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Abstract

This paper surveys certain developments in the use of probabilistic techniques
for the modelling of generalization in machine learning. Building on ‘uniform
convergence’ results in probability theory, a number of approaches to the problem
of quantifying generalization have been developed in recent years. Initially these
models addressed binary classification, and as such were applicable, for example,
to binary-output neural networks. More recently, analysis has been extended to
apply to regression problems, and to classification problems in which the classifi-
cation is achieved by using real-valued functions (in which the concept of a large
margin has proven useful). In order to obtain more useful and realistic bounds, and
to analyse model selection, another development has been the derivation of data-
dependent bounds. Here, we discuss some of the main probabilistic techniques and
key results, particularly the use (and derivation of) uniform Glivenko-Cantelli the-
orems, and the use of concentration of measure results. Many details are omitted,
the aim being to give a high-level overview of the types of approaches taken and
methods used.



1 Probabilistic Modelling of Learning

We begin by describing a by-now very standard probabilistic model of supervised
learning. Suppose thaf is a set okexampleswhich in a neural network context would

be elements oR" if the network has: real inputs. Suppose also thgtC R is the

set of possibl®utputs We shall always assume thHgtC [0, 1], and in some cases we
shall be interested in the situation whéfe= {0, 1}. SoY represents, for instance, the
output value of a neural net with one output unit. TheXetY will be denotedZ, and
elementgx, y) of Z will be calledlabelled examplesln the model, we shall assume
that alearning algorithm.A4 takes a randomly generatéehining sampleof labelled
examples, (each calledteining examplg and produces a functioh : X — [0, 1],
chosen from some clag$ of functions. The goal is to producehgpothesis: that is a
‘good fit' to the process generating the labelled examples. More precisely, we assume
that there is some fixed, but unknown, probability meaguom Z. (There is a fixed
o-algebraX on Z, which whenZ C R, we shall take to be the Borelalgebra. Then,

w denotes a probability measure 04, ). A number of measurability conditions are
implicitly assumed in what follows, but these conditions are reasonable and not par-
ticularly stringent. Details may be found in [16, 36] for instance.) We assume that
each training example is generated independently according ¢80, if the training
sample is of length, then it is generated according to the product probability measure
w™.) Formally, a learning algorithm is a functioh: | J;~ , Z" — H, and we say that

the learning algorithm isuccessfuff, with high p™-probability, it produces anutput
hypothesisd(z) which is almost as good a fit to the distributipras exists in the class

H. More precisely, we have in mind sorfess function? : [0,1] x Y — [0, 1], and

what we hope for is thatl(z) has a relatively smalbss where, forh € H, the loss of

h is the expectatiod(h) = E ¢(h(x),y) (where the expectation is with respecttp
Examples of loss functions arér, s) = |r — s|, £(r,s) = (r — s)?, and the discrete
loss, given by!(r,s) = 0if r = s and{(r,s) = 1 if » # s. Since the best loss one
could hope to be near iB* = inf,cpy L(h), we wantA(z) to have loss close td*,

with high probability, provided the sample sizeis large enough. Since we do not
know 1, we must be able to guarantee this success without reference to the particular
distribution 1« generating the examples. We therefore have the following definition.
(Here, and in the rest of the paper, we use the syifiltoldenote probability. This is
slightly imprecise, in that the measure is not specified, but this is usually clear in any
case. For instance, in the definition that follows, the probability is with respect.jo

Definition 1.1 With the above notations4 is a successfulearning algorithm forH
if for all ¢,6 € (0,1), there is someuy (¢, 0) (depending or and § only) such that, if
n > ng(e, ), then with probability at least — 6, L(A(z)) < L* + . The minimal
suchng (e, ¢) is referred to as theample complexityf A and is denotea 4 (¢, 9).

Note that if A is successful, then there is some functigtw, §) of n andd, with the
property that for alb, lim,,_, - €o(n,d) = 0, and such that for any probability measure



won Z, with probability at least — § we haveL(A(z)) < L* +¢ep(n,d). The minimal
eo(n, d) is called theestimation errorof the algorithm.

When H is a set of binary functions, meaning each functiodirmaps into{0, 1},

if Y = {0,1}, and if we use the discrete loss function, then we shall say that we
have abinary (classification) learning problem. If* = 0 then we say that we have a
realisablethe learning problem. In this situation there is sofme H such that with
probability1, forall (x,y) € Z,y = t(x). (In particular, this includes the case in which
there is a fixed probability distributiom on X and atarget functiort : X — {0,1}.)

