] that the number of connected components
into whichR" can be divided byV hyperplanes, each passing through the origin, is at most
C(N,n) =2 Z?:_Ol (N;l) (with equality if the normals are in general position).

Partitioning by a single hyperplane is fairly limited, and attention has been given to more com-
plex partitioning methods that arise as simple generalizations, such as separation by surfaces
with polynomial equations [7, 1], for intance.

In the context of pattern classification and learning, one proposed way of obtaining more pow-
erful partitioning methods is to use some numbeof parallel hyperplanes. The following
question arises: what is the maximum numBgén . k. n) of ways in whichV points inR™ can

be partitioned by: parallel hyperplanes (none of which contains any of the points)?

Answering this question, or obtaining good bound on the answer, has consequences for the
‘capacity’ of what have been calladultilevel threshold functiongd5] or multilevel threshold
element$17, 5], generalizations of the threshold functions and threshold elements so central to
the theory of artificial neural networks. (These consequences are discussed in [2].)

2 Previous work

Olafsson and Abu-Mostafa [15] gave an upper bound’oN, k, n), correcting a claimed upper
bound of Takiyama [17]. Their result is as follows.

Theorem 2.1 The maximum possible number of ways in whi¢lpoints inR™ can be parti-
tioned byk parallel hyperplanes is bounded as follows:

P(N, k,n) < i (Nz_ 1) nz_l ((év)i— 1).

=0

Olafsson and Abu-Mostafa observed that if thearallel hyperplanes have normal vectar

then the partition induced by these planes depends on two things: first, the ordering of the points
when projected onto the line from the origin in directiorand, secondly, on the location of the

k planes with respect to this ordering. They bounded the number of possible orderings when the
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points are projected onto a line, and noted that there are then a@fg@(]vl’l) choices for
the positioning of the planes with respect to the points. They arrived at Theorem 2.1 by deriving

an upper bound of
M Y o5 ((B) -1
()22 (M)

on the number of orderings. (Their original bound has a fatadtached to it as a consequence,

but this can be dropped here because, while this paper is concerned simply with the number
of partitions, they were interested in the number of ways the points could be partitioned into
{0, 1}-labelled blocks, with adjacent blocks labelled differently.)

Ngomet al.[14] claimed to have proved that the number of partitions achievableihytrallel
planes, in which none of thg + 1) blocks is empty, is no more than

N -2 N—-2\ (N-1

L(N,k,n) = (k_ 1)P(N,1,n) = <k_ 1> ;( Z, )
However, this is incorrect. They argue as follows, in a manner similar to that of Olafsson
and Abu-Mostafa. For each single-plane partition (of which there are at m@st1,n)),
order theN points according to their distance from the hyperplane. Then, to construct a
parallel plane partition, one adds— 1 more parallel hyperplanes. The partition obtained is
determined by the choice of the position of these parallel planes, and the(r%_‘ébechoices
(if no block is to be empty). But this argument does not work.slthe case that a given
hyperplane realizing a particular single-plane partition can give rise to at(rﬁp%) partitions
by a set ofk parallel planes of which it is one. But there are many different hyperplanes
realizing a particular single-plane partition, and these may give rise to different corresponding
sets ofk-parallel plane partitions. For a specific example, suppose4hat(0,0), B = (0, 1),
C = (1,0) andD = (1,1) in R? and consider the single-plane partition with blogks} and
{B,C, D}. This is realizable by the hyperplane (lind) with equationz + 2y = 1/2, and also
by the hyperplanéi, with equation2z + y = 1/2. Each ofH; and H, can, together with the
introduction of an additional parallel plane, realize two partitions resulting from two parallel
planes, with nonempty blocks. Explicitly, witH; and a further parallel plane, the partitions

{AY{CY{BD}, {AY{B,C}{D}

can be obtained, and witl, and a further parallel plane, the partitions

{AY{BI{CD}, {AY{B,C}{D}

can be obtained. So there are in fact at least three—and not at most two—distinct partitions
(with non-empty blocks) consistent with the given single-hyperplane partition.
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It is not possible, by some other means, to obtain the upper bound claimed byétdghii4],
because it is does not hold, as can easily be shown by extending the argument just given, as
follows.

