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Abstract. The solution concept of “correlated equilibrium” allows for coordination in games. For
game trees with imperfect information, it gives rise to NP-hard problems, even for two-player
games without chance moves. We introduce the “extensive form correlated equilibrium” (EFCE),
which extends Aumann’s correlated equilibrium, where coordination is achieved by signals that
are received “locally” at information sets. An EFCE is polynomial-time computable for two-player
games without chance moves.

1 Background

Game theory is the formal study of conflict and cooperation. It provides a language to formulate,
structure and analyze scenarios where the actions of several agents are interdependent. Game-
theoretic concepts are a major tool in theoretical economics [25]. In theoretical computer science,
two-player games are familiar in models of complexity [6], for proving lower bounds for random-
ized algorithms [40], and in the competitive analysis of online algorithms [5]. Game theory is also
recognized as a main tool for modeling and analyzing interactions on the internet. This is force-
fully argued by Papadimitriou [29], who also notes significant computational questions posed by
game theory. One of these open problems is the complexity of finding one Nash equilibrium of a
two-player game given in strategic form.

Thestrategic form(also called normal form) is a basic model studied in noncooperative game
theory. A game in strategic form is given by a set of strategies for each player, and specifies the
payoff for each player resulting from eachstrategy profile(a strategy profile is a combination of
strategies, one for each player). The game is playedsimultaneouslyby each player choosing a
strategy, unaware of the choices of the other players, whereupon the players receive their payoffs.

The predominant solution concept for strategic-form games is theNash equilibrium[27]. This
is a strategy profile such that no player can improve his payoff by unilaterally changing his strategy.
In order for Nash equilibria to exist, it may be necessary that players usemixed strategies. A
mixed strategy of a player is given by a randomization over the given set of “pure” strategies of
that player. A mixed strategy profile is a Nash equilibrium if no player can get a betterexpected
payoff, assuming that the strategies of the other players stay fixed.

Any finite strategic-form game has a Nash equilibrium in mixed strategies [27]. The known
constructive proofs, however, lead at best to exponential-time algorithms for finding one equilib-
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rium. For two-player games, a classical algorithm that finds one Nash equilibrium, due to Lemke
and Howson [22], relies on a parity argument [28] for the odd-degree nodes of a graph. This graph
is defined by edges of polytopes [32, 38] and the algorithm is similar to the simplex method for
linear programming, and has exponential worst-case running time. As of yet, no such combina-
torial “pivoting” algorithms for linear programming are known that have polynomial worst-case
running time. The more general problem of finding a single Nash equilibrium is therefore likely
to be even more difficult and is considered as one of the most important concrete open questions
on the boundary of P today [29].

The set of all Nash equilibria of a game is disconnected and computationally difficult in the
sense that maximizing a linear function of the payoffs of the players is NP-hard [13] (this is
independent from the mentioned question of findingoneequilibrium). The concept of “correlated
equilibrium”, which generalizes Nash equilibrium, however, is computationally more tractable
since the set of correlated equilibria of a game is a convex polytope.

A correlated equilibrium, due to Aumann [2], differs from a Nash equilibrium in that it allows
for coordinated random choices of the players. A commonly known joint distribution on strategy
profiles is used to select one of these profiles, whereupon each player is told only his strategy in
that profile. The selection of the profile requires some device ormediator. After the players have
learned their strategy, each has a posterior conditional distribution on what the other players have
been recommended to do. Assuming they follow this recommendation, the equilibrium condition
states that the player must have no incentive to deviate from the own recommended strategy.
Theseincentive constraintscan be described by linear inequalities, derived from the payoffs, with
the joint probabilities for the strategy profiles as variables (see (1) below). They compare any
two strategies of a player and are hence quadratic in the size of the game. The set of correlated
equilibria is therefore a polyhedron defined by a polynomial number of linear inequalities. A
correlated equilibrium with maximum payoff sum, for example, can therefore [14] be found in
polynomial time [13].

A motivation for correlated equilibrium is that it describes the strategic possibilities ofpre-
play communicationbetween the players [26]. This communication is “cheap talk” in that it does
not involve any commitment, which would alter the game much more substantially. One can
view correlated equilibrium as the Nash equilibrium of a game derived from the original game
with an additional pre-play communication stage where players may exchange messages. The
mediator can even be made unnecessary by using private pairwise interactions [3, 4], or suitable
cryptographic protocols [9, 34]. As a further motivation, certain learning mechanisms converge to
correlated equilibria [16].