For a binary, realisable learning problem, the definition of successful learning is quite
simple to understand: for aflye H, L(h) is the probability that on a randomly drawn
element(z, y) of Z, h andt agree on; that is,h(x) = t(x). So what the definition
says is that, provided the sample is large enough (of length greatergban), then,

with probability at least — J, A produces a hypothesis which agrees with the target
function with probability at least — ¢ on a further randomly drawn example.

We might want to use real functions for classification. Here, we would have

{0,1}, butH : X — [0,1]. In this case, one appropriate loss function would be given,
forr € [0,1] ands € {0,1}, by ¢(r,s) = 0if r — 1/2 ands — 1/2 have the same
sign, and((r, s) = 1 otherwise. We call this théhreshold loss Thus, with respect

to the threshold losg(h(z), y) € {0,1} is 0 precisely when the thresholded function

Ty, - « — sign(h(x)—1/2) has valuey. This approach is equivalent to using the binary
learning problem involving the clags; = {¢5, : h € H}. We shall see, however, that
there is some advantage in consideringrttegginof classification by these real-valued
hypotheses. (This is consistent with the assumption that large margins are good, a fact
that has been emphasised for some time in pattern recognition and learning [15, 39],
and which is very important in Support Vector Machines [13].)

Explicitly, suppose that > 0, and forr € [0, 1], definemar(r,1) = r — 1/2 and
mar(r,0) = 1/2 —r. Themarginof h € H onz = (z,y) € Z x {0,1} is defined

to bemar(f(z),y). Now, define the loss functioft by ¢7(r, s) = 1 if mar(r,s) <~
and?(r,s) = 0if mar(r,s) > . If L7(h) is the corresponding loss of a hypothesis,
thenZ”(h) is the probability that for a random= (x, y), h(x) is not within1/2 — ~

of y. We callL7 (k) the loss ofh at marginyy. Clearly L7 (k) is an increasing function

of yandL°(h) = L(h) whereL corresponds to the simple threshold loss. We make
the following definition (as in [3]).

Definition 1.2 We say thatd : (0,1) x |J,—, Z™ — H is asuccessful real-valued
classification algorithnif for all €, € (0, 1), there is somey (e, §) (depending ore
andd only) such that, if: > ng(e, §), then with probability at least — J,

(L(A(y,2)) < inf L7(h) +e



So the aim here is to produce an output hypothesis whose loss (in the standard sense,
with respect to the threshold loss function) can (with high probability) be made as close
as we like to the lowest loss achievable when measured at margin

Definition 1.1 has its origins in the work of Vapnik and Chervonenkis [40, 38, 39]
and, in the theoretical science community, in the binary realisable case, in work of
Valiant [37]. Valiant's paper was concerned also with the computational complexity
of producing successful hypotheses, and this has subsequently been much studied in
the Computational Learning Theory community, where the term ‘Probably Approxi-
mately Correct (PAC) algorithm’ has been used. A general loss-theoretical model was
developed by Haussler [20]. Many other variants of the learning model have also been
explored. (See the books [3, 4, 25, 41] and the Proceedings of the Annual COLT con-
ferences, for wide-ranging results on the computational and sample complexity of a
number of variants of this standard learning model.)

2 Uniform Convergence Results

2.1 Uniform Glivenko-Cantelli Classes

Much work in proving successful learnability and in quantifying sample complexity
and estimation error has used existing or new ‘uniform convergence’ or Glivenko-
Cantelli type theorems from probability theory.

In order to describe what this means, we need a few more notations. Suppoge that
is a set of (measurable) functions frafito [0, 1] and thatu is a probability measure

on Z. Denote the expectatid, f by p(f) and, forz = (z1,22,...,2,) € Z", let

us denote by, (f) the empirical measure gfonz, p,,(f) = n=' > 1| f(z:). (For
fixed f, we shall regargs, (f) as a random variable a™. The notation is not ideal

in that in does not specify, but it will do for our purposes.)