Theorem 2.2 Leto denote the origin i{0, 1}" ande, ..., e, € {0, 1}" the unit basis vectors
(with exactly one co-ordinate equal 19. Then all partitions of these + 1 points into three
non-empty blocks can be achieved using two parallel hyperplanes.

Proof: Suppose thal|F'|G is any given partition into non-empty sets¥f= {o,e;,...,e,}.
Suppose € E. Definew € R™ as follows: fori = 1,2,...,n,w; =0ife; € E, w; = 11if
e; € Fandw; = 2if e; € GG. Consider the two hyperplanés , H, with equations

Hy:wlz=1/2, Hy:w'z=3/2.

Then it is easily seen, sinee’e; > 3/2if and only ife; € G and1/2 < w’e; < 3/2 if and
only if e; € F, that the parallel planed; and H, realize the given partition.

It follows that, for alln, P(n + 1,2,n) is at leasts(n + 1, 3), wheres(n + 1, 3), the Stirling
number of the second kind, is the number of partitions into three non-empty bloeks-df
objects, given explicitly by

s(n+1,3) :%(3”—2“*%1).

However, L(n + 1,2,n) = 2"(n — 1), so the claimed bound of Ngoet al. is incorrect by
a considerable margin. (It fails first, in this case, when= 7, for s(7 + 1,3) = 966 >
762 = L(8,2,7).) Theorem 2.2 generalizes easily to the casé of 3 hyperplanes by a
very similar argument. It can then see t#i¥t + 1, k,n) is at leastk + 1)"/(k + 1)!, while

L(n+1,k,n)=2"(1"]) <2"nk~1/(k — 1)!is very much smaller.

3 Arefinement of a previous upper bound

To bound the number of possible orderingsNofpoints when projected onto a line, Olafsson
and Abu-Mostafa observed that an upper bound is given by the number of regions into which
the planes with normals; — z; (for all z;, z; among theN points) partitionR". However,
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the problem of counting the number of orderings was previously considered by Cover [7]. Fol-
lowing Cover, a permutation of {1,2,..., N}, is said to be dinearly inducible orderingof
X ={x1,x9,...,2,} if there existav € R" such that

T T T
W Tr1) > W Tp2) > > W Tr(n),

meaning thatr describes the order of the points when they are projected onto the line with
directionw. Cover proved that if théV points of X are in general position then the number of
possible orderings is exactly

n—1

Q(N,n)=2+2 ) R(N,i),

i=1

where, forl <i:<n —1,

R(N, i) = > npeu

2<y1 < <y; <N-1
is the sum of all thg"'*) products ofi numbers betweenhandn — 1.

Gould [10] subsequently express@dN, n) in terms of the Stirling numbers of the first kind,
S(r, s), where (with Gould’s definitionsy(r, s) is defined as the coefficient of in JT;_, (1 +
jx). He showed that

L(n=1)/2]
QINn)=2 > S(N—1n—1-2j).

=0

The following upper bound is therefore obtained.

Theorem 3.1 The maximum possible number of ways in whi€lpoints inR™ can be parti-
tioned byk parallel hyperplanes is bounded as follows:

L(n—1)/2]

k
P(N,k,n)§2Z(Nl_1) > S(N-1n—1-2j),
1=0 Jj=0

whereS(r, s) is the Stirling number of the first kind, the coefficientdfn [[7_, (1 + jz).



