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Abstract

This paper surveys certain developments in the use of probabilistic techniques
for the modelling of generalization in machine learning. Building on ‘uniform
convergence’ results in probability theory, a number of approaches to the problem
of quantifying generalization have been developed in recent years. Initially these
models addressed binary classification, and as such were applicable, for example,
to binary-output neural networks. More recently, analysis has been extended to
apply to regression problems, and to classification problems in which the classifi-
cation is achieved by using real-valued functions (in which the concept of a large
margin has proven useful). In order to obtain more useful and realistic bounds, and
to analyse model selection, another development has been the derivation of data-
dependent bounds. Here, we discuss some of the main probabilistic techniques and
key results, particularly the use (and derivation of) uniform Glivenko-Cantelli the-
orems, and the use of concentration of measure results. Many details are omitted,
the aim being to give a high-level overview of the types of approaches taken and
methods used.
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1 Probabilistic Modelling of Learning

We begin by describing a by-now very standard probabilistic model of supervised
learning. Suppose thatX is a set ofexamples, which in a neural network context would
be elements ofRn if the network hasn real inputs. Suppose also thatY ⊆ R is the
set of possibleoutputs. We shall always assume thatY ⊆ [0, 1], and in some cases we
shall be interested in the situation whereY = {0, 1}. SoY represents, for instance, the
output value of a neural net with one output unit. The setX×Y will be denotedZ, and
elements(x, y) of Z will be calledlabelled examples. In the model, we shall assume
that a learning algorithmA takes a randomly generatedtraining sampleof labelled
examples, (each called atraining example) and produces a functionh : X → [0, 1],
chosen from some classH of functions. The goal is to produce ahypothesish that is a
‘good fit’ to the process generating the labelled examples. More precisely, we assume
that there is some fixed, but unknown, probability measureµ on Z. (There is a fixed
σ-algebraΣ onZ, which whenZ ⊆ Rn, we shall take to be the Borelσ-algebra. Then,
µ denotes a probability measure on(Z,Σ). A number of measurability conditions are
implicitly assumed in what follows, but these conditions are reasonable and not par-
ticularly stringent. Details may be found in [16, 36] for instance.) We assume that
each training example is generated independently according toµ. (So, if the training
sample is of lengthn, then it is generated according to the product probability measure
µn.) Formally, a learning algorithm is a functionA :

⋃∞
n=1 Zn → H, and we say that

the learning algorithm issuccessfulif, with high µm-probability, it produces anoutput
hypothesisA(z) which is almost as good a fit to the distributionµ as exists in the class
H. More precisely, we have in mind someloss functioǹ : [0, 1] × Y → [0, 1], and
what we hope for is thatA(z) has a relatively smallloss, where, forh ∈ H, the loss of
h is the expectationL(h) = E `(h(x), y) (where the expectation is with respect toµ).
Examples of loss functions arè(r, s) = |r − s|, `(r, s) = (r − s)2, and the discrete
loss, given bỳ (r, s) = 0 if r = s and`(r, s) = 1 if r 6= s. Since the best loss one
could hope to be near isL∗ = infh∈H L(h), we wantA(z) to have loss close toL∗,
with high probability, provided the sample sizen is large enough. Since we do not
know µ, we must be able to guarantee this success without reference to the particular
distributionµ generating the examples. We therefore have the following definition.
(Here, and in the rest of the paper, we use the symbolP to denote probability. This is
slightly imprecise, in that the measure is not specified, but this is usually clear in any
case. For instance, in the definition that follows, the probability is with respect toµn.)

Definition 1.1 With the above notations,A is a successfullearning algorithm forH
if for all ε, δ ∈ (0, 1), there is somen0(ε, δ) (depending onε andδ only) such that, if
n > n0(ε, δ), then with probability at least1 − δ, L(A(z)) ≤ L∗ + ε. The minimal
suchn0(ε, δ) is referred to as thesample complexityofA and is denotednA(ε, δ).

Note that ifA is successful, then there is some functionε0(n, δ) of n andδ, with the
property that for allδ, limn→∞ ε0(n, δ) = 0, and such that for any probability measure
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µ onZ, with probability at least1−δ we haveL(A(z)) ≤ L∗+ ε0(n, δ). The minimal
ε0(n, δ) is called theestimation errorof the algorithm.

WhenH is a set of binary functions, meaning each function inH maps into{0, 1},
if Y = {0, 1}, and if we use the discrete loss function, then we shall say that we
have abinary (classification) learning problem. IfL∗ = 0 then we say that we have a
realisablethe learning problem. In this situation there is somet ∈ H such that with
probability1, for all (x, y) ∈ Z, y = t(x). (In particular, this includes the case in which
there is a fixed probability distributionµ onX and atarget functiont : X → {0, 1}.)

For a binary, realisable learning problem, the definition of successful learning is quite
simple to understand: for anyh ∈ H, L(h) is the probability that on a randomly drawn
element(x, y) of Z, h andt agree onx; that is,h(x) = t(x). So what the definition
says is that, provided the sample is large enough (of length greater thann0(ε, δ), then,
with probability at least1 − δ, A produces a hypothesis which agrees with the target
function with probability at least1− ε on a further randomly drawn example.