Definition 2.1 We say thaf’ is a uniform Glivenko-Cantellclass if it has the follow-
ing property (also known as uniform convergence of empiricals to expectations):

Ve >0 lim supP <sup sup |u(f) — pm(f)| > e) =0.
n—oo m>n fEF

The strong law of large numbers of classical probability theory tells us that, forieach
and for each fixedf, P (sup,,>,, [1(f) — pm(f)| > €) — 0 @asn — oc. For a class to

be a uniform Glivenko-Cantelli class, we must, additionally, be able to bound the rate
of convergence uniformly over afl € F', and over all probability measurgs



If F is finite, then it is a uniform Glivenko-Cantelli class. To see this explicitly, we
can use Hoeffding’s inequality [22], which tells us that for angnd for eachf € F,
P (|u(f) — pn(f)| > €) < 272" It follows that

P(;ngu(f)—un(f)I >e> P (U {l(f) = i (f)] >6})

fEF

IN

ST P (ulf) = )] > €

feF
2|Fle=2m,

IN

We now apply the Borell-Cantelli lemma, together with the observation that the bound
just given is independent gf. Since, for each > 0,

o0

STP(u(f) = (] > €) < 3 2AFle> " < o0,

n=1
we have
lim sup P <sup sup |u(f) — i (£)] > ) =0
oo mzn feF
and the class has the uniform Glivenko-Cantelli property.

The above derivation was straightforward, but it demonstrates a key technique: we
bounded the probability of a union by the sum of the probabilities of the events in-
volved. This is known as using thmion boundand is an extremely useful tool. It has
been argued by a number of researchers that the union bound is at the root of much of
the looseness of many of the rate of convergence results; see, for example [30, 27], and
it is not hard to see that this is a reasonable accusation.

2.2 Uniform Glivenko Cantelli Classes and Successful
Learning

With the notations above, define ttoss clasqcorresponding td and H) to bely =
{ly : h € H} where, forz = (x,y), {n(z) = £(h(x),y). Suppose thaty is a uniform
Glivenko-Cantelli class. Far € Z", theempirical lossof h € H onz is defined to be
L,(h) = pn () = n= 230 6(h(z;),y:), Wherez; = (x;,y;). Let us say thatd is
anapproximate empirical loss minimisati@hgorithm if for allz € 2™,

L,(A(z)) < % + hnelg L,(h).

ThenA is a successful learning algorithm. (In the binary case, the infimum is a mini-
mum, and thd /n is not needed.) To see this, we can give a fairly standard argument



(see [1, 3], for example). Suppose that 0 andé > 0 are given and leb* € H be
such thatL(h*) < L* + ¢/4. Supposer > 4/, so thatl/n < /4. By the uniform
Glivenko-Cantelli property fof s, there isng(e/4, §) such that for allh > ng, with
probability at leasl — §, sup, ¢ |L(h) — L,(h)| < €/4. So, with probability at least
1-9,

L(A(z)) < La(A(2)) +
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So A is a successful learning algorithm and its sample complexity is no more than
max(4/e,no(e/4,9)).

In fact, as we have stated the definition of learning, the apparently weaker form of
convergence

Ve >0 lim supP (sup le(f) — pn(f)| > e) =0
feF

n—oo I

, Where F' = (g, suffices for this type of learning algorithm to be successful. We
may regard the infinite cartesian produt® to be equipped with a measyi&® which
coincides with the product measur® on the canonical projection ont&™. (If X

is theo algebra onZ, then the appropriate algebra onX = is that generated by all
cylinders, of the fornIS2, A;, whereA; € ¥ for all ¢, with A; = Z for all but finitely
manyi. See [41].) Then, with the appropriate interpretatiop.pfis a random variable

on Z> (namely,u,,(f) is defined precisely as before, and depends only on thefirst
components of an element &f>°), the weaker condition described above is equivalent
to uniform convergencé probability of sup ;¢ [1(f) — pn(f)| to 0, whereas the
uniform Glivenko-Cantelli property is equivalent&most surauniform convergence.
Since the uniform convergence in probability is a sufficient condition for learning, it is
the rate of this type of convergence that we often bound if we are interested primarily
in applications to learning.

For the real-valued classification learning problem, it can be shown (see [3]) that a
different kind of convergence result is a sufficient condition for the existence of a suc-
cessful learning algorithm. Explicitly, we say théis alarge-margin approximate loss
minimisation algorithmif L) (A(z)) = minpey L) (h). It turns out that a sufficient



condition for such an algorithm to be sucessful is that

lim supP (Sup (L(h) — LY(h)) > e) =0
ooy heH

forall v,e € (0,1).

3 Probabilistic Techniques

In this section we discuss some of the key methods than have been used to prove the
probability theorems used in learning theory (such as Glivenko-Cantelli results, but
also the ‘data-dependent’ results to be discussed later).

