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Abstract

Given a plane graph, a k-star at u is a set of k vertices with a common neighbour u; and
a bunch is a maximal collection of paths of length at most two in the graph, such that
all paths have the same end vertices and the edges of the paths form consecutive edges
( in the natural order in the plane graph ) around the two end vertices. We first prove a
theorem on the structure of plane graphs in terms of stars and bunches. The result states
that a plane graph contains a (d − 1)-star centred at a vertex of degree d ≤ 5 and the
sum of the degrees of the vertices in the star is bounded, or there exists a large bunch.

This structural result is used to prove a best possible upper bound on the minimum
degree of the square of a planar graph, and hence on a best possible bound for the number
of colours needed in a greedy colouring of it. In particular, we prove that for a planar
graph G with maximum degree ∆ ≥ 47 the chromatic number of the square of G is at
most d 9

5 ∆e + 1. This improves existing bounds on the chromatic number of the square
of a planar graph.

∗This is a translated and adapted version of a paper that appeared in Diskretn. Anal. Issled. Oper. Ser. 1 8

(2001) no. 4, 9–33 ( in Russian ).
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1 Introduction and main results

Throughout this paper, G is a plane graph ( i.e., a representation in the plane of a planar graph ),
that is simple ( i.e., without loops and multiple edges ) and with vertex set V and edge set E.
The distance between two vertices u and v is the length of a shortest path joining them. We
are mainly interested in pairs at distance one or two, for which we also can define : a pair of
vertices u, v, u 6= v, have distance one if they are adjacent; and they have distance two if they
are not adjacent but have a common neighbour.

A distant-2-colouring of G is a colouring of the vertices such that vertices at distance one
or two have different colours. The least number for which a distant-2-colouring exists is called
the distant-2 chromatic number of G, denoted by χ2(G). Note that a distant-2-colouring of G

is equivalent to an ordinary vertex colouring of the square G2 of G. ( The square of a graph G,
denoted G2, is the graph with the same vertex set and in which two vertices are joined by an
edge if and only if they have distance one or two in G. ) And hence the distant-2 chromatic
number χ2(G) equals the ordinary chromatic number χ(G2).

The following conjecture was formulated in [11]. ( See also Jensen & Toft [8, Section 2.18]. )

Conjecture 1.1 ( Wegner [11] )
If G is a planar graph with maximum degree ∆, then

χ2(G) ≤
{

∆ + 5, if 4 ≤ ∆ ≤ 7;

b3
2 ∆c+ 1, if ∆ ≥ 8.

A first result towards a proof of this conjecture can be found in work of Jonas [9]. From one of
the results in [9] it follows directly that χ2(G) ≤ 8∆− 22 for a planar graph G with maximum
degree ∆ ≥ 7. This bound was significantly improved in Van den Heuvel & McGuinness [7]
to χ2(G) ≤ 2∆ + 25. Independently, a result with a smaller factor in front of the ∆ was proved
by Agnarsson & Halldórsson [1] who showed that, provided ∆ ≥ 749, for a planar graph G

with maximum degree ∆ we have χ2(G) ≤ b9
5 ∆c+ 2.

The goal of this paper is to reduce the lower bound on ∆ for this last bound.

Theorem 1.2
If G is a planar graph with maximum degree ∆, then

χ2(G) ≤
{

59, if ∆ ≤ 20;
max{∆ + 39, d9

5 ∆e+ 1 }, if ∆ ≥ 21.

In particular, if ∆ ≥ 47, then χ2(G) ≤ d9
5 ∆e+ 1.

The proof of Theorem 1.2 involves the establishment of the existence of certain unavoidable
configurations in a planar graph. This approach goes back to Heawood’s proof of the 5-Colour
Theorem [6], the old and new proofs of the 4-Colour Theorem [2,3,10], and was also used in the
proofs of the bounds mentioned above.
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Our unavoidable configurations are defined in terms of “bunches” and “stars”.
We say that G has a bunch of length m ≥ 3 with poles the vertices p and q, where p 6= q, if G

contains a sequence of paths P1, P2, . . . , Pm with the following properties. Each Pi has length 1
or 2 and joins p with q. Furthermore, for each i = 1, . . . ,m− 1, the cycle formed by Pi and Pi+1

is not separating in G ( i.e., has no vertex of G inside ) ( see Fig. 1.1 ). Moreover, this sequence

t

t

t tt tt t

aaaaaaaaaa

!!!!!!!!!!

!!!!!!!!!!

aaaaaaaaaa

Q
Q

Q
Q

QQ

´
´

´
´

´́

´
´

´
´

´́

Q
Q

Q
Q

QQ

T
T

T
T

·
·

·
·

·
·
·
·

T
T
T
T

p

q

vmvm−1vm−2v3v2v1

(a)

t

t

t tt tt t

aa
aa

aa
aa

aa

!!!!!!!!!!

!!
!!
!!
!!
!!

aaaaaaaaaa

Q
Q

Q
Q

QQ

�
�

�
�

��

�
�
�
�
��

Q
Q
Q
Q
QQ

T
T
T
T

�
�
�
�

�
�
�
�

T
T
T
T

p

q

vmvm−1v5v3v2v1

(b)

Fig. 1.1 : A bunch without a parental edge (a) and with a parental edge (b)

of paths is maximal in the sense that there is no path P0 ( or Pm+1 ) that could be added to the
bunch, preserving the above properties.

