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Abstract

We prove that the combinatorial diameter of the skeleton of the polytope of feasible
solutions of any m× n transportation problem is less than 1

2 (m + n)2.

The transportation problem ( TP ) is a classic problem in operations research. The problem
was posed for the first time by Hitchcock in 1941 [8] and independently by Koopmans in
1947 [11], and appears in any standard introductory course on operations research.

The m × n TP has m supply points and n demand points. Each supply point i holds a

quantity ri > 0, and each demand point j wants a quantity cj > 0, with
m∑

i=1
ri =

n∑
j=1

cj . A

solution to the problem can be written as a m×n matrix X with entries decision variables xij

having value equal to the amount transported from supply point i to demand point j. The

objective is to minimize total transportation costs
m∑

i=1

n∑
j=1

tij xij , where tij is the unit trans-

portation cost from supply point i to demand point j. The set of feasible solutions of TP, the
transportation polytope, is described by

n∑

j=1

xij = ri, i = 1, 2, . . . , m;

m∑

i=1

xij = cj , j = 1, 2, . . . , n;

xij ≥ 0, i = 1, 2, . . . , m, j = 1, 2, . . . n.

The 1-skeleton ( edge graph ) of this polytope is defined as the graph with vertices the vertices
of the polytope and edges its 1-dimensional faces. In 1957 W.M. Hirsch stated his famous
conjecture ( cf. [5] ) saying that any d-dimensional polytope with n facets has diameter at most
n − d. So far the best bound for any polytope is O(nlog d+1) [9]. Any strongly polynomial
bound is still lacking. Such bounds have been proved for some special classes of polytopes ( for
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examples, see [13] ). Among those are some special classes of transportation polytopes [1, 3]
and the polytope of the dual of TP [1].

A strongly polynomial time algorithm for TP follows directly from [14]. It is not a pri-
mal simplex type algorithm. In fact the existence of a strongly polynomial primal simplex
algorithm is unknown. A weakly polynomial time algorithm has been presented in [12].
The first strongly polynomial bound on the diameter of the transportation polytope was
given by Dyer and Frieze [7]. Actually, they prove a bound on the diameter of any poly-
tope {x ∈ IRn | A x ≤ b, b ∈ IRm } where A is a totally unimodular matrix. The proof
is complicated and indirect, using the probabilistic method. Moreover, the bound is huge
( O(m16 n3 (ln(mn))3) assuming m ≤ n ).

We will give a simple proof that the diameter of the transportation polytope is less than
1
2 (m + n)2. The proof is constructive : it gives an algorithm that describes how to go from
any vertex to any other vertex on the transportation polytope in less than 1

2 (m + n)2 steps
along the edges.

We first review some known facts about the transportation polytope. The dimension of
the transportation polytope is mn−m−n+1 [10]. Thus, according to the Hirsch Conjecture
the diameter of TP is bounded by m + n− 1.

We denote by Km,n the complete bipartite graph with vertices representing the supply
points of TP as one color class and vertices representing the demand points of TP as the
other color class. For any feasible solution X of TP, let G(X) be the subgraph of Km,n with
E(X) = { (i, j) | xij > 0, i = 1, . . . , m, j = 1, . . . , n }.

Lemma 1 [10]
(a) Any feasible solution X of TP is a basic feasible solution ( vertex of the polytope ) if and

only if G(X) is a spanning forest.

(b) The graph G(X) has q + 1 components if and only if X is a basic feasible solution of

degeneracy q, i.e., a solution with m + n− 1− q non-zero variables.

(c) A feasible solution X is a non-degenerate basic feasible solution if and only if G(X) is a

spanning tree.

(d) There is a one-to-one relation between non-degenerate basic feasible solutions and span-

ning trees of Km,n corresponding to feasible solutions.

The proof of [10, Theorem 5] also implies that if a TP has degenerate basic feasible solutions,
then appropriately chosen sufficiently small perturbations of supply and demands results in
a non-degenerate transportation polytope with higher diameter than the original polytope.
Therefore, we will concentrate from now on non-degenerate transportation problems only.

We explain a pivot operation ( step from one vertex on the 1-skeleton of the transportation
polytope to a neighbouring vertex ) as an operation on the corresponding spanning trees.
Given a basic feasible solution X, an edge (a, b) /∈ E(X) is inserted in G(X), creating a
unique cycle C. Since C is an even cycle we can label its edges alternatingly + and −,
starting with label + for (a, b). Let E+(C) and E−(C) be the edges of C with respectively
label + and −, and let (c, d) be the edge in E−(C) with xcd minimal. Removing (c, d)
from G(X) ∪ (a, b) finishes the pivot operation, which we call a pivot on (a.b).

The above corresponds to increasing the value of all xij with (i, j) ∈ E+(C) with the
amount xcd and decreasing all xij with (i, j) ∈ E−(C) with the same amount. In particular,
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xab is raised from 0 to xcd ( becomes non-zero variable ), and xcd gets value 0 ( becomes zero
variable ). Since we assumed non-degeneracy, no other variable corresponding to an edge
in E−(C) becomes zero.

Theorem 2

For any pair X,Y of basic feasible solutions of an m× n TP, at most
m+n∑
k=4

(k − 2) pivot steps

suffice to go from X to Y .

Proof. We use induction on m + n, the total number of supply and demand points. If
m = 1 or n = 1, then Km,n is the graph of the only feasible solution, and the theorem is
trivially true. Now assume m > 2 and n > 2 and take any two basic feasible solutions X

and Y . Suppose G(Y ) has a leaf a incident to vertex b. Without loss of generality we assume
that a corresponds to a supply point ( hence b to a demand point ). Thus, yab = ra ≤ cb.
Non-degeneracy implies that in fact ra < cb and hence b cannot be a leaf incident to a in the
graph of any basic feasible solution. We distinguish two cases.