3.1 Symmetrization

A key technigue isymmetrizationin which the probability that:( f) andp., (f) differ
significantly is bounded (uniformly ovef’) by the probability of an event involving
only empirical measures gf. Symmetrization can also be used to bound the expecta-

tion of sup s p [1(f) = pa(f)I-

A symmetrization result for the tail probabilities [19] may now be obtained as follows.
First, it is quite easy to show that

€
P (sup [w(f) = pn () > e) <2P (sup |t () = 1 ()] > 2) ;
feF fEF
wherey! (f) is the empirical measure ¢f on a second, independent, € Z™, and
the probability on the right is with respect to the product meagdfeon Z2". For

1 <i < n,leto; € {—1,1} be Rademacherandom variables, taking valuewith
probability1/2 and—1 with probability1/2. Then, by symmetry and the definition of

the empirical measures,
> e/2>
1
) >e/d]+P bup* Za, 2;)
fe

>e/4>
=2P if (2 4
frton o]

(Here the probability is jointly over the distributions of the samples, and ofthe
Summarising, we have:

n

, 1
P (;lelgmn(f) — pn(f)] > 6/2> =P (;ggn >

=1
n
sup lof
(feF” Z '

0i (f(z) = f(2))




Theorem 3.1 If F'is a class of functions mapping frofhto [0, 1] and x is a proba-
bility measure or?Z, then
> e/4>

P<WMMﬂ—Mun>Qs4pr
feF
where ther; are idependent Rademacher variables.

In a similar way (see [14]) a symmetrization for expectations is obtainable. We have
— su O'z Z;
* (s S o s

EUz Z;)

f(z)

IN

E (Sup ln(f) %(f)l)
fer

= - IE sup
n feF

That is,

Theorem 3.2 If F' maps fromZ to [0, 1], andu is a probability measure o#, then

507 2;)

1=1

Equm—WuO<2Ewp

feF n fer

3.2 Concentration

We now describe a type @oncentration of measure restltat can be used to move

from bounds on the expectation to bounds on the tail probability (as in [14]). It can also
be used in many other ways, such as to obtain data-dependent bounds on estimation
error (as described later). A concentration result of this type states that, under certain
conditions, a random variable is sharply concentrated about its expectation, in the sense
that the probability of a certain deviation from its expectation is exponentially small in
the deviation. The most well-known such result is Hoeffding's inequality.

Theorem 3.3 (Hoeffding’s inequality) SupposeX;, for i = 1,2,...,n, are inde-
pendent random variables such th&t € [a;,b;]. Then the random varlablsn =
i, X, satisfies

P (]S, —ES,| > a) < 2exp (—2@2/2(@- - ai)Q) .
i=1



An important generalization of Hoeffding’s inequality is the following result from [29].
We say that a functiog : Z" — R has thebounded differencegroperty if for1 <

i < n, there are constants such that for any, z’ € Z" which differ only in theith
coordinate (sa; # z; butz; = 2 for all j # i), we havelg(z) — g(z')| < ¢;.

Theorem 3.4 (Bounded differences inequality)Suppose that;, zs, ..., z, are in-
dependent, and that the functign: Z” — R has the bounded differences property.
Then
P (|9(z) — Eg(z)| > @) < 2exp (—zoﬂ / Zﬁ) :
=1
for all .

In particular, as observed in [14], if we takéz) = sup ;- [u(f) — pn(f)[, and note
thatg has the bounded differences property with= 1/, we obtain that

P<f

Sup |:LL(f) - :U'n(f)| —E Spp |,Lt(f) - ,U'n(.f)|
er fer

2
> a) < Qe 2ne”,

Thus, a bound on the expectationsab ;¢ - |1(f) — pn(f)| will yield a good bound
on the corresponding tail probability. Explicitly, we have the following.

Theorem 3.5 Suppose that' is a set of functions fronZ to [0,1] and thaty is a
probability measure o For ¢ € (0, 1), with probability at leastl — ¢,

s () < ()] < [0 (5 ) + B su () ().
fer n fer

3.3 Using Covering Numbers

Given a (pseudo-)metric spaté, d) and a subsef of A, we say that the s@t C A is
ane-coverfor S (wheree > 0) if, for every s € S there ist € T such thati(s,t) < e.
For a fixede > 0 we denote byV (S, ¢, d) the cardinality of the smallestcover forS.
(We defineN (S, ¢, d) to beco if there is no such cover.) In our setting, foe 2", and

fEF, letf'z = (f(zl)af(z2)7vf(zn)) and IetFlz = {f‘z:fEF} - [Oal]n'

Forr > 1, let
Lo 1/r
dTa = - i ir )
A

and letd (v, w) = maxj<;<yn [v;—w;|. Define theuniform covering numbeX..(F, ¢, n)
to besup,c 4n N'(F|,, €, d,-). Note that ifr > s then

ds(v,w) < d,(v,w) < doo(v, W)



and, consequently,
Ns(F,e,n) < N (F,e,n) < Noo(F,e,n).