If a path Pi in the bunch has length 2, i.e., Pi = pviq, then the vertex vi will be called a
brother or a bunch vertex. A path Pi = pq of length 1 in the bunch will be referred to as a
parental edge ( Fig. 1.1 (b) ).

If the cycle bounded by P1 and Pm separates G, then the edges in P1 and Pm are called
boundary edges, and the vertices v1 and vm ( if they exist ) are the end vertices ( or ends ) of the
bunch. If m ≥ 3, then the edges in P2 and Pm−1 are called preboundary edges. The vertex vi in
the bunch is interior if 2 ≤ i ≤ m − 1 and strictly interior if 3 ≤ i ≤ m − 2. Each edge vivi+1

joining consecutive bunch vertices is called horizontal, while the edges of the Pi’s are called
vertical in the bunch. Observe that each interior vertex has degree 2, 3 or 4 and is adjacent only
to the poles and possibly to one or two brothers.

A d-vertex in G is a vertex of degree d. The B-vertices in G are those of degree at least 26,
L-vertices have degree at most 25, and minor vertices at most 5.

Let u be a d-vertex, and let v1, . . . , vk be adjacent to u. We say that the vertices u, v1, . . . , vk

and edges uv1, . . . , uvk form a k-star at u, defined by v1, . . . , vk, of weight
k∑

i=1
d(vi). A (d−1)-star

at a d-vertex is called precomplete, and a d-star at a d-vertex is complete.

The following result describes the unavoidable configurations used in our results on distant-
2-colourings. The proof can be found in Section 3.
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Theorem 1.3
For each plane graph G at least one of the following holds :

(A) G has a precomplete star of weight at most 38 that does not contain B-vertices and is

centred at a minor vertex.

(B) G has a B-vertex b that satisfies at least one of the following conditions :

(i) b is a pole for a bunch of length greater than d(b)/5;

(ii) b is a pole for a bunch of length precisely d(b)/5 with a parental edge;

(iii) b is a pole for 5 bunches of length d(b)/5 without parental edges and with pairwise

different end vertices. Moreover, among the end vertices there is a vertex v0 of

degree at most 11, and each other end vertex has degree at most 5 ( see Fig. 1.2 ).
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Fig. 1.2

Furthermore, if vi and vi+1 are consecutive in the vicinity of b and are end vertices

of two bunches such that vi 6= v0 and d(vi) = 5, then vi and vi+1 are adjacent in G.

As proved in Borodin & Woodall [5], each plane graph with minimum degree 5 has a pre-
complete star of weight at most 25 centred at a 5-vertex. On the other hand, planar graphs with
vertices of degree less than 5 may have arbitrarily large weight of the precomplete stars at all
minor vertices, as follows from the n-bipyramid. Theorem 1.3 shows that this is only possible
if there are long enough bunches at big vertices. Moreover, Theorem 1.3 implies the following
sufficient condition for the existence of an upper bound for the weight of precomplete stars at
minor vertices.
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Corollary 1.4
If G is a planar graph such that each B-vertex b is a pole only for bunches of length less than

d(b)/5, then G has a precomplete star of weight at most 38 at a minor vertex. In particular, if

the length of each bunch in G is at most 5, then G has a star of this kind.

In the next section we will discuss some corollaries of Theorem 1.3. We also discuss the sharpness
of some of these corollaries. In particular we give the proof of Theorem 1.2. In Section 3 we
will prove Theorem 1.3. This proof depends on a similar result for plane triangulations found
in part I [4].

2 Distant-2 degrees and distant-2-colourings in planar graphs

The distant-2 degree d2(v) of a vertex v of a graph G is the number of vertices of G lying at
distance 1 or 2 from v. Equivalently, the distant-2 degree of v in G is the ordinary degree of v

in the square G2 of G. We write δ2(G) for the minimum distant-2 degree of vertices of G,
and δ∗2(G) for the minimum distant-2 degree of minor vertices of G. ( Clearly, δ2(G) ≤ δ∗2(G)
for every graph G. )

Another implication of Theorem 1.3 consists in obtaining the following upper bound for the
minimum distant-2 degree δ2(G) and δ∗2(G) of plane graphs. These bounds are sharp whenever
∆ ≥ 47.

Theorem 2.1
If G is a planar graph with maximum degree ∆, then

(a) δ2(G) ≤ max{∆ + 38, d9
5 ∆e };

(b) δ∗2(G) ≤ max{∆ + 38, b9
5 ∆c+ 1 }.

In particular, if ∆ ≥ 47, then δ2(G) ≤ d9
5 ∆e and δ∗2(G) ≤ b9

5 ∆c+ 1, and these bounds are best

possible.

Proof Let G satisfy (A) in Theorem 1.3. Then there is a minor vertex u in G centred at a
complete star of weight at most ∆ + 38. Since the distant-2 degree of u is not greater than the
weight of the complete star at u, it follows that δ2(G) ≤ δ∗2(G) ≤ ∆ + 38.

