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Abstract

A new upper bound is given on the number of ways in which a set ofN points in
R
n can be partitioned byk parallel hyperplanes. This bound improves upon a result of

Olafsson and Abu-Mostafa [IEEE Trans. Pattern Analysis and Machine Intelligence10(2),
1988: 277-281]; it agrees with the known (tight) result for the casek = 1; and it is, for
fixed k andn, tight to within a constant. A previously published claimed improvement to
the bound of Olafsson and Abu-Mostafa is shown to be incorrect.

1 Introduction

The partitioning of points inn-space by a single hyperplane has been well-studied. (Here, by a
hyperplane I mean an(n − 1)-flat; it need not contain the origin.) The question of how many
such partitions are possible arises naturally in the theory of pattern classification and machine
learning [13, 9, 3, 8, 18], and is an interesting problem in its own right. It is known [6] that the
number of ways in whichN points inRn can be partitioned into two blocks separated by an
(n− 1)-dimensional hyperplane is at most

n∑
i=0

(
N − 1

i

)
.
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Furthermore, this is tight, with the maximum number of partitions being achieved when the
points are ingeneral position, meaning that nor-flat for r < n containsr + 2 of the points.
This proof of this result uses the classical fact [6, 16] that the number of connected components
into whichRn can be divided byN hyperplanes, each passing through the origin, is at most
C(N, n) = 2

∑n−1
i=0

(
N−1
i

)
(with equality if the normals are in general position).

Partitioning by a single hyperplane is fairly limited, and attention has been given to more com-
plex partitioning methods that arise as simple generalizations, such as separation by surfaces
with polynomial equations [7, 1], for intance.

In the context of pattern classification and learning, one proposed way of obtaining more pow-
erful partitioning methods is to use some numberk of parallel hyperplanes. The following
question arises: what is the maximum numberP (N, k, n) of ways in whichN points inRn can
be partitioned byk parallel hyperplanes (none of which contains any of the points)?

Answering this question, or obtaining good bound on the answer, has consequences for the
‘capacity’ of what have been calledmultilevel threshold functions[15] or multilevel threshold
elements[17, 5], generalizations of the threshold functions and threshold elements so central to
the theory of artificial neural networks. (These consequences are discussed in [2].)

2 Previous work

Olafsson and Abu-Mostafa [15] gave an upper bound onP (N, k, n), correcting a claimed upper
bound of Takiyama [17]. Their result is as follows.

Theorem 2.1 The maximum possible number of ways in whichN points inRn can be parti-
tioned byk parallel hyperplanes is bounded as follows:

P (N, k, n) ≤
k∑
l=0

(
N − 1

l

) n−1∑
i=0

((N
2

)
− 1

i

)
.

Olafsson and Abu-Mostafa observed that if thek parallel hyperplanes have normal vectorw,
then the partition induced by these planes depends on two things: first, the ordering of the points
when projected onto the line from the origin in directionw and, secondly, on the location of the
k planes with respect to this ordering. They bounded the number of possible orderings when the
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points are projected onto a line, and noted that there are then at most
∑k

l=0

(
N−1
l

)
choices for

the positioning of the planes with respect to the points. They arrived at Theorem 2.1 by deriving
an upper bound of

C

((
N

2

)
, n

)
= 2

n−1∑
i=0

((N
2

)
− 1

i

)
on the number of orderings. (Their original bound has a factor2 attached to it as a consequence,
but this can be dropped here because, while this paper is concerned simply with the number
of partitions, they were interested in the number of ways the points could be partitioned into
{0, 1}-labelled blocks, with adjacent blocks labelled differently.)

Ngomet al.[14] claimed to have proved that the number of partitions achievable withk parallel
planes, in which none of the(k + 1) blocks is empty, is no more than

L(N, k, n) =

(
N − 2

k − 1

)
P (N, 1, n) =

(
N − 2

k − 1

) n∑
i=0

(
N − 1

i

)
.

However, this is incorrect. They argue as follows, in a manner similar to that of Olafsson
and Abu-Mostafa. For each single-plane partition (of which there are at mostP (N, 1, n)),
order theN points according to their distance from the hyperplane. Then, to construct ak-
parallel plane partition, one addsk − 1 more parallel hyperplanes. The partition obtained is
determined by the choice of the position of these parallel planes, and there are

(
N−2
k−1

)
choices

(if no block is to be empty). But this argument does not work. Itis the case that a given
hyperplane realizing a particular single-plane partition can give rise to at most