We might want to use real functions for classification. Here, we would haveY =
{0, 1}, butH : X → [0, 1]. In this case, one appropriate loss function would be given,
for r ∈ [0, 1] ands ∈ {0, 1}, by `(r, s) = 0 if r − 1/2 ands − 1/2 have the same
sign, and̀ (r, s) = 1 otherwise. We call this thethreshold loss. Thus, with respect
to the threshold loss,̀(h(x), y) ∈ {0, 1} is 0 precisely when the thresholded function
Th : x 7→ sign(h(x)−1/2) has valuey. This approach is equivalent to using the binary
learning problem involving the classTH = {th : h ∈ H}. We shall see, however, that
there is some advantage in considering themarginof classification by these real-valued
hypotheses. (This is consistent with the assumption that large margins are good, a fact
that has been emphasised for some time in pattern recognition and learning [15, 39],
and which is very important in Support Vector Machines [13].)

Explicitly, suppose thatγ > 0, and forr ∈ [0, 1], definemar(r, 1) = r − 1/2 and
mar(r, 0) = 1/2 − r. Themarginof h ∈ H on z = (x, y) ∈ Z × {0, 1} is defined
to bemar(f(x), y). Now, define the loss functioǹγ by `γ(r, s) = 1 if mar(r, s) < γ
and`γ(r, s) = 0 if mar(r, s) ≥ γ. If Lγ(h) is the corresponding loss of a hypothesis,
thenLγ(h) is the probability that for a randomz = (x, y), h(x) is not within1/2− γ
of y. We callLγ(h) the loss ofh at marginγ. ClearlyLγ(h) is an increasing function
of γ andL0(h) = L(h) whereL corresponds to the simple threshold loss. We make
the following definition (as in [3]).

Definition 1.2 We say thatA : (0, 1) ×
⋃∞

n=1 Zn → H is a successful real-valued
classification algorithmif for all ε, δ ∈ (0, 1), there is somen0(ε, δ) (depending onε
andδ only) such that, ifn > n0(ε, δ), then with probability at least1− δ,

(L(A(γ, z)) ≤ inf
h∈H

Lγ(h) + ε.
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So the aim here is to produce an output hypothesis whose loss (in the standard sense,
with respect to the threshold loss function) can (with high probability) be made as close
as we like to the lowest loss achievable when measured at marginγ.

Definition 1.1 has its origins in the work of Vapnik and Chervonenkis [40, 38, 39]
and, in the theoretical science community, in the binary realisable case, in work of
Valiant [37]. Valiant’s paper was concerned also with the computational complexity
of producing successful hypotheses, and this has subsequently been much studied in
the Computational Learning Theory community, where the term ‘Probably Approxi-
mately Correct (PAC) algorithm’ has been used. A general loss-theoretical model was
developed by Haussler [20]. Many other variants of the learning model have also been
explored. (See the books [3, 4, 25, 41] and the Proceedings of the Annual COLT con-
ferences, for wide-ranging results on the computational and sample complexity of a
number of variants of this standard learning model.)

2 Uniform Convergence Results

2.1 Uniform Glivenko-Cantelli Classes

Much work in proving successful learnability and in quantifying sample complexity
and estimation error has used existing or new ‘uniform convergence’ or Glivenko-
Cantelli type theorems from probability theory.

In order to describe what this means, we need a few more notations. Suppose thatF
is a set of (measurable) functions fromZ to [0, 1] and thatµ is a probability measure
on Z. Denote the expectationEµf by µ(f) and, forz = (z1, z2, . . . , zn) ∈ Zn, let
us denote byµn(f) the empirical measure off on z, µn(f) = n−1

∑n
i=1 f(zi). (For

fixed f , we shall regardµn(f) as a random variable onZn. The notation is not ideal
in that in does not specifyz, but it will do for our purposes.)

Definition 2.1 We say thatF is a uniform Glivenko-Cantelliclass if it has the follow-
ing property (also known as uniform convergence of empiricals to expectations):

∀ε > 0 lim
n→∞

sup
µ

P

(
sup
m≥n

sup
f∈F

|µ(f)− µm(f)| > ε

)
= 0.

The strong law of large numbers of classical probability theory tells us that, for eachµ
and for each fixedf , P

(
supm≥n |µ(f)− µm(f)| > ε

)
→ 0 asn →∞. For a class to

be a uniform Glivenko-Cantelli class, we must, additionally, be able to bound the rate
of convergence uniformly over allf ∈ F , and over all probability measuresµ.
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If F is finite, then it is a uniform Glivenko-Cantelli class. To see this explicitly, we
can use Hoeffding’s inequality [22], which tells us that for anyµ and for eachf ∈ F ,
P (|µ(f)− µn(f)| > ε) < 2e−2ε2n. It follows that

P

(
sup
f∈F

|µ(f)− µn(f)| > ε

)
= P

⋃
f∈F

{|µ(f)− µn(f)| > ε}


≤

∑
f∈F

P (|µ(f)− µn(f)| > ε)

≤ 2|F |e−2ε2n.