Now let G satisfy (B) in Theorem 1.3. Then in each of the cases (i) – (iii), G has a bunch H

of length k with poles b and t, which has a strictly interior vertex u. Let us bound d2(u) from
above in terms of d(b), d(t) and k. First assume that H has no parental edge. By the definition
of strictly interior vertex, each vertex of G that lies at distance 1 or 2 from u is adjacent to or
coincides with one of the poles b and t of the bunch. Furthermore, each bunch vertex of H is
adjacent to both poles. This yields

d2(u) ≤ d(b) + d(t)− k + 1. (2.1)

When H has the parental edge bt, the only difference is that now one interior vertex “is missing”
in the bunch, so that

d2(u) ≤ d(b) + d(t)− k. (2.2)
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For the cases (i) and (ii) of (B), using k > d(b)/5 and k = d(b)/5 in (2.1) and (2.2),
respectively, we have

d2(u) < 4
5 d(b) + d(t) + 1 ≤ 9

5 ∆ + 1,

whence δ2(G) ≤ δ∗2(G) ≤ d9
5 ∆e.

Now suppose we are in case (iii) of (B). Then G has a B-vertex b which is a pole for five
bunches H1, . . . , H5 without parental edges and of length d(b)/5 each. Let the other poles of
these bunches be t1, . . . , t5. For each strictly interior vertex u of Hi it now follows from (2.1),
where we can take k = d(b)/5, that

d2(u) ≤ 4
5 d(b) + d(ti) + 1 ≤ 9

5 ∆ + 1,

whence δ∗2(G) ≤ b9
5 ∆c+ 1.

Still for case (iii) of (B), let us estimate the distant-2 degree of b. Observe that apart from
the vertices adjacent to b, the distant-2 vicinity of b also includes t1, . . . , t5 and several vertices
adjacent to the end of bunches Hi in G. These vertices will be called exterior for b. From the
assumptions posed on the degrees of the end vertices and on their adjacency, it follows that
each end vertex vi other than v0 ( cf. the statement of Theorem 1.3 ), is adjacent to at most two
exterior vertices of G, while v0 is adjacent to at most nine exterior vertices. Hence we have

d2(b) ≤ d(b) + 5 + 9 · 2 + 9 ≤ ∆ + 32 < ∆ + 38,

whence δ2(G) ≤ ∆ + 38.
Thus we have proved the upper bounds (a) and (b) in Theorem 2.1. Since ∆ ≥ 47 implies

∆ + 38 ≤ d9
5 ∆e ≤ b9

5 ∆c+ 1,

it follows that ∆ ≥ 47 implies δ2(G) ≤ d9
5 ∆e and δ∗2(G) ≤ b9

5 ∆c+ 1.

To prove the sharpness of the last two bounds, we first consider the icosododecahedron
graph J , partially shown in Fig. 2.1 (a). It is obtained by cutting off all the vertices of the
dodecahedron, i.e., replacing each vertex by a 3-face incident with three new vertices of degree 3.
As a result, each face of the initial dodecahedron gives rise to a face of size 10 in J , adjacent to
five 10-faces and five 3-faces.

We replace each edge of J incident with two 10-faces by a path of length k − 1, where
k ≥ 6. The resulting graph Jk has 12 faces of size 5 k and 20 triangles ( Fig. 2.1 (b) ). Next,
we put a new vertex bi into the centre of each 5k-face fi of Jk ( i = 1, . . . , 12 ) and join it with
all the vertices in the boundary of fi in Jk ( Fig. 2.2 (a) ). In the resulting triangulation Tk,
each vertex bi ( i = 1, . . . , 12 ) has degree ∆ = 5 k and is a pole for five bunches of length k

which have no parental edges and whose end vertices have degree 5 each (i.e., Tk satisfies (iii)
of (B) in Theorem 1.3 ). Now, counting the distant-2 degrees of minor vertices in Tk, we see that
δ∗2(Tk) = 9 k+1 = b9

5 ∆c+1, i.e., Tk attains the upper bound in (b). To extend this construction
to ∆ not divisible by 5, it suffices to increase the length of certain bunches in Tk from k to k +1
and leave the other bunches unchanged so that the degrees of all bi’s remain equal.
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Fig. 2.1 : The graphs J (a) and Jk (b)

Observe that the distant-2 degree of each bi ( i = 1, . . . , 12 ) in Tk equals ∆ + 5, and there-
fore Tk fails to attain the upper bound in part (a) of Theorem 2.1. To attain (a), we replace
one strictly interior vertex of each bunch in Tk by a parental edge bibj ( Fig. 2.2 (b) ). In the
resulting triangulation T ′k, the minimum distant-2 degree δ2 is attained on minor vertices and
equals 9 k = d9

5 ∆e, so that we are done with (a) if ∆ divides 5. The general case follows by
replacing certain bunches in T ′k by bunches of length k+1 without parental edges. This completes
the proof of Theorem 3.

The following result follows directly from Corollary 1.4.

Corollary 2.2
If G is a planar graph such that no B-vertex b is a pole for a bunch of length at least d(b)/5, then

δ∗2(G) ≤ ∆ + 38. In particular, this inequality holds if G has no bunches of length at least 5.