The following result is from the excellent survey by Mendelson [30], and uses tech-
niques developed in [40, 32, 20] and elsewhere.

Theorem 3.6 ([30]) Suppose thak’ is a set of functions fror# to [0, 1]. Then for any
€ (0,1),

P (;ug 1(f) = 1 (f)] > e) < 8E,n (N(Fla, ¢/8,dy)) e~ /1%,
€

Proof: Using the symmetrization bound of Theorem 3.1, and conditioning, dhe
required probability may be bounded by
) ) =E P(z),

sup oif(z:)] > — sup
(feF Z 4> < (feF

i=1
say. So, fixz € Z™ and letC C [0,1]" be ane/8-cover for F|,, with respect
to dy, of minimum cardinalityNV'(F|,,€/8,d1). It is easy to see that, fof € F,
if >0, 0if(zi)| > ne/4 then there exists € C such that]}_" , o;¢;| > ne/4.
(Choose: within d; -distance:/8 of f|,.) Using the union bound,

P2 <U{ >}><ZP<Z@Q
ceC ceC i=1

where we have used Hoeffding’s inequality in the final step. The result now follows.

O

Zazf Zz

=1

iCi

> 6) < |C|2 —ne /128

Of course, . is not normally known, so the expectation in Theorem 3.6 cannot be
determined. Consequently, we usually upper-bound the expected covering number by
the uniform covering numbeX/; (F, ¢/8,n). The theorem then implies the following.

Theorem 3.7 With probability at least — 4,

sup [u(f) = pn(f)] < \/64 (InNi(F,¢/8,n)) +In (i),
fer n

In the binary case, better bounds are possible; see [3, 14]. In particular [14, 17], using
a technique known ashaining the following can be shown.

10



Theorem 3.8 If F'is a set of functions fror to {0, 1} andy is a probability measure
on Z, then

Esup |u(f) — pn(f)] < 22 max /1 VIn 2N (Fl,, 7, dy)) dr.
FeF T Vn 0

n zczZn

Furthermore, for any € (0, 1), with probability at leastl — ¢,

1 2 24 !
sup () = (O] < 1510 (3) + T2 s [ VRN

The second statement in the Theorem follows from the first on applying Theorem 3.5.

Next, we have the following result [6, 3] which concerns real-valued classification.
(See [6, 35] for similar results.) First, for> 0, definer, : [0,1] — [1/2—~,1/2+47]

to be the function that truncates Bt2 — v and1/2 + ~; that is, forz € (1/2 —

v, 1/247), 7y (x) =z, butfore > 1/2 +~, 7, (x) = 1/2 4+ v and forz < 1/2 —~,
my(x) = 1/2 —~. Letm,(H) be the set of functions,, o k, obtained by composing

with 7. Then we have the following theorem.

Theorem 3.9 Suppose thaff is a set of functions front to [0,1]. Then for any
e,v € (0,1),

P (s (100~ T30) > €) < 2B, N (Flar/2. ) 5
heH

whereF = 7., (H).

Proof: We only sketch the proof; for details, see [6, 3]. The first step is to establish
that

P (sup (L(h) — T3(h) > ) <P <sup (Lo (h) = LY()) > ) |
heH heH 2

where, on the rightz’ is a second independent sample of lengthA key observation
in the remainder of the proof is thatdf is a~/2-cover of F|,, with respect tal.,
then the existence df € H such thatl,.(h) > L] (h) + ¢/2 implies the existence
of ¢ € C with the property thain(c,z’) — m(c,z) > ne/2, where, ifz; = (z;,v;),
thenm(c, z) is the number of indices such thatc; — y;| > 1/2 — v/2. The use of
Rademacher variables and Hoeffding’s inequality completes the proof.

Using the uniformd..-covering numbers in place of the expectation, we obtain the
following.

11



Theorem 3.10 For any~ > 0, for anyé € (0, 1), with probability at least — 4,

Vhe H, L(h)<L)(h)+ \/i (In N (7 (H),v/2,2n)) + In (?)