We now apply the Borell-Cantelli lemma, together with the observation that the bound
just given is independent ofµ. Since, for eachε > 0,

∞∑
n=1

P (|µ(f)− µn(f)| > ε) <
∞∑

n=1

2|F |e−2ε2n < ∞,

we have

lim
n→∞

sup
µ

P

(
sup
m≥n

sup
f∈F

|µ(f)− µm(f)| > ε

)
= 0

and the class has the uniform Glivenko-Cantelli property.

The above derivation was straightforward, but it demonstrates a key technique: we
bounded the probability of a union by the sum of the probabilities of the events in-
volved. This is known as using theunion bound, and is an extremely useful tool. It has
been argued by a number of researchers that the union bound is at the root of much of
the looseness of many of the rate of convergence results; see, for example [30, 27], and
it is not hard to see that this is a reasonable accusation.

2.2 Uniform Glivenko Cantelli Classes and Successful
Learning

With the notations above, define theloss class(corresponding tò andH) to be`H =
{`h : h ∈ H} where, forz = (x, y), `h(z) = `(h(x), y). Suppose that̀H is a uniform
Glivenko-Cantelli class. Forz ∈ Zn, theempirical lossof h ∈ H onz is defined to be
Lz(h) = µn(`h) = n−1

∑n
i=1 `(h(xi), yi), wherezi = (xi, yi). Let us say thatA is

anapproximate empirical loss minimisationalgorithm if for allz ∈ Zn,

Lz(A(z)) <
1
n

+ inf
h∈H

Lz(h).

ThenA is a successful learning algorithm. (In the binary case, the infimum is a mini-
mum, and the1/n is not needed.) To see this, we can give a fairly standard argument
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(see [1, 3], for example). Suppose thatε > 0 andδ > 0 are given and leth∗ ∈ H be
such thatL(h∗) < L∗ + ε/4. Supposen > 4/ε, so that1/n < ε/4. By the uniform
Glivenko-Cantelli property for̀H , there isn0(ε/4, δ) such that for alln > n0, with
probability at least1− δ, suph∈H |L(h)− Lz(h)| < ε/4. So, with probability at least
1− δ,

L(A(z)) < Lz(A(z)) +
ε

4

<

(
inf

h∈H
Lz(h) +

1
n

)
+

ε

4

< Lz(h∗) + 2
ε

4

<
(
L(h∗) +

ε

4

)
+

ε

2

<
(
L∗ +

ε

4

)
+

3ε

4
= L∗ + ε.

SoA is a successful learning algorithm and its sample complexity is no more than
max(4/ε, n0(ε/4, δ)).

In fact, as we have stated the definition of learning, the apparently weaker form of
convergence

∀ε > 0 lim
n→∞

sup
µ

P

(
sup
f∈F

|µ(f)− µn(f)| > ε

)
= 0

, whereF = `H , suffices for this type of learning algorithm to be successful. We
may regard the infinite cartesian productZ∞ to be equipped with a measureµ∞ which
coincides with the product measureµn on the canonical projection ontoXn. (If Σ
is theσ algebra onZ, then the appropriateσ algebra onX∞ is that generated by all
cylinders, of the formΠ∞i=1Ai, whereAi ∈ Σ for all i, with Ai = Z for all but finitely
manyi. See [41].) Then, with the appropriate interpretation ofµn as a random variable
on Z∞ (namely,µn(f) is defined precisely as before, and depends only on the firstn
components of an element ofX∞), the weaker condition described above is equivalent
to uniform convergencein probability of supf∈F |µ(f) − µn(f)| to 0, whereas the
uniform Glivenko-Cantelli property is equivalent toalmost sureuniform convergence.
Since the uniform convergence in probability is a sufficient condition for learning, it is
the rate of this type of convergence that we often bound if we are interested primarily
in applications to learning.

For the real-valued classification learning problem, it can be shown (see [3]) that a
different kind of convergence result is a sufficient condition for the existence of a suc-
cessful learning algorithm. Explicitly, we say thatA is alarge-margin approximate loss
minimisation algorithmif Lγ

z(A(z)) = minh∈H Lγ
z(h). It turns out that a sufficient
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condition for such an algorithm to be sucessful is that

lim
n→∞

sup
µ

P
(

sup
h∈H

(L(h)− Lγ
z(h)) > ε

)
= 0

for all γ, ε ∈ (0, 1).

3 Probabilistic Techniques

In this section we discuss some of the key methods than have been used to prove the
probability theorems used in learning theory (such as Glivenko-Cantelli results, but
also the ‘data-dependent’ results to be discussed later).

3.1 Symmetrization

A key technique issymmetrization, in which the probability thatµ(f) andµn(f) differ
significantly is bounded (uniformly overF ) by the probability of an event involving
only empirical measures off . Symmetrization can also be used to bound the expecta-
tion of supf∈F |µ(f)− µn(f)|.