Theorem 1.3 and the upper bounds for δ∗2(G) above can be used to prove the upper bounds in
Theorem 1.2.

Theorem 2.3
Each planar graph G has

(a) χ2(G) ≤ 59 whenever ∆ ≤ 20, and

(b) χ2(G) ≤ max{∆ + 39, d9
5 ∆e+ 1 } whenever ∆ > 20.

In particular, if ∆ ≥ 47, then χ2(G) ≤ d9
5 ∆e+ 1.
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Fig. 2.2 : The graphs Tk (a) and T ′k (b)

Proof Suppose that ∆ ≤ 20 and that G is a minimal counterexample to the statement in
part (a). Since for these ∆ the graph G fails to satisfy condition (B) in Theorem 1.3, it follows
that G has a minor vertex u that is a centre for a precomplete star of weight at most 38. Among
the neighbours of u in G, choose a vertex v with smallest degree and denote by G1 the plane
graph obtained by contracting the edge uv into a new vertex v1 ∈ V (G1).

We first prove that ∆(G1) ≤ 20. It suffices to show that dG1(v1) ≤ 20. Observe that

dG1(v1) ≤ d(u) + d(v)− 2, (2.3)

which readily implies that dG1(v1) ≤ 20 if d(u) ≤ 2. If d(u) = 3 ( or d(u) ≥ 4 ), the choice
of v and the bounds for the weight of a precomplete star at u together imply that d(v) ≤ 19
( d(v) ≤ 12, respectively ). Hence, using (2.3), we again see that dG1(v1) ≤ 20.

So we have proved that ∆(G1) ≤ 20. By the minimality of G, there exists a distant-2-
colouring of G1 with 59 colours. This colouring induces a distant-2-colouring at the vertex set
V (G)− u in G ( since the distance between any two vertices from V (G)− u in G is not greater
than in G1 ). Now from d2(u) ≤ ∆ + 38 ≤ 58 we deduce that the distant-2-colouring obtained
can be extended to u in G, which completes the proof of (a).

To prove (b), we again consider a minimal counterexample G (with ∆ > 20 ). If G satisfies
statement (A) of Theorem 1.3, then we use the same argument as in proving (a). This leads to
a plane graph G1 with ∆(G1) ≤ ∆ that has a colouring with max{∆ + 39, d9

5 ∆e+ 1 } colours
( by the minimality of G and the already proved statement (a) ). Now, using the bound on
the distant-2 degree of u in G, we deduce that the distant-2-colouring of G1 yields a distant-2-
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colouring of G with max{∆ + 39, d9
5 ∆e+ 1 } colours.

Suppose G satisfies statement (B) of Theorem 1.3. Let u be a strictly interior vertex of a
bunch centred at b ( cf. the statement of Theorem 1.3 ). If we are in case (i) or (ii), then the
same arguments as above combined with the fact that d2(u) ≤ d9

5 ∆e yield a distant-2-colouring
of G with max{∆ + 39, d9

5 ∆e + 1 } colours. Suppose case (iii) in (B) holds. Then, as follows
from the proof of Theorem 2.1, d2(u) ≤ b9

5 ∆c + 1 and d2(b) ≤ ∆ + 38. In this case, we first
transfer a colouring of G1 with max{∆ + 39, d9

5 ∆e+ 1 } colours to the vertex set V (G)−{u, b}
in G ( not giving a colour to b ), and then colour consecutively u and b in G. This completes the
proof of Theorem 2.3.

Remark.
Since the proof of Theorem 2.3 makes use only of the upper bound for the distant-2 degree of
vertices in G, which gives the number of restrictions for the choice of colours for these vertices,
it follows that the statement of Theorem 2.3 ( along with the proof ) is valid also for list distant-
2-colourings and the list distant-2 chromatic number χ2(l)(G).

Theorem 2.3 can also be generalised to so-called L(p, q)-labellings of planar graphs. For
integers p, q ≥ 0, this is any mapping ϕ : V (G) −→ {0, 1, . . . , k} such that

(1) |ϕ(u)− ϕ(v)| ≥ p for all adjacent vertices p, q in G;

(2) |ϕ(u)− ϕ(v)| ≥ q for all vertices p and q in G at distance 2.

The p, q-span of a graph G, denoted λ(G; p, q), is the minimum k for which an L(p, q)-labelling
exists. Notice that this means that λ(G; 1, 1) = χ(G2) − 1. An upper bound on λ(G; p, q)
for planar graph G can be proved similarly to Theorem 2.3. We obtain that for a planar
graph G with maximum degree ∆ ≥ 47, and for positive integers p, q with p ≥ q, λ(G; p, q) ≤
d9

5 ∆e (2 q − 1) + 8 p− 8 q + 1.

3 Proof of Theorem 1.3

The following result, which is essentially Theorem 1.3 for triangulations, is proved in [4].

Theorem 3.1
For each plane triangulation G at least one of the following holds :

(A) G has a precomplete star of weight at most 38 that does not contain B-vertices and is

centred at a minor vertex.