Case 1 : a is also a leaf incident to b in G(X).
Then xab = yab = ra and we may consider the transportation problem defined by removing
supply point a and setting the demand of point b to cb − ra, leaving all other supplies and
demands unchanged. The matrices X and Y with the row corresponding to supply point a

deleted, are basic feasible solutions for this new transportation problem with m+n−1 supply
and demand points. Hence the theorem is true by induction.

Case 2 : a is not a leaf incident to b in G(X).
We assume that (a, b) ∈ E(X), else one pivot step inserting (a, b) suffices to obtain this
property. Since, as stated before, (a, b) cannot be the only edge incident to b, both a and b

must have degree at least 2 in G(X). Let D(X) be the sum of their degrees in G(X). There
must exist i 6= a and j 6= b such that (a, j) ∈ E(X) and (i, b) ∈ E(X). This gives a path
(j, a, b, i) of length three. By performing a pivot on (i, j) we obtain a new solution X1.
Because (a, b) also received label + on the cycle (j, a, b, i, j), we have that (a, b) ∈ E(X1).
Since (a, j) and (i, b) are the only edges with label − on (j, a, b, i, j), one of them is deleted
in the pivot operation. Hence D(X1) = D(X)− 1.

We repeat this procedure on consecutive solutions until arriving at a solution X ′ in which
the degree of a or b has dropped to one. This occurs after at most D(X)−3 pivot operations.
Clearly, D(X) ≤ m + n. Thus, including the pivot step to make xab non-zero if necessary, at
most m + n − 2 pivot steps are required to arrive at X ′. By the choice of pivot operations,
(a, b) ∈ E(X ′). Using again that b cannot be a leaf incident to a in any basic feasible solution,
a must be a leaf of G(X ′) incident to b. Hence, X ′ belongs to Case 1, whence we can reduce
the transportation problem to a problem with one supply point less. Applying induction
proves the theorem. ¤

Corollary 3
The transportation polytope has diameter less than 1

2 (m + n)2.
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It would be interesting to investigate if the result and its proof could help in the design of a
strongly polynomial time primal simplex algorithm.

Special edges of the 1-skeleton of the transportation polytope are those that correspond
to pivot operations in which the cycle C used in the pivot has length four. We call these
2×2-pivot steps. In the proof of Theorem 2, once we assumed that the edge (a, b) is in E(X),
we used this type of pivot only. To get (a, b) into E(X) we used one other pivot step, but the
following lemma shows this could also have been achieved using 2× 2-pivot steps only.

Lemma 4
Let X be a basic feasible solution with (a, b) /∈ E(X). Then at most 1

2 (m+n)−1 2×2-pivots

are needed to obtain a basic feasible solution X ′ with (a, b) ∈ E(X ′).

Proof. Let P = (a, j1, i1, j2, . . . , jk, ik, b) be the unique path between a and b in G(X).
Then (a, j2) /∈ E(X), and we do a 2 × 2-pivot on (a, j2) to obtain the solution X ′ with
(a, j2) ∈ E(X ′). Since none of the edges of P between j2 and b is involved in this pivot,
G(X ′) contains the path P ′ = (a, j2, i2, j3, . . . , jk, ik, b) of length two less than P . Repeating
this procedure will decrease the length of the path between a and b by two at every pivot,
until (a, b) is inserted. Since P has length at most 2 min{m,n}− 1, the procedure will use at
most 1

2 (m + n)− 1 steps. ¤

Thus, adding at most 1
4 (m+n)2 extra 2×2-pivot steps to the 1

2 (m+n)2 steps from Theorem 2
yields a bound of 3

4 (m+n)2 on the diameter of the restricted 1-skeleton of the transportation
polytope in which only edges exist that correspond to 2× 2-pivot steps.

This opens the possibility that a random walk on the vertices of the transportation poly-
tope using only 2× 2-pivots mixes rapidly. The analysis of such a walk seems easier than one
that allows steps along any edge of the polytope. This would be a crucial step in devising a
polynomial randomized approximation scheme for counting the vertices of the transportation
polytope, a ]P-complete problem [6]1. So far rapid mixing on the transportation polytope has
been shown only for problems with a fixed number of rows or a fixed number of columns [4].

It remains open if the transportation polytope has diameter m + n − 1 according to the
Hirsch Conjecture. It is unlikely that our algorithm underlying the quadratic bound will, if
subjected to a more subtle analysis, lead to that result. The desired result requires, e.g., that
between two vertices on the polytope, whose graphs have no edges in common, each of the
pivot steps must bring the difference between the two down. However, from an example on
[2, pages 141,142] we know that it is not true that for any two basic feasible solutions that
differ in k non-zero variables there exists a pivot step that reduces the number of non-zero
variables in which the solutions differ. In the example k = 2. We can prove that such a pivot
step exists in case k = 1, and it trivially exists if k = m + n − 1. The example does not
disprove the Hirsch Conjecture, but it shows that pivot steps need to be chosen carefully to
obtain the result.

Below we present a simplified version of the example in [2] :
1In fact, [6] only claims NP-hardness, but the proof establishes ]P-completeness.
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The values of the supply points ( on the left ) and the demand points ( on the right ) are
indicated by the underlined values. The two trees G(X), G(Y ) are both feasible, as is shown
by the values on their edges. There are are two edges (a1, b3), (a2, b1) in E(Y ) \ E(X). But
pivoting both on (a1, b3) and on (a2, b1) in G(X) leads to trees that still differ in two edges
from G(Y ).
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