3.4 Rademacher Complexity

Define, forz ¢ Z™,
2 n
R, (F,z) = —Esup

N fer

9

oif(2)
1

where the expectation is over the joint distribution of éhgand define th®ademacher
complexity(or Rademacher average) 6fto be R,,(F) = ER,(F,z) (where here

the expectation is over™, with respect tou™). (See, for example [30, 9, 26, 36].)

As Bartlett and Mendelson have observed [9], the Rademacher complexity gives an
indication of how well some function i can be correlated with random noise, and

so provides an indication of the complexity 6f By Theorem 3.2, we see directly
that Esup e [1(f) — pa(f)| is bounded above by, (F'). By Theorem 3.5, with
probability at least — ¢, for z € Z™ we obtain

2

sup (1) = ()] < RolF) 450 ().

In particular, in the context of learning, and with the usual notation, we have (as in [9])
the following result.

Theorem 3.11 With probability at least — 4,

Whe H, L(h) < Ly(h) + Ru(F) + % In (2>

The Rademacher complexity possesses some useful structural properties; for example,
the Rademacher complexities of a function class and its symmetric convex hull are the
same [9]. Estimates of the Rademacher complexity for a number of function classes,
including neural networks, can be found in [9].

More recently, attention has turnedtealizedRademacher complexities, in which the

supremum is taken not over the whole 16f but over a subset of thogewith small
variance. For details, see [30, 7, 12].

12



3.5 Combinatorial Measures of Function Class
Complexity

We have seen that the covering numbers and Rademacher complexity can be used to
bound the probabilities of chief interest. These can in turn be bounded by using cer-
tain combinatorial measures of function class complexity. We shall focus here on the
bounding of covering numbers, but see [30] for results relating Rademacher complexi-
ties to combinatorial parameters.

Let’s start with the binary case, in whicH maps into{0,1}. Vapnik and Chervo-

nenkis [40] established that what has subsequently been known as the Vapnik-Chervonenkis
dimension (or VC-dimension) is a key measure of function class complexity. (The im-
portance for learning theory was highlighted in [10], and expositions may be found in

the books [4, 3, 25, 41], and elsewhere.) In this casez ferZ", the setF|, is finite,

of cardinality at mos2”, and we may define thgrowth functionllz : N — N by

IIp(n) = max |Fl,|.
Itis clear that\V/ (F|,, €,d,.) = |F|,| andN,.(F,e,n) = IIg(n), for all » and fore €
(0,1). TheVC-dimensiorvCdim(F') is then defined to be (infinity, or) the largest
such thafllx(d) = 2¢. The Sauer-Shelah lemma [33, 34] asserts thagCflim(F) =

d < oo then for alln > d,
d
n
IIp(n) <
rm <3 (7)

showing that the growth function is polynomial in this case. For another description of
VC-dimension, we may say that a subsetf 7 is shatteredby F' if forany T C S

there isfr € F with fr(z) = 1forz € T and fr(z) = 0for z € S\ T. Then the
VC-dimension is the largest cardinality of a shattered set. Note that, with the discrete
loss, itis easy to see thatif = ¢y thenllp = IIy and soVCdim(F) = VCdim(H).

Now, Theorem 3.6 has the following consequence.

Theorem 3.12 For a binary class of finite VC-dimensiaf) with probability at least

1-56,
sup 1(f) = pn(f) < k\/:b (dln (%) +In (;))

for a fixed constant.

In this Booolean case, tighter bounds can be obtained (see [28]). Dudley [17] proved
(in aresult later improved by Haussler [21]), thaFif. Z — {0, 1} has VC-dimension

d then N (F|,, r,dy) < (4e/r?)¥(1="") which in combination with Theorem 3.8,
establishes the following.
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Theorem 3.13 Supposé' is a binary class of finite VC-dimensidn Then, with prob-
ability at leastl — ¢,

1 2 d
oup )~ (1) < (g (2) 2

for a fixed constant.

Lower bounds on the sample complexity of learning algorithms can also be obtained
in terms of the VC-dimension [18, 10, 3]. The VC-dimensions of many different types
of neural network have been estimated; see [3, 23, 2], for example.