(B) G has a B-vertex b that satisfies at least one of the following conditions :

(i) b is a pole for a bunch of length greater than d(b)/5;

(ii) b is a pole for a bunch of length precisely d(b)/5 with a parental edge;

(iii) b is a pole for 5 bunches of length d(b)/5 without parental edges and with pairwise

different end vertices. Moreover, all but possibly one end vertices have degree 5, while

the other end vertex has degree at most 11 ( see Fig. 1.2 with all instances of “ ≤ 5”

replaced by “ = 5” ).
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For any plane graph G, we consider two numerical parameters τ(G) and β(G). The first is
defined as

τ(G) =
∑

f∈F (G)

(r(f)− 3) = 2 |E(G)| − 3 |F (G)|

and characterizes the distance from G to a triangulation on the same vertices. Here F (G) is
the set of faces of the plane graph G, and r(f) is the number of edges in the boundary of a
face f . By β(G) we denote the number of edges e ∈ E(G) incident with two B-vertices in G.
Such edges will hereafter be called BB-edges, and those incident with precisely one B-vertex,
BL-edges. Finally, the vertices joining two L-vertices in G will be called LL-edges.

Now let G be a counterexample to Theorem 1.3. It follows from Theorem 3.1 that G is not
a triangulation, whence τ(G) > 0. Besides, G has no vertices of degree 1, and each vertex of
degree 2 in G is adjacent to two B-vertices ( due to (A) ). We choose a counterexample G0 with
the minimal τ such that β(G0) is the least possible.

We define a halfbunch of length m ≥ 2 with poles vertices p and q in a plane graph G as
a sequence of paths P1, . . . , Pm with the following properties. The path Pm = pq has length 1,
whereas all other paths have length 2. Furthermore, for each i = 1, . . . , m− 1, the cycle formed
by Pi and Pi+1 is not separating in G.

Lemma 3.2
If G0 has a bunch of length at least 6, or a bunch of length at least 5 without parental edge, or

a halfbunch of length at least 4, then both poles of this bunch or halfbunch are B-vertices.

Proof Suppose H is a bunch in G0 of length at least 6, or of length at least 5 and without
parental edge. Then H contains a strictly interior vertex w. Let p and q be the poles of H.
Vertex w has degree at most 4 and is adjacent to p, q and to at most two other interior vertices,
also of degree at most 4. So there exist two precomplete stars centred at the minor vertex w of
weight at most d(p) + 8 and d(q) + 8. Since G0 does not satisfy Theorem 1.3 (A), we must have
d(p), d(q) ≥ 30, so p and q are certainly B-vertices.

We obtain the same result for a halfbunch of length at least 4 with poles p and q by considering
the bunch vertex neighbouring the edge pq. 2

A step remakes a current counterexample G to a counterexample G′ such that τ(G′) < τ(G).
A substep takes a counterexample G to a counterexample G′ such that τ(G′) = τ(G) and
β(G′) < β(G). By the definition of G0, no step or substep can be applied to it. Thus, to prove
Theorem 1.3 it suffices to make a step or substep with respect to G0.

Note that if we can add to G0 an edge such that the resulting graph G1 is plane and simple,
then τ(G1) < τ(G0).

Lemma 3.3
Let a plane simple graph G1 be obtained by adding to G0 an edge. Then G1 satisfies state-

ment (B) of Theorem 1.3, but not statement (A).
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Proof The graph G1 must satisfy Theorem 1.3, otherwise we are able to make a step. Sup-
pose G1 satisfies statement (A), i.e., has a light precomplete star at the minor vertex u. Then
this star induces a light precomplete star at u in G0, a contradiction. 2

Lemma 3.4
Let a plane simple graph G1 be obtained by adding to G0 an edge. If G1 has a bunch of length

at least 6, then both poles of that bunch are B-vertices in G0.

Proof Suppose H is a bunch in G1 of length at least 6, and let p and q be the poles of H.
Then there exists a strictly interior vertex w in H. Since by Lemma 3.3, G1 cannot contain a
precomplete star of weight at most 38 centred at a minor vertex, we can follow the arguments
in the proof of Lemma 3.2 to conclude that dG1(p), dG1(q) ≥ 30. Hence dG0(p), dG0(q) ≥ 29, and
so p and q are B-vertices. 2

Lemma 3.5
If there is a face in G0 incident with two L-vertices, then these two L-vertices are adjacent.

Proof Suppose the lemma is false, and form the plane simple graph G1 by adding an edge
between the two L-vertices. From Lemma 3.3 it follows that G1 must satisfy statement (B) in
Theorem 1.3. If the new edge is a horizontal edge in one of the bunches involved, then (B)
holds for G0 too ( since the length of a bunch or the degree of the poles does not depend on the
presence of horizontal edges ), a contradiction.

In all three cases in statement (B), G1 has a B-vertex b that is a pole for one or three bunches
of length at least dG1(b)/5. Since dG1(b) ≥ 26, the length of these bunches is at least 6. From
Lemma 3.4 it follows that all poles of these bunches must have been B-vertices in G0, hence the
new edge cannot be incident with any of them. It follows that (B) holds for G0 too, again a
contradiction. 2

We now take a close look at the type of edges that can be added to G0.