A symmetrization result for the tail probabilities [19] may now be obtained as follows.
First, it is quite easy to show that

P

(
sup
f∈F

|µ(f)− µn(f)| > ε

)
≤ 2 P

(
sup
f∈F

|µ′n(f)− µn(f)| > ε

2

)
,

whereµ′n(f) is the empirical measure off on a second, independent,z′ ∈ Zn, and
the probability on the right is with respect to the product measureµ2n on Z2n. For
1 ≤ i ≤ n, let σi ∈ {−1, 1} be Rademacherrandom variables, taking value1 with
probability1/2 and−1 with probability1/2. Then, by symmetry and the definition of
the empirical measures,

P

(
sup
f∈F

|µ′n(f)− µn(f)| > ε/2

)
= P

(
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi (f(z′i)− f(zi))

∣∣∣∣∣ ≥ ε/2

)

≤ P

(
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σif(z′i)

∣∣∣∣∣ ≥ ε/4

)
+ P

(
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ ≥ ε/4

)

= 2 P

(
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ ≥ ε/4

)
.

(Here the probability is jointly over the distributions of the samples, and of theσi.)
Summarising, we have:
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Theorem 3.1 If F is a class of functions mapping fromZ to [0, 1] andµ is a proba-
bility measure onZ, then

P

(
sup
f∈F

|µ(f)− µn(f)| > ε

)
≤ 4 P

(
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ ≥ ε/4

)
,

where theσi are idependent Rademacher variables.

In a similar way (see [14]) a symmetrization for expectations is obtainable. We have

E

(
sup
f∈F

|µ(f)− µn(f)|

)
≤ E

(
1
n

sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f(z′i)− f(zi))

∣∣∣∣∣
)

=
2
n

E sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ .
That is,

Theorem 3.2 If F maps fromZ to [0, 1], andµ is a probability measure onZ, then

E

(
sup
f∈F

|µ(f)− µn(f)|

)
≤ 2

n
E sup

f∈F

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ .

3.2 Concentration

We now describe a type ofconcentration of measure resultthat can be used to move
from bounds on the expectation to bounds on the tail probability (as in [14]). It can also
be used in many other ways, such as to obtain data-dependent bounds on estimation
error (as described later). A concentration result of this type states that, under certain
conditions, a random variable is sharply concentrated about its expectation, in the sense
that the probability of a certain deviation from its expectation is exponentially small in
the deviation. The most well-known such result is Hoeffding’s inequality.

Theorem 3.3 (Hoeffding’s inequality) SupposeXi, for i = 1, 2, . . . , n, are inde-
pendent random variables such thatXi ∈ [ai, bi]. Then the random variableSn =∑n

i=1 Xi satisfies

P (|Sn − ESn| > α) < 2 exp

(
−2α2

/ n∑
i=1

(bi − ai)2
)

.
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An important generalization of Hoeffding’s inequality is the following result from [29].
We say that a functiong : Zn → R has thebounded differencesproperty if for1 ≤
i ≤ n, there are constantsci such that for anyz, z′ ∈ Zn which differ only in theith
coordinate (sozi 6= z′i butzj = z′j for all j 6= i), we have|g(z)− g(z′)| ≤ ci.

Theorem 3.4 (Bounded differences inequality)Suppose thatz1, z2, . . . , zn are in-
dependent, and that the functiong : Zn → R has the bounded differences property.
Then

P (|g(z)− Eg(z)| ≥ α) < 2 exp

(
−2α2

/ n∑
i=1

c2
i

)
,

for all α.

In particular, as observed in [14], if we takeg(z) = supf∈F |µ(f)− µn(f)|, and note
thatg has the bounded differences property withci = 1/n, we obtain that

P

(∣∣∣∣∣sup
f∈F

|µ(f)− µn(f)| − E sup
f∈F

|µ(f)− µn(f)|

∣∣∣∣∣ > α

)
< 2e−2nα2

.

Thus, a bound on the expectation ofsupf∈F |µ(f) − µn(f)| will yield a good bound
on the corresponding tail probability. Explicitly, we have the following.

Theorem 3.5 Suppose thatF is a set of functions fromZ to [0, 1] and thatµ is a
probability measure onZ. For δ ∈ (0, 1), with probability at least1− δ,

sup
f∈F

|µ(f)− µn(f)| <

√
1
2n

ln
(

2
δ

)
+ E sup

f∈F
|µ(f)− µn(f)|.

3.3 Using Covering Numbers

Given a (pseudo-)metric space(A, d) and a subsetS of A, we say that the setT ⊆ A is
anε-coverfor S (whereε > 0) if, for everys ∈ S there ist ∈ T such thatd(s, t) < ε.
For a fixedε > 0 we denote byN (S, ε, d) the cardinality of the smallestε-cover forS.
(We defineN (S, ε, d) to be∞ if there is no such cover.) In our setting, forz ∈ Zn, and
f ∈ F , let f |z = (f(z1), f(z2), . . . , f(zn)) and letF |z = {f |z : f ∈ F} ⊆ [0, 1]n.
For r ≥ 1, let

dr(v,w) =

(
1
n

n∑
i=1

|vi − wi|r
)1/r

,

and letd∞(v,w) = max1≤i≤n |vi−wi|. Define theuniform covering numberNr(F, ε, n)
to besupz∈Zn N (F |z, ε, dr). Note that ifr > s then

ds(v,w) ≤ dr(v,w) ≤ d∞(v,w)
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and, consequently,

Ns(F, ε, n) ≤ Nr(F, ε, n) ≤ N∞(F, ε, n).