Suppose, more generally, that : Z — [0,1]. We say thatS C Z is shattered

by F if there are numbers, € [0,1] for z € S such that for everyl’ C S there

is somefr € F with the property thatfr(z) > r, if z € T and fr(z) < r, if

z € S\ T. We say thaf has finitepseudo-dimensiod( F') = d if d is the maximum
cardinality of a shattered set. Another interpretation of this dimension can be given. Let
S(F)={{(z,y) e ZxR:y < f(2)}: f € F} be the set obubgraphof functions

in F. Thend(F) is the VC-dimension of (F") (or, of the set of indicator functions of

the sets inS(F)). For this reason, a clag8 of finite pseudo-dimension is often called
aVC-subgrapltlass [16, 36]. Pollard [32] bounded the-covering numbers in terms

of the pseudo-dimension, as follows:

d(F)
./\/1(F,e,n,)<2<2:1n <2€>) )

€

for all n. One can therefore use this in conjunction with Theorem 3.6 to obtain bounds
on the rate of convergence, in probability, 0fp . - |(f) — 1. (f)| to zero. Fur-
thermore, the Borel-Cantelli lemma can be applied to show Ehaiill be a uniform
Glivenko-Cantelli class if it has finite pseudo-dimension.

However, finite pseudo-dimension is a stronger condition than is needed for a class
to have the uniform Glivenko-Cantelli property [1]. #cale-sensitiverersion of the
pseudo-dimension (originally used in [24]) is defined as follows. Fof 0, we say
thatS C Z is y-shatteredby F' if there are numbers, € [0,1] for z € S such that
for everyT C S there is somefr € F with the property thafr(z) > r, + ~ if

z € Tand fr(z) < r,—~if z € S\ T. We say thatF' has finitefat-shattering
dimensiond at scaley, and we writefat., (F') = d, if d is the maximum cardinality of a
~-shattered set. We say simply thathas finite fat-shattering dimension if it has finite
fat-shattering dimension at every scale> 0. It is quite possible for a class to have
finite fat-shattering dimension but infinite pseudo-dimension. Adbal.[1] obtained

an upper bound on th&,, covering numbers in terms of the fat-shattering dimension,
as a consequence of whichAfhas range which is a sub-interval[6f 1] of length B,
then

b

An.B2 dlog,(4eBn/(de))
NMi(e, F,n) < Noo(e, Fyn) < 2 ( n >

€2
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whered = fat./4(F). Theorem 3.6 and the Borel-Cantelli lemma then establish that
F is a uniform Glivenko-Cantelli class.

For the standard loss functions, the fat-shattering dimensions of the losg glassl|
H itself are often simply related; see [1, 3].

We can apply the covering number bound to real classification learning by using The-
orem 3.10, leading [3] to the following.

Theorem 3.14 With probability at least — 9,

VheH, L(h)< Ly(h)+ ¢ s (dlog2 (325”) In(128n) + In (;‘))
n

whered = fat., s(H).

Alon et al. also showed that finite fat-shattering dimension is a necessary condition for
a class to have the uniform Glivenko-Cantelli property. In fact, they prove something
stronger, a consequence of which is that finite fat-shattering dimension is a necessary
condition for a class to have the convergence property

Ve >0 lim supP (sup le(f) = un(f)] > e) =0.
n—oo fEF

1%

Thus the uniform convergence, in probabilitysob ; - [(f) — pn(f)[ t0 0 is equiv-
alent to the uniform Glivenko-Cantelli property (as noted above).

For more on the fat-shattering dimension, including estimates for neural network classes,
see [1, 3, 6]. See [3, 8, 30, 31] for improved bounds on covering numbers in terms of
the fat-shattering dimension, particularly with respect to the mettjct®r p # oo.

The fat-shattering dimension can also be used to provide lower bounds on the sample
complexity of learning algorithms; see [3] for instance.

4 Data-Dependent Analysis

4.1 Data-Dependent Bounds

We have seen that for many learning problems the loss of hypotheses may be bounded
uniformly in terms of the empirical losses and the expectation of the empirical covering
numbers. In most applications, since we do not know the distribution, we bound the ex-
pectation of the covering number by the corresponding uniform covering number, and

15



then perhaps use combinatorial dimensions to bound these. We have also seen that the
losses may be bounded using the Rademacher complexity of the loss class. Generally,
the upper bounds oh(h) presented so far consist of two terms; one is the empirical
loss, and the other is what might be called a complexity term. Notably, although the
empirical loss clearly depends an the complexity term depends on the loss class,
and does not depend explicitly @n In this section we present some data-dependent
results, in which the class-dependent complexity term is replaced by a complexity term
dependent not only on the class, but on the samgilself. This has been the subject

of much active research in recent years. This has been motivated, at least in part, by
the observation that learning algorithms tend to return hypotheses that use the training
data in a fairly sophisticated manner, rather than simply return, for instance, any hy-
pothesis with near-minimal empirical loss. Data-dependent bounds have been obtained
in a number of ways, in particular through deploying a general ‘luckiness’ framework
developed in [35, 42], and, more recently, through the application of concentration
inequalities, as in [11, 5].