Lemma 3.6
Let a plane simple graph G1 be obtained by adding to G0 an edge e. Then e is vertical in a

bunch H of length at least 6 in G1 for which both poles are B-vertices in G0. Moreover, e is

either a boundary or a preboundary edge in H.

Proof From Lemma 3.3 it follows that G1 must satisfy statement (B) in Theorem 1.3. Follo-
wing the proof of Lemma 3.5, the new edge e must be incident with a pole of a bunch H in G1

of length at least 6, and the poles of H are B-vertices in G0. If e is not contained in the bunch,
then, since the relevant poles are all B-vertices in G0 as well, we find that G0 satisfies (B) as
well, a contradiction. ( For case (iii) we use this argument for each of the five bunches. )

So we must have that e is contained in the bunch H and incident with at least one of its
poles. Hence e is a vertical edge in H. Let the poles of H be p and q. First suppose e is a
parental edge which is not a boundary or a preboundary edge. Then e = pq is incident in G1
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with the edges in the paths pvi−1q and pvi+1q, where vi−1 and vi+1 are two interior vertices
in H. It follows that vi−1 and vi+1 are minor in G0. These two vertices cannot be adjacent
in G0, because the length of H is at least 6 ( Fig. 3.1 ). But then the vertices vi−1 and vi+1 in
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the face pvi−1qvi+1p violate Lemma 3.5.
So suppose e is a vertical edge pw or qw. If e is not a boundary or a preboundary edge,

then w is a strictly interior vertex in H. This means that in G0 w is adjacent to one of p, q

and to at most two vertices of degree at most 4 ( the two interior bunch vertices neighbouring w

in H ). Then G0 has a precomplete star of weight at most 8, a contradiction. 2

Lemma 3.7
Suppose G0 has a halfbunch H of length at least 4 with poles p and q that are both B-vertices.

Then the face incident with pq, but not contained in the halfbunch, contains B-vertices only.

Proof Following the terminology in the definition of a halfbunch, G0 contains a 3-face pvm−1qp

with dG0(vm−1) ≤ 3. In fact, because also dG0(vm−2) ≤ 4, it follows from Lemma 3.5 that vm−1

and vm−2 are adjacent. So vm−1 is adjacent to p, q and vm−2, where p and q are B-vertices,
while dG0(vm−2) ≤ 4.

Suppose G0 contains an L-vertex v in the face incident with pq but not in the halfbunch ( see
left side of Fig. 3.2 ). Form the graph G1 by putting a new vertex x on the BB-edge pq and add
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the edges xvm−1 and xv ( Fig. 3.2 ). Then we have τ(G1) = τ(G0) and β(G1) < β(G0), so G1

cannot be a counterexample. First assume G1 satisfies statement (A) of Theorem 1.3. Since G0

does not satisfy (A), the only minor vertex in G1 that can be the centre of a precomplete star
of weight at most 38 is the new vertex x. But if that is the case, then also vm−1 is the centre of
a precomplete star of weight at most 38, a contradiction.
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So assume G1 satisfies statement (B) of Theorem 1.3. If none of the new edges is contained
in the bunch or bunches guaranteed by (B), then the same bunches exist in G0. Since these
bunches have length at least 6, Lemma 3.2 guarantees that their poles are B-vertices in G0, and
hence cannot be one of vm−1, x, v. But then in fact a bunch or bunches with exactly the same
properties exist in G0, a contradiction.

Next assume that the new edges are horizontal in the bunch or bunches that exist in G1

according to (B). If G1 satisfies (i), then the poles of the special bunch are p and q. Removing
the vertex x and edges xvm−1, xv from G1 gives a bunch of the same length in G0. Since there is
no edge pq in G1, in fact G1 cannot satisfy (ii) with poles p and q. And if G1 satisfies (iii), then p

and q are the poles of a bunch of length dG1(p)/5 or dG1(q)/5 without parental edge. Going
back to G0, noting that dG0(p) = dG1(p) and dG0(q) = dG1(q), we find that G0 contains a bunch
with poles p, q of length exactly dG0(p)/5 or dG0(q)/5 with parental edge, again a contradiction.

So we can conclude that at least one of the new edges must be vertical in a bunch H in G1

according to (B). As before, we can determine that the length of H is at least 6, and hence the
only candidate for a vertical new edge is xv, and v is one of the poles of H. But then the other
pole must be p or q. Assume, without loss of generality that the poles of H are p and v. Then x

is an end vertex of H, and we immediately find that G0 has a bunch of length at least 5 without
parental edge ( if p and v are not adjacent ) or G0 has a halfbunch of length at least 5 ( if p and v

are not adjacent ) with poles v and p. The fact that v is an L-vertex contradicts Lemma 3.2.
2

Now we use the observations above to make a step or substep in G0. Since G0 is not a triangu-
lation, there are vertices u and v such that G1 = G0 + e, where e = uv, is a plane simple graph.
As G1 cannot be a counterexample, it follows from Lemma 3.6 that e is a vertical edge in a
bunch H of length at least 6 in G1 and the poles p and q of H are B-vertices in G0. Moreover,
by Lemma 3.6, we have the following alternatives :

(1) e is a preboundary parental edge in H;

(2) e is a preboundary non-parental edge in H;

(3) e is a boundary parental edge in H;

(4) e is a boundary non-parental edge in H.