The following result is from the excellent survey by Mendelson [30], and uses tech-
niques developed in [40, 32, 20] and elsewhere.

Theorem 3.6 ([30]) Suppose thatF is a set of functions fromZ to [0, 1]. Then for any
ε ∈ (0, 1),

P

(
sup
f∈F

|µ(f)− µn(f)| > ε

)
≤ 8 Eµn (N (F |z, ε/8, d1)) e−nε2/128.

Proof: Using the symmetrization bound of Theorem 3.1, and conditioning onz, the
required probability may be bounded by

P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ > nε

4

)
= E

(
P

(
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ > nε

4

∣∣∣∣∣ z
))

= E P (z),

say. So, fixz ∈ Zn and letC ⊆ [0, 1]n be anε/8-cover for F |z, with respect
to d1, of minimum cardinalityN (F |z, ε/8, d1). It is easy to see that, forf ∈ F ,
if |
∑n

i=1 σif(zi)| > nε/4 then there existsc ∈ C such that|
∑n

i=1 σici| > nε/4.
(Choosec within d1-distanceε/8 of f |z.) Using the union bound,

P (z) ≤ P

(⋃
c∈C

{∣∣∣∣∣
n∑

i=1

σici

∣∣∣∣∣ > nε

8

})
≤
∑
c∈C

P

(∣∣∣∣∣
n∑

i=1

σici

∣∣∣∣∣ > nε

8

)
≤ |C| 2e−nε2/128,

where we have used Hoeffding’s inequality in the final step. The result now follows.
ut

Of course,µ is not normally known, so the expectation in Theorem 3.6 cannot be
determined. Consequently, we usually upper-bound the expected covering number by
the uniform covering numberN1(F, ε/8, n). The theorem then implies the following.

Theorem 3.7 With probability at least1− δ,

sup
f∈F

|µ(f)− µn(f)| <

√
64
n

(lnN1(F, ε/8, n)) + ln
(

8
δ

)
.

In the binary case, better bounds are possible; see [3, 14]. In particular [14, 17], using
a technique known aschaining, the following can be shown.
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Theorem 3.8 If F is a set of functions fromZ to {0, 1} andµ is a probability measure
onZ, then

E sup
f∈F

|µ(f)− µn(f)| ≤ 24√
n

max
z∈Zn

∫ 1

0

√
ln (2N (F |z, r, d2)) dr.

Furthermore, for anyδ ∈ (0, 1), with probability at least1− δ,

sup
f∈F

|µ(f)− µn(f)| <

√
1
2n

ln
(

2
δ

)
+

24√
n

max
z∈Zn

∫ 1

0

√
ln (2N (F |z, r, d2)) dr.

The second statement in the Theorem follows from the first on applying Theorem 3.5.

Next, we have the following result [6, 3] which concerns real-valued classification.
(See [6, 35] for similar results.) First, forγ > 0, defineπγ : [0, 1] → [1/2−γ, 1/2+γ]
to be the function that truncates at1/2 − γ and1/2 + γ; that is, forx ∈ (1/2 −
γ, 1/2 + γ), πγ(x) = x, but forx ≥ 1/2 + γ, πγ(x) = 1/2 + γ and forx ≤ 1/2− γ,
πγ(x) = 1/2− γ. Letπγ(H) be the set of functionsπγ ◦h, obtained by composingH
with πγ . Then we have the following theorem.

Theorem 3.9 Suppose thatH is a set of functions fromZ to [0, 1]. Then for any
ε, γ ∈ (0, 1),

P
(

sup
h∈H

(L(h)− Lγ
z(h)) > ε

)
≤ 2 Eµ2n (N (F |w, γ/2, d∞)) e−nε2/8,

whereF = πγ(H).

Proof: We only sketch the proof; for details, see [6, 3]. The first step is to establish
that

P
(

sup
h∈H

(L(h)− Lγ
z(h)) > ε

)
≤ P

(
sup
h∈H

(Lz′(h)− Lγ
z(h)) >

ε

2

)
,

where, on the right,z′ is a second independent sample of lengthn. A key observation
in the remainder of the proof is that ifC is aγ/2-cover ofF |zz′ with respect tod∞,
then the existence ofh ∈ H such thatLz′(h) > Lγ

z(h) + ε/2 implies the existence
of c ∈ C with the property thatm(c, z′) − m(c, z) > nε/2, where, ifzi = (xi, yi),
thenm(c, z) is the number of indicesi such that|ci − yi| > 1/2 − γ/2. The use of
Rademacher variables and Hoeffding’s inequality completes the proof.

Using the uniformd∞-covering numbers in place of the expectation, we obtain the
following.
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Theorem 3.10 For anyγ > 0, for anyδ ∈ (0, 1), with probability at least1− δ,

∀h ∈ H, L(h) < Lγ
z(h) +

√
8
n

(lnN∞(πγ(H), γ/2, 2n)) + ln
(

2
δ

)
.