(
N−2
k−1

)
partitions

by a set ofk parallel planes of which it is one. But there are many different hyperplanes
realizing a particular single-plane partition, and these may give rise to different corresponding
sets ofk-parallel plane partitions. For a specific example, suppose thatA = (0, 0), B = (0, 1),
C = (1, 0) andD = (1, 1) in R2 and consider the single-plane partition with blocks{A} and
{B,C,D}. This is realizable by the hyperplane (line)H1 with equationx+ 2y = 1/2, and also
by the hyperplaneH2 with equation2x + y = 1/2. Each ofH1 andH2 can, together with the
introduction of an additional parallel plane, realize two partitions resulting from two parallel
planes, with nonempty blocks. Explicitly, withH1 and a further parallel plane, the partitions

{A}|{C}|{BD}, {A}|{B,C}|{D}

can be obtained, and withH2 and a further parallel plane, the partitions

{A}|{B}|{CD}, {A}|{B,C}|{D}

can be obtained. So there are in fact at least three—and not at most two—distinct partitions
(with non-empty blocks) consistent with the given single-hyperplane partition.
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It is not possible, by some other means, to obtain the upper bound claimed by Ngomet al. [14],
because it is does not hold, as can easily be shown by extending the argument just given, as
follows.

Theorem 2.2 Leto denote the origin in{0, 1}n ande1, . . . , en ∈ {0, 1}n the unit basis vectors
(with exactly one co-ordinate equal to1). Then all partitions of thesen + 1 points into three
non-empty blocks can be achieved using two parallel hyperplanes.

Proof: Suppose thatE|F |G is any given partition into non-empty sets ofX = {o, e1, . . . , en}.
Supposeo ∈ E. Definew ∈ Rn as follows: fori = 1, 2, . . . , n, wi = 0 if ei ∈ E, wi = 1 if
ei ∈ F andwi = 2 if ei ∈ G. Consider the two hyperplanesH1, H2 with equations

H1 : wTx = 1/2, H2 : wTx = 3/2.

Then it is easily seen, sincewTei > 3/2 if and only if ei ∈ G and1/2 < wTei < 3/2 if and
only if ei ∈ F , that the parallel planesH1 andH2 realize the given partition.

It follows that, for alln, P (n + 1, 2, n) is at leasts(n + 1, 3), wheres(n + 1, 3), the Stirling
number of the second kind, is the number of partitions into three non-empty blocks ofn + 1
objects, given explicitly by

s(n+ 1, 3) =
1

2

(
3n − 2n+1 + 1

)
.

However,L(n + 1, 2, n) = 2n(n − 1), so the claimed bound of Ngomet al. is incorrect by
a considerable margin. (It fails first, in this case, whenn = 7, for s(7 + 1, 3) = 966 >
762 = L(8, 2, 7).) Theorem 2.2 generalizes easily to the case ofk ≥ 3 hyperplanes by a
very similar argument. It can then see thatP (n + 1, k, n) is at least(k + 1)n/(k + 1)!, while
L(n+ 1, k, n) = 2n

(
n−1
k−1

)
≤ 2nnk−1/(k − 1)! is very much smaller.

3 A refinement of a previous upper bound

To bound the number of possible orderings ofN points when projected onto a line, Olafsson
and Abu-Mostafa observed that an upper bound is given by the number of regions into which
the planes with normalsxi − xj (for all xi, xj among theN points) partitionRn. However,
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the problem of counting the number of orderings was previously considered by Cover [7]. Fol-
lowing Cover, a permutationπ of {1, 2, . . . , N}, is said to be alinearly inducible orderingof
X = {x1, x2, . . . , xn} if there existsw ∈ Rn such that

wTxπ(1) > wTxπ(2) > · · · > wTxπ(n),

meaning thatπ describes the order of the points when they are projected onto the line with
directionw. Cover proved that if theN points ofX are in general position then the number of
possible orderings is exactly

Q(N, n) = 2 + 2
n−1∑
i=1

R(N, i),

where, for1 ≤ i ≤ n− 1,

R(N, i) =
∑

2≤y1<···<yi≤N−1

y1y2 . . . yi

is the sum of all the
(
N−2
i

)
products ofi numbers between2 andn− 1.

Gould [10] subsequently expressedQ(N, n) in terms of the Stirling numbers of the first kind,
S(r, s), where (with Gould’s definitions)S(r, s) is defined as the coefficient ofxs in

∏r
j=1(1 +

jx). He showed that

Q(N, n) = 2

b(n−1)/2c∑
j=0

S(N − 1, n− 1− 2j).

The following upper bound is therefore obtained.

Theorem 3.1 The maximum possible number of ways in whichN points inRn can be parti-
tioned byk parallel hyperplanes is bounded as follows:

P (N, k, n) ≤ 2
k∑
l=0

(
N − 1

l

) b(n−1)/2c∑
j=0

S(N − 1, n− 1− 2j),

whereS(r, s) is the Stirling number of the first kind, the coefficient ofxs in
∏r

j=1(1 + jx).
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4 A new upper bound

Theorem 3.1 is an improvement of Theorem 2.1, based on the same idea. But it is possible to
obtain another bound using a different technique that has its roots in the proof of thek = 1
case given by Cover [6], and which can be traced back to Schläfli [16]. (Generalizations of this
technique have recently proven useful for more complex partitioning methods; see [11, 4, 12,
3].)