In each of the cases (1) – (4), we show how to make a step or substep instead of unsuccessfully
adding e to G0.

Case 1. Here e = pq is incident in G1 with triangles pv1q and pv3q, where v1 is an end vertex
of H, and v3 is its strictly interior vertex; in particular, d(v3) ≤ 3. Because the length of H is
at least 6, v1 and v3 cannot be adjacent in G0. So, by Lemma 3.5 v1 is a B-vertex. Let G′ be
obtained by adding e′ = v1v3 to G0. Then by Lemma 3.6, the edge e′ is vertical in a bunch H ′

of length at least 6 in G′. Since e′ is incident with only one B-vertex v1 in G′, it follows that v1

is one of the poles of H ′. The second pole of H ′ is adjacent to v3 and is a B-vertex. Since v3

is adjacent with only two B-vertices p and q in G0, the second pole coincides with one of these
vertices.
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By symmetry, we can assume that the poles of H ′ are v1 and p, whence v1p is parental for H ′.
It is not hard to see that v3 is an end vertex for H ′, and that the vertex q which is the next
neighbour to v3 around a pole v1 is not adjacent to the other pole p in G′ ( by the assumptions
of Case 1 ) ( Fig. 3.3 ). Let H ′′ be the halfbunch in G0 with poles v1 and p and length at least 5
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formed by the vertices in H ′ minus v3. Since v3 is not a B-vertex, the existence of H ′′ violates
Lemma 3.7.

Case 2. Now e = pv2 belongs to the path P2 = pv2q in H, where the path P1 next to P2 in H

is boundary, i.e., consists of boundary edges.
Observe that if P1 a parental edge in H, then v2 is adjacent in G0 only with q and possibly

with v3, which is interior in H. Since v3 is minor in G0, the vertex v2 is incident in G0 with a
light precomplete star; a contradiction. Hence, the path P1 is not a parental edge of the bunch H

in G1 and v2 is adjacent to v1 in G0.
We consider two subcases :

(2a) P1 = pv1q and P3 = pq, i.e., the path P3 is a parental edge of H;

(2b) P1 = pv1q and P3 = pv3q, i.e., the path P3 is not a parental edge of H.

First we consider Case 2a. Since the length of H in G1 is at least 6, it follows that the halfbunch
in G0 formed by removing v1 and v2 from H together with the L-vertex v2 violates Lemma 3.7
( Fig. 3.4 ).
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If we are in Case 2b, then v2 and v3 must be adjacent, because of Lemma 3.5. So v1 is a
B-vertex because otherwise there is a precomplete star in G0 of weight at most 29, centred at v2

and consisting of v1 and the minor vertex v3. Also the path P4 cannot be a parental edge pq,
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because otherwise the subgraph induced by p, q, v1, v2, v3 together with the minor vertex v5

would form a structure that cannot exist in G0. This can be proved in exactly the same way as
Lemma 3.7. Note that again we can conclude that v3 and v4 must be adjacent.

Form the graph G′ by adding the edge e′ = v1v3 to G0 ( Fig. 3.5 ). Due to the same argument
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as in Case 1, e′ is a vertical edge in a bunch H ′ of length at least 6 in G′. Furthermore, the
poles of H ′ are either v1 and p, or v1 and q.

First suppose that the poles of H ′ are v1 and p, while v1p is its parental edge. Observe
that v3 is an end vertex for H ′. Since the length of H ′ is at least 6, we can find a halfbunch H ′′

having length at least 4 in G0 formed by removing v3 from H ′. The existence of H ′′ together
with the minor vertex v3 violates Lemma 3.7.

Now suppose that the poles of H ′ are v1 and q, while v1q is its parental edge. This time we
find that v3 is an end vertex for H ′. We can follow the reasoning from above by considering the
halfbunch obtained by removing v2 and v3 from H ′.

Case 3. The edge e = pq = P1 is incident in G1 with a 3-face pv2qp, where v2 is interior in H.
Also, e is incident in G1 with a nontriangular face ypqz · · · y ( otherwise e is not boundary in
the bunch H ). This implies that G0 has a face f0 = ypv2qz · · · y of size at least 5. Furthermore,
v2 is not adjacent in G0 to any vertex incident with f0, except possibly p and q. The last claim
follows from the fact that v2, being an interior vertex of H in G1, can be adjacent, except for p

and q, only to an interior vertex of H. From Lemma 3.5 it follows that all vertices incident with
the face f0 in G0 and different from v2 are B-vertices.

Form G′ by adding the edge e′ = yv2 to G0 ( Fig. 3.6 ). The argument used in Case 1 then
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shows that e′ is a vertical edge in a bunch H ′ of length at least 6 in G′. Moreover, one of the
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poles in H ′ is y and the other coincides with one of the B-vertices p or q adjacent to v2.
Let us prove that if the other pole of H ′ is q, then the length of H ′ in G′ is at most 3. Indeed,

both vertices adjacent to v2 around y in G′ must be B-vertices different from q. Hence, they
must be end vertices for H ′, whence the length of H ′ is at most 3. This contradiction implies
that y and p are the two poles of H ′ in G′ and the edge yp is parental in H ′. Furthermore, as
in the cases above, v2 is an end vertex for H ′, and we can form a halfbunch H ′′ by removing v2

from H ′ which, together with the minor vertex v2, violates Lemma 3.7.