3.4 Rademacher Complexity

Define, forz ∈ Zn,

Rn(F, z) =
2
n

E sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(zi)

∣∣∣∣∣ ,
where the expectation is over the joint distribution of theσi, and define theRademacher
complexity(or Rademacher average) ofF to beRn(F ) = ERn(F, z) (where here
the expectation is overZn, with respect toµn). (See, for example [30, 9, 26, 36].)
As Bartlett and Mendelson have observed [9], the Rademacher complexity gives an
indication of how well some function inF can be correlated with random noise, and
so provides an indication of the complexity ofF . By Theorem 3.2, we see directly
that E supf∈F |µ(f) − µn(f)| is bounded above byRn(F ). By Theorem 3.5, with
probability at least1− δ, for z ∈ Zn we obtain

sup
f∈F

|µ(f)− µn(f)| < Rn(F ) +

√
1
2n

ln
(

2
δ

)
.

In particular, in the context of learning, and with the usual notation, we have (as in [9])
the following result.

Theorem 3.11 With probability at least1− δ,

∀h ∈ H, L(h) < Lz(h) + Rn(F ) +

√
1
2n

ln
(

2
δ

)
.

The Rademacher complexity possesses some useful structural properties; for example,
the Rademacher complexities of a function class and its symmetric convex hull are the
same [9]. Estimates of the Rademacher complexity for a number of function classes,
including neural networks, can be found in [9].

More recently, attention has turned tolocalizedRademacher complexities, in which the
supremum is taken not over the whole ofF , but over a subset of thosef with small
variance. For details, see [30, 7, 12].
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3.5 Combinatorial Measures of Function Class
Complexity

We have seen that the covering numbers and Rademacher complexity can be used to
bound the probabilities of chief interest. These can in turn be bounded by using cer-
tain combinatorial measures of function class complexity. We shall focus here on the
bounding of covering numbers, but see [30] for results relating Rademacher complexi-
ties to combinatorial parameters.

Let’s start with the binary case, in whichH maps into{0, 1}. Vapnik and Chervo-
nenkis [40] established that what has subsequently been known as the Vapnik-Chervonenkis
dimension (or VC-dimension) is a key measure of function class complexity. (The im-
portance for learning theory was highlighted in [10], and expositions may be found in
the books [4, 3, 25, 41], and elsewhere.) In this case, forz ∈ Zn, the setF |z is finite,
of cardinality at most2n, and we may define thegrowth functionΠF : N → N by

ΠF (n) = max
z∈Zn

|F |z| .

It is clear thatN (F |z, ε, dr) = |F |z| andNr(F, ε, n) = ΠF (n), for all r and forε ∈
(0, 1). TheVC-dimensionVCdim(F ) is then defined to be (infinity, or) the largestd
such thatΠF (d) = 2d. The Sauer-Shelah lemma [33, 34] asserts that ifVCdim(F ) =
d < ∞ then for alln ≥ d,

ΠF (n) ≤
d∑

i=0

(
n

i

)
,

showing that the growth function is polynomial in this case. For another description of
VC-dimension, we may say that a subsetS of Z is shatteredby F if for any T ⊆ S
there isfT ∈ F with fT (z) = 1 for z ∈ T andfT (z) = 0 for z ∈ S \ T . Then the
VC-dimension is the largest cardinality of a shattered set. Note that, with the discrete
loss, it is easy to see that ifF = `H thenΠF = ΠH and soVCdim(F ) = VCdim(H).
Now, Theorem 3.6 has the following consequence.

Theorem 3.12 For a binary class of finite VC-dimensiond, with probability at least
1− δ,

sup
f∈F

|µ(f)− µn(f)| < k

√
1
n

(
d ln

(n

d

)
+ ln

(
1
δ

))
,

for a fixed constantk.

In this Booolean case, tighter bounds can be obtained (see [28]). Dudley [17] proved
(in a result later improved by Haussler [21]), that ifF : Z → {0, 1} has VC-dimension
d thenN (F |z, r, d2) ≤ (4e/r2)d/(1−e−1), which in combination with Theorem 3.8,
establishes the following.
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Theorem 3.13 SupposeF is a binary class of finite VC-dimensiond. Then, with prob-
ability at least1− δ,

sup
f∈F

|µ(f)− µn(f)| <

√
1
2n

ln
(

2
δ

)
+ c

√
d

n
,

for a fixed constantc.

Lower bounds on the sample complexity of learning algorithms can also be obtained
in terms of the VC-dimension [18, 10, 3]. The VC-dimensions of many different types
of neural network have been estimated; see [3, 23, 2], for example.