4 A new upper bound

Theorem 3.1 is an improvement of Theorem 2.1, based on the same idea. But it is possible to
obtain another bound using a different technique that has its roots in the proof bfthe

case given by Cover [6], and which can be traced back tcé8c6]. (Generalizations of this
technique have recently proven useful for more complex partitioning methods; see [11, 4, 12,

3])

Theorem 4.1 The maximum possible number of ways in whiclpoints inR"™ can be parti-
tioned byk parallel hyperplanes is bounded as follows:

n+k—1
NE -1
P(N .k < .
ok > (Y

=0

Proof: Let N points,zq,z,,...,xy € R™ be given. Now, each partition byparallel hyper-
planes can be described by a permissible parameter iéetqro,, ws, . . ., w,, 01,602, ..., 0;),
where, to say the vector is permissible means that 0, < ... < 6,. The proof hinges
on considering the partitioning of thearameter spacé&™* by certain hyperplanes corre-
sponding to the given points;, z5,...,zy. Forl < ¢ < N andl < j < k, suppose that
z; = (24,25, ..., },) and definef} to be the hyperplane with equation

’rn
n
( —
g zyw, —0; =0,
r=1

which passes through the origin R***. Note that, here, the variables are, ..., w, and
01,...,0;,: the hyperplane is in parameter space, and is orneafrresponding ta:;. In this
way, Nk hyperplanes are obtained. The$é hyperplanes divide parameter sp&¥€™* into a
number of regions, or cells. Suppose that two permissible parameter vectors

ﬁ: (p17p27"'7pn7¢17"'7¢k>7 q: (q17QQ7"'7QH7w17"'7¢k)

belong to the same cell in this decomposition. Then this means that for every < N and
1 < j <k, pandqlie on the same side of hyperplaﬁ@’; that is,

inpi —¢; >0+ inqz —; > 0.
r=1 r=1



But this means that the two sets of parallel hyperplanes correspondiagtly’ induce the same
partition of X. By the classical result on the number of regions created by a set of hyperplanes
passing through the origin [6, 16], the number of cells into whighplanes can divid&"** is

at mostC'(Nk,n+ k). Now, the fact that parameter vectgtand—p’induce the same partition,

and belong to distinct cells, means that the number of distinct ways in whipbints inR"™

can be partitioned by parallel hyperplanes is at moS{ Nk, n + k) /2, which is as required.

5 Discussion and conclusions

An existing upper bound on the number of ways in which a set of points can be partitioned by
parallel hyperplanes has been improved. A previously claimed improvement has been shown
to be incorrect. The new bound of Theorem 4.1 agrees in thekcasé with the well-known

(tight) bound mentioned in the Introduction. It can also be shown to be quite tight, as follows.
Olafsson and Abu-Mostafa [15] (in establishing that the bound claimed by Takiyama [17] failed

as an upper bound, but did provide a lower bound) proved¥Yhatints ofR™ in general position
n+k—1

" . -1 . .
can be partitioned in at IeasE ( , ) ways byk parallel planes. This quantity therefore
7
=0
provides a lower bound oR (N, k,n). If n andk are fixed, then, as a function of, this lower
bound isQ(N"*~1), and the upper bound of Theorem 4.1 is of ord®r*~1. Thus, for fixed
n andk, the new upper bound of Theorem 4.1 is tight to within a constant.

The original upper bound, Theorem 2.1, of Olafsson and Abu-Mostafa is, for fixatd £,
O(N?"*k). As noted, their lower bound {3( N"**~1). Olafsson and Abu-Mostafa [15] claimed

that the dependence upanin their upper bound appeared to be, in a sense, asymptotically
correct, asserting that “Expressing the result asymptoticallys*, we find that[...]1 < a <

2" and that “we are led to conclude thatis indeed greater thah and apparently approaches

2 as N, n, andk approach infinity, withn andk growing logarithmically inN.” However, the

bound of Theorem 4.1 now suggests otherwise: this has been commented on already for fixed
n andk and follows, forn, k growing slowly with respect tév, from the observation that

n+k—1
i )

=0
which is N +k)(+e() asp k. N — oo with n, k logarithmic inN.

As a final remark, it can be shown that the upper bound given in Theorem 3.1, while it is
an improvement of Theorem 2.1 because it is based on a tight bound on the number of linearly
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inducible orders, is still, as a function of, ( N2"*) for fixedn andk. In this sense, therefore,
the bound given by Theorem 4.1 is better.
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