Case 4. The edge e = pv1 is a boundary in the bunch H, and e belongs to the path P1 = pv1q

in H. Two alternatives are possible :

(4a) P2 = pv2q, i.e. P1 does not lie next to a parental edge of H;

(4b) P2 = pq, i.e. P1 lies next to a parental edge of H.

For (4a), we can assume that the bunch vertices v1 and v2 are adjacent in G0 ( otherwise our
argument below works, even with obvious simplifications ).

Suppose f0 = v1v2py · · · v1 is a face in G0. From Lemma 3.5 we conclude that all the vertices
incident with f0 and different from v1 and v2 are B-vertices in G0. First suppose r(f0) ≥ 5.
Then y and v1 are not consecutive in the boundary cycle of f0. Form the graph G′ by adding
e′ = yv2 to G0 ( Fig 3.7 (a) ). An argument similar to that in Case 3 shows that the edge e′ is

u u

u

u u u

©©©©©©

#
#

#

HHHHHH``̀

HH

©©

p

q

v1 v2

y

e′

(a)

u u

u

u u u

©©©©©©

¡
¡

¡

HHHHHH

p

q

v1 v2

y

e′

(b)

Fig. 3.7

vertical in a bunch H ′ of length at least 6 in G′. Furthermore, one of the poles of H ′ is y and
the other coincides with p, q or v1 ( the latter is possible only if v1 is a B-vertex in G0 ).

The possibilities that the second pole of H ′ is v1 or q are refuted in the same way as in
Case 3. It remains to consider the case that the poles of H ′ are y and p, while the edge yp is
parental. Then v2 is an end vertex in H ′ and we can form a halfbunch with parental edge yp

that violates Lemma 3.7 again.
Now suppose that f0 is a quadrangular face, i.e., f0 = v1v2pyv1. Then after adding the edge

e′ = yv2 to G0 to get G′ ( Fig. 3.7 (b) ), we may get a bunch H ′ with one of the following pairs
of poles : (y, p), (y, v1) ( provided that v1 is a B-vertex), or (y, q). Observe that in the first two
cases, v2 is an end vertex in H ′. So in both cases we can form a halfbunch of length at least 5
with the outside minor vertex v2, once again violating Lemma 3.7.
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Next assume that the poles of H ′ are y and q. Then either v2 or p is an end vertex of the
bunch since p is a B-vertex. We deduce that v1 is interior in the bunch H ′ and, in particular, v1

is minor in G0. Form the graph G′′ by putting a vertex x on the BB-edge yp in G0 and adding
edges xv1 and xv2 ( Fig. 3.8 ). From the fact that G′′ cannot be a counterexample, we can follow
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the same reasoning as in the proof of Lemma 3.7 to obtain a contradiction ( here we use that if
there is a precomplete star of weight at most 38 centred at x, then there is one centered at v1

or v2 as well ). This completes the proof of subcase (4a).
Next we consider subcase (4b). Then the edge pq is incident in G0 with a nontriangular

face f0 = v1qpy · · · v1 ( since G0 had no edge e = pv1 ). Observe that the halfbunch obtained by
removing v1 from H has length at least 5. From Lemma 3.7 it follows that all vertices incident
with f0 are B-vertices.

Let G′ be obtained by putting a vertex x on the BB-edge pq and adding the edges xv3 and xy

( Fig. 3.9 (a) ). Following the proof of Lemma 3.2 we find that xy is a vertical edge in a bunch H ′
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Fig. 3.9

in G′ of length at least 6. Furthermore, one of the poles is y, while the other coincides with p

or q. In the case q is the other pole, we find that x is an end vertex of H ′ and v1 is an interior
vertex. But this violates the observation that all vertices incident with f0 are B-vertices.
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Hence, the poles of H ′ are y and p, and the edge yp is parental in it. Since x is an end
vertex in H ′, it follows that G0 contains a halfbunch of length at least 5, with poles y and p.
Let w be the interior vertex in that halfbunch neighbouring the edge yp. The graph obtained
by putting a vertex x on the BB-edge pq and adding the edges xv3 and v1y fails, just as G′, to
be a counterexample. It follows by symmetry that G0 contains a halfbunch of length at least 5,
with poles v1 and q. Let w′ be the interior vertex in that halfbunch neighbouring the edge v1q.
Form the graph G∗

1 by putting in G0 vertices x, x′ and x′′ on the BB-edges pq, yp and v1q,
respectively, and adding the edges v3x, xx′, xx′′, x′x′′, x′w and x′′w′ ( Fig. 3.9 (b) ). The same
sequence of arguments as in the proof of Lemma 3.7 will lead to a contradiction.

This completes the treatment of all the cases and subcases, and hence completes the proof
of the theorem.
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