Suppose, more generally, thatF : Z → [0, 1]. We say thatS ⊆ Z is shattered
by F if there are numbersrz ∈ [0, 1] for z ∈ S such that for everyT ⊆ S there
is somefT ∈ F with the property thatfT (z) ≥ rz if z ∈ T and fT (z) < rz if
z ∈ S \ T . We say thatF has finitepseudo-dimensiond(F ) = d if d is the maximum
cardinality of a shattered set. Another interpretation of this dimension can be given. Let
S(F ) = {{(z, y) ∈ Z × R : y ≤ f(z)} : f ∈ F} be the set ofsubgraphsof functions
in F . Thend(F ) is the VC-dimension ofS(F ) (or, of the set of indicator functions of
the sets inS(F )). For this reason, a classF of finite pseudo-dimension is often called
a VC-subgraphclass [16, 36]. Pollard [32] bounded thed1-covering numbers in terms
of the pseudo-dimension, as follows:

N1(F, ε, n) < 2
(

2e

ε
ln
(

2e

ε

))d(F )

,

for all n. One can therefore use this in conjunction with Theorem 3.6 to obtain bounds
on the rate of convergence, in probability, ofsupf∈F |µ(f) − µn(f)| to zero. Fur-
thermore, the Borel-Cantelli lemma can be applied to show thatF will be a uniform
Glivenko-Cantelli class if it has finite pseudo-dimension.

However, finite pseudo-dimension is a stronger condition than is needed for a class
to have the uniform Glivenko-Cantelli property [1]. Ascale-sensitiveversion of the
pseudo-dimension (originally used in [24]) is defined as follows. Forγ > 0, we say
thatS ⊆ Z is γ-shatteredby F if there are numbersrz ∈ [0, 1] for z ∈ S such that
for everyT ⊆ S there is somefT ∈ F with the property thatfT (z) ≥ rz + γ if
z ∈ T andfT (z) < rz − γ if z ∈ S \ T . We say thatF has finitefat-shattering
dimensiond at scaleγ, and we writefatγ(F ) = d, if d is the maximum cardinality of a
γ-shattered set. We say simply thatF has finite fat-shattering dimension if it has finite
fat-shattering dimension at every scaleγ > 0. It is quite possible for a class to have
finite fat-shattering dimension but infinite pseudo-dimension. Alonet al. [1] obtained
an upper bound on thed∞ covering numbers in terms of the fat-shattering dimension,
as a consequence of which ifF has range which is a sub-interval of[0, 1] of lengthB,
then

N1(ε, F, n) ≤ N∞(ε, F, n) < 2
(

4nB2

ε2

)d log2(4eBn/(dε))

,
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whered = fatε/4(F ). Theorem 3.6 and the Borel-Cantelli lemma then establish that
F is a uniform Glivenko-Cantelli class.

For the standard loss functions, the fat-shattering dimensions of the loss class`H and
H itself are often simply related; see [1, 3].

We can apply the covering number bound to real classification learning by using The-
orem 3.10, leading [3] to the following.

Theorem 3.14 With probability at least1− δ,

∀h ∈ H, L(h) < Lγ
z(h) +

√
8
n

(
d log2

(
32en

d

)
ln(128n) + ln

(
4
δ

))
,

whered = fatγ/8(H).

Alon et al. also showed that finite fat-shattering dimension is a necessary condition for
a class to have the uniform Glivenko-Cantelli property. In fact, they prove something
stronger, a consequence of which is that finite fat-shattering dimension is a necessary
condition for a class to have the convergence property

∀ε > 0 lim
n→∞

sup
µ

P

(
sup
f∈F

|µ(f)− µn(f)| > ε

)
= 0.

Thus the uniform convergence, in probability, ofsupf∈F |µ(f)−µn(f)| to 0 is equiv-
alent to the uniform Glivenko-Cantelli property (as noted above).

For more on the fat-shattering dimension, including estimates for neural network classes,
see [1, 3, 6]. See [3, 8, 30, 31] for improved bounds on covering numbers in terms of
the fat-shattering dimension, particularly with respect to the metricsdp for p 6= ∞.
The fat-shattering dimension can also be used to provide lower bounds on the sample
complexity of learning algorithms; see [3] for instance.

4 Data-Dependent Analysis

4.1 Data-Dependent Bounds

We have seen that for many learning problems the loss of hypotheses may be bounded
uniformly in terms of the empirical losses and the expectation of the empirical covering
numbers. In most applications, since we do not know the distribution, we bound the ex-
pectation of the covering number by the corresponding uniform covering number, and
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then perhaps use combinatorial dimensions to bound these. We have also seen that the
losses may be bounded using the Rademacher complexity of the loss class. Generally,
the upper bounds onL(h) presented so far consist of two terms; one is the empirical
loss, and the other is what might be called a complexity term. Notably, although the
empirical loss clearly depends onz, the complexity term depends on the loss class,
and does not depend explicitly onz. In this section we present some data-dependent
results, in which the class-dependent complexity term is replaced by a complexity term
dependent not only on the class, but on the samplez itself. This has been the subject
of much active research in recent years. This has been motivated, at least in part, by
the observation that learning algorithms tend to return hypotheses that use the training
data in a fairly sophisticated manner, rather than simply return, for instance, any hy-
pothesis with near-minimal empirical loss. Data-dependent bounds have been obtained
in a number of ways, in particular through deploying a general ‘luckiness’ framework
developed in [35, 42], and, more recently, through the application of concentration
inequalities, as in [11, 5].