4.2 Data-Dependent Learning Results

Suppose thafl is a binary function class mapping fro& to {0, 1}. By proving a

new concentration inequality, Boucheron, Lugosi and Massart [11], established that the
VC-entropyH,, (x) = log, |H|x| (for x € X™) is concentrated around its expectation.
With this, they were able to establish the following data-dependent result (in which the
loss function is the discrete loss).

Theorem 4.1 With probability at leastt — ¢, forz € Z" = (X x {0,1})",

Vhe H, L(h) < Ly(h)+ %H %

This should be compared with the bounds that would follow from the results presented
earlier: such bounds would invoN&| H || or, sincey is not known, the growth func-

tion Iy (n) = maxxex~ |H|x|, and therefore would not depend explicitly on the data.

It is certainly possible thdtH || is much less thail 4 (n), and so the data-dependent
bound could have significant advantage. This result can also be expressed in terms of
theempirical VC-dimensionForx € X" let VCdim(H|x) denote the VC-dimension

of the set of functions obtained by restrictiifto domain consisting of the elements

of x.

Theorem 4.2 With probability at least — §, forz € Z™ = (X x {0,1})",

i

Yhe H, L(h) < Ly(h) + \/
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whered(x) = VCdim(H|x).

(See also [35] for related results involving empirical VC-dimension, for the case in
which the empirical loss is zero.)

There are also data-dependent results for real-valued classification [42, 5]. Using the
concentration inequality from [11], Antos,&¢l, Linder and Lugosi [5] have obtained
bounds involving thempirical fat-shattering dimensiofrorx € X", and~y > 0, let

fat. (H|x) be the fat-shattering dimension of the set of functions obtained by restricting
H to the set consisting of the elements of the sampléhen, in [5], the following
theorem is obtained.

Theorem 4.3 For ~ > 0, with probability at leasti — 9,

Vhe H, L(h) < LI(h) + \/711 <9d(x) +125In (i)) In (%) In(128n),

whered(x) = fat., /g(H|x).

This should be compared with Theorem 3.14. The former might look better, but the
empirical fat-shattering dimension can be significantly less than the fat-shattering di-
mension, so in some cases the data-dependent bound is better. Moreover, the empirical
fat-shattering dimension can be calculated reasonably easily in some cases. (See [5].)

We can also obtain a version of the above result in which the margimot specified
beforehand, and could depend on both the data and the chosen hypothesis.

Theorem 4.4 With probability at least — 4, for all h € H and for ally € (0, 1],

w0 < 2200+ (o000 125 (12) ) (2208 ) )

whered, (x) = fat, /16(H|x) anddy(x) = fat, /s(H|x).

Proof: We use the ‘method of sieves’ (see [6, 3]). In [6], the following is shown.
SupposeP is any probability measure and thaf (o, a2,d) : 0 < ay, 0,6 < 1} isa
set of events such that:

e forall o, P(E(a, o, 6)) < 0,

e 0<ay<a<ay<landd<d <§<1limply E(ay,as,d1) C E(a, a,d).
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Then
P U E(ac,a,6a(l —¢) | <0
a€(0,1]

for0 < ¢,0 < 1. We takeE(a1, ag, d) to be the set of € Z" such that there exists
h € H with

32en

L(h) > ng(h)+\/; <9fata]/8(H|x) +125In <§)> In (fata/g(Hx)) In(128n).

Theorem 4.4 states thB{ F'(«, , §)) < 4. Itiseasytoseethit< oy < a<ay <1
and0 < §; < § < 1imply E(ay,a9,61) C E(a,«,d). The result now follows by
using the sieve method, takimg= 1/2. O

Turning attention now to the Rademacher complexity, Bartlett and Mendelson [9] have
observed that the empirical Rademacher compleRjtyF, z) is concentrated about its
expectation, which i, (F). For, it is easy to see tha{z) = R, (F,z) satisfies the
bounded differences property with eaglequal to2/n, so that with probability at least

1 -4, R,(F) is at mostR,,(F,z) + y/2n~'1n(2/§). Hence, by Theorem 3.5, with
probability at least — 4,

sup [1(f) — pn(f)] < Ru(F.2) + 3¢/ L 1n (ﬁ)
feF n

In particular, with probability at leadt— §,

Vhe H, L(h) < Ly(h) + Ru(F,27) + 3/~ In (2)
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