Theorem 4.1 The maximum possible number of ways in whichN points inRn can be parti-
tioned byk parallel hyperplanes is bounded as follows:

P (N, k, n) ≤
n+k−1∑
i=0

(
Nk − 1

i

)
.

Proof: LetN points,x1, x2, . . . , xN ∈ Rn be given. Now, each partition byk parallel hyper-
planes can be described by a permissible parameter vector~p = (w1, w2, . . . , wn, θ1, θ2, . . . , θk),
where, to say the vector is permissible means thatθ1 ≤ θ2 ≤ . . . ≤ θk. The proof hinges
on considering the partitioning of theparameter spaceRn+k by certain hyperplanes corre-
sponding to the given pointsx1, x2, . . . , xN . For 1 ≤ i ≤ N and1 ≤ j ≤ k, suppose that
xi = (xi1, x

i
2, . . . , x

i
n) and defineH i

j to be the hyperplane with equation

n∑
r=1

xirwr − θj = 0,

which passes through the origin inRn+k. Note that, here, the variables arew1, . . . , wn and
θ1, . . . , θk: the hyperplane is in parameter space, and is one ofk corresponding toxi. In this
way,Nk hyperplanes are obtained. TheseNk hyperplanes divide parameter spaceRn+k into a
number of regions, or cells. Suppose that two permissible parameter vectors

~p = (p1, p2, . . . , pn, φ1, . . . , φk), ~q = (q1, q2, . . . , qn, ψ1, . . . , ψk)

belong to the same cell in this decomposition. Then this means that for every1 ≤ i ≤ N and
1 ≤ j ≤ k, ~p and~q lie on the same side of hyperplaneH i

j; that is,

n∑
r=1

xirpi − φj > 0⇐⇒
n∑
r=1

xirqi − ψj > 0.
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But this means that the two sets of parallel hyperplanes corresponding to~p and~q induce the same
partition ofX. By the classical result on the number of regions created by a set of hyperplanes
passing through the origin [6, 16], the number of cells into whichNk planes can divideRn+k is
at mostC(Nk, n+k). Now, the fact that parameter vectors~p and−~p induce the same partition,
and belong to distinct cells, means that the number of distinct ways in whichN points inRn

can be partitioned byk parallel hyperplanes is at mostC(Nk, n+ k)/2, which is as required.

5 Discussion and conclusions

An existing upper bound on the number of ways in which a set of points can be partitioned by
parallel hyperplanes has been improved. A previously claimed improvement has been shown
to be incorrect. The new bound of Theorem 4.1 agrees in the casek = 1 with the well-known
(tight) bound mentioned in the Introduction. It can also be shown to be quite tight, as follows.
Olafsson and Abu-Mostafa [15] (in establishing that the bound claimed by Takiyama [17] failed
as an upper bound, but did provide a lower bound) proved thatN points ofRn in general position

can be partitioned in at least
n+k−1∑
i=0

(
N − 1

i

)
ways byk parallel planes. This quantity therefore

provides a lower bound onP (N, k, n). If n andk are fixed, then, as a function ofN , this lower
bound isΩ(Nn+k−1), and the upper bound of Theorem 4.1 is of orderNn+k−1. Thus, for fixed
n andk, the new upper bound of Theorem 4.1 is tight to within a constant.

The original upper bound, Theorem 2.1, of Olafsson and Abu-Mostafa is, for fixedn andk,
O(N2n+k). As noted, their lower bound isΩ(Nn+k−1). Olafsson and Abu-Mostafa [15] claimed
that the dependence uponn in their upper bound appeared to be, in a sense, asymptotically
correct, asserting that “Expressing the result asymptotically asNαn+k, we find that [...]1 ≤ α <
2” and that “we are led to conclude thatα is indeed greater than1, and apparently approaches
2 asN, n, andk approach infinity, withn andk growing logarithmically inN .” However, the
bound of Theorem 4.1 now suggests otherwise: this has been commented on already for fixed
n andk and follows, forn, k growing slowly with respect toN , from the observation that

n+k−1∑
i=0

(
Nk − 1

i

)
< Nn+kkn+k,

which isN (n+k)(1+o(1)) asn, k,N →∞ with n, k logarithmic inN .

As a final remark, it can be shown that the upper bound given in Theorem 3.1, while it is
an improvement of Theorem 2.1 because it is based on a tight bound on the number of linearly
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inducible orders, is still, as a function ofN , Ω(N2n+k) for fixedn andk. In this sense, therefore,
the bound given by Theorem 4.1 is better.
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