4.2 Data-Dependent Learning Results

Suppose thatH is a binary function class mapping fromX to {0, 1}. By proving a
new concentration inequality, Boucheron, Lugosi and Massart [11], established that the
VC-entropyHn(x) = log2 |H|x| (for x ∈ Xn) is concentrated around its expectation.
With this, they were able to establish the following data-dependent result (in which the
loss function is the discrete loss).

Theorem 4.1 With probability at least1− δ, for z ∈ Zn = (X × {0, 1})n,

∀h ∈ H, L(h) < Lz(h) +

√
6 ln |H|x|

n
+ 4

√
ln(2/δ)

n
.

This should be compared with the bounds that would follow from the results presented
earlier: such bounds would involveE |H|x| or, sinceµ is not known, the growth func-
tion ΠH(n) = maxx∈Xn |H|x|, and therefore would not depend explicitly on the data.
It is certainly possible that|H|x| is much less thanΠH(n), and so the data-dependent
bound could have significant advantage. This result can also be expressed in terms of
theempirical VC-dimension. Forx ∈ Xn let VCdim(H|x) denote the VC-dimension
of the set of functions obtained by restrictingH to domain consisting of the elements
of x.

Theorem 4.2 With probability at least1− δ, for z ∈ Zn = (X × {0, 1})n,

∀h ∈ H, L(h) < Lz(h) +

√
6d(x)

n
ln
(

en

d(x)

)
+ 4

√
log(2/δ)

n
,
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whered(x) = VCdim(H|x).

(See also [35] for related results involving empirical VC-dimension, for the case in
which the empirical loss is zero.)

There are also data-dependent results for real-valued classification [42, 5]. Using the
concentration inequality from [11], Antos, Kégl, Linder and Lugosi [5] have obtained
bounds involving theempirical fat-shattering dimension. Forx ∈ Xn, andγ > 0, let
fatγ(H|x) be the fat-shattering dimension of the set of functions obtained by restricting
H to the set consisting of the elements of the samplex. Then, in [5], the following
theorem is obtained.

Theorem 4.3 For γ > 0, with probability at least1− δ,

∀h ∈ H, L(h) < Lγ
z(h) +

√
1
n

(
9d(x) + 12.5 ln

(
8
δ

))
ln
(

32en

d(x)

)
ln(128n),

whered(x) = fatγ/8(H|x).

This should be compared with Theorem 3.14. The former might look better, but the
empirical fat-shattering dimension can be significantly less than the fat-shattering di-
mension, so in some cases the data-dependent bound is better. Moreover, the empirical
fat-shattering dimension can be calculated reasonably easily in some cases. (See [5].)

We can also obtain a version of the above result in which the marginγ is not specified
beforehand, and could depend on both the data and the chosen hypothesis.

Theorem 4.4 With probability at least1− δ, for all h ∈ H and for allγ ∈ (0, 1],

L(h) < Lγ
z(h) +

√
1
n

(
9d1(x) + 12.5 ln

(
16
δγ

))
ln
(

32en

d2(x)

)
ln(128n),

whered1(x) = fatγ/16(H|x) andd2(x) = fatγ/8(H|x).

Proof: We use the ‘method of sieves’ (see [6, 3]). In [6], the following is shown.
SupposeP is any probability measure and that{E(α1, α2, δ) : 0 < α1, α2, δ ≤ 1} is a
set of events such that:

• for all α, P(E(α, α, δ)) ≤ δ,

• 0 < α1 ≤ α ≤ α2 < 1 and0 < δ1 ≤ δ ≤ 1 imply E(α1, α2, δ1) ⊆ E(α, α, δ).
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Then

P

 ⋃
α∈(0,1]

E(αc, α, δα(1− c))

 ≤ δ

for 0 < c, δ < 1. We takeE(α1, α2, δ) to be the set ofz ∈ Zn such that there exists
h ∈ H with

L(h) ≥ Lα2
z (h)+

√
1
n

(
9fatα1/8(H|x) + 12.5 ln

(
8
δ

))
ln
(

32en

fatα2/8(H|x)

)
ln(128n).

Theorem 4.4 states thatP(E(α, α, δ)) ≤ δ. It is easy to see that0 < α1 ≤ α ≤ α2 < 1
and0 < δ1 ≤ δ ≤ 1 imply E(α1, α2, δ1) ⊆ E(α, α, δ). The result now follows by
using the sieve method, takingc = 1/2. ut

Turning attention now to the Rademacher complexity, Bartlett and Mendelson [9] have
observed that the empirical Rademacher complexityRn(F, z) is concentrated about its
expectation, which isRn(F ). For, it is easy to see thatg(z) = Rn(F, z) satisfies the
bounded differences property with eachci equal to2/n, so that with probability at least
1 − δ, Rn(F ) is at mostRn(F, z) +

√
2n−1 ln(2/δ). Hence, by Theorem 3.5, with

probability at least1− δ,

sup
f∈F

|µ(f)− µn(f)| < Rn(F, z) + 3

√
1
n

ln
(

2
δ

)
.

In particular, with probability at least1− δ,

∀h ∈ H, L(h) < Lz(h) + Rn(F, z) + 3

√
1
n

ln
(

2
δ

)
.
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