This paper studies correlated equilibria for a game model that is much more detailed than the
strategic form, the game tree orextensive game. This game representation is popular as it allows
detailed and accurate models of strategic interactions. In an extensive game, a tree describes the
game states (as nodes) and players’ moves (as tree edges). Nodes may also belong tochance
selecting the next node according to known probabilities. A game play starts at the root and ends
at a leaf of the tree, where each player receives a payoff.Imperfect informationin an extensive
game is modeled byinformation sets[20]. An information set is a set of nodes that all have the
same player to move and the same choices (denoted by labels on tree edges) at each of those nodes.
A player is informed only about the information set she is at but not at which node, and her move
is by definition the same at each of these nodes. This allows to model that a player is not fully
informed about previous moves of other players. In a game of perfect information (like chess), all
information sets are singletons and can be identified with the players’ decision nodes.
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A strategyin an extensive game is defined as a tuple of moves, one for each information set of
the player. The strategic form of the game is obtained by listing the payoffs, or expected payoffs if
there are chance moves, that result in the tree for any strategy profile. A Nash equilibrium is then
defined as before.

Standard methods for finding Nash equilibria apply to the strategic form of the extensive game.
If the game tree is the input, this is computationally very inefficient since the number of strategies
is clearlyexponentialin the number of information sets of a player, and hence typically exponen-
tial in the size of the game tree. Thereduced strategic formconsiders only “reduced” strategies
omitting moves at information sets that are unreachable due to an earlier move of the player. The
resulting growth is typically sub-exponential, like2

√
n for a typical tree withn nodes [39], so that

using the reduced strategic form only becomes impractical for trees with several hundred nodes.
For larger trees, the exponential “explosion” makes algorithms based on the reduced strategic form
intractable, which has also limited the use of extensive games in practice [23].

A strategic description oflinear sizein the size of the game tree is thesequence formof an
extensive game, due to [18, 36] and, in retrospect, [30]. It is based on sequences of moves, which
are the moves of a particular player along a path in the game tree. The sequences are played
according to certain “realization” probabilities, which are characterized by linear equations, one
for each information set of a player (see equations (2) below). The resultingrealization plansare
the analog of mixed strategies for the sequence form. They can be translated tobehavior strategies
[20], which describe how to randomly choose moves at an information set. It is this “local”
randomization of a behavior strategy that reduces the complexity from exponential to linear, as
opposed to the “global”, and very redundant, description by a mixed strategy that first picks one
of the exponentially many pure strategies which is then used by the player in the tree.

Behavior strategies are due to Kuhn [20]. They are as powerful as mixed strategies if each
player hasperfect recall. This means that the information sets reflect that the player does not forget
what he knew or did earlier, which is a standard assumption (the interpretation of game trees with
imperfect recall becomes difficult, see e.g. [15]). The sequence form also requires perfect recall.
It replaces behavior probabilities for moves by the probabilities for sequences ending in those
moves. In two-person games, this gives rise to linear inequalities for the expected payoffs. Two-
player zero-sum extensive games can then be solved in polynomial time. This was first stated
explicitly in [17] who used sequences for one player and strategies with a separation oracle [14]
for the other player; Romanovskii’s earlier result [30] was still overlooked at that time. For two-
player non-zero-sum games, Lemke’s pivoting algorithm [21] can be used [19], an extension of
the Lemke–Howson method for strategic-form games [22]. A (more general) implementation with
exact integer arithmetic performs well in computational experiments [39]. The sequence form has
been used for solving large game trees with linear programming to obtain new lower bounds in
the list update problem [1], a classical online problem [5].

2 Contribution of this paper

This paper investigatespolynomial-time computablecorrelated equilibria for extensive games with
perfect recall. As described above, polynomial algorithms for strategic-form games are known for
finding Nash equilibria ofzero-sumtwo-person games, and for findingcorrelatedequilibria. For
non-zero-sum games, the complexity of finding one Nash equilibrium is open (with a pivoting
algorithm [22] that works well in practice), and problems relating to the set of all Nash equilibria
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tend to be NP-hard [13]. For two-player extensive games with perfect recall, the sequence form
makes Nash equilibria computationally as tractable as for games in strategic form [30, 18, 36, 39].

Is there a “sequence form” to compute correlated equilibria of extensive games efficiently? The
answer isnegativewhen considering two-player extensive games with perfect recall and chance
moves: Chu and Halpern [7] recently established that finding a maximum-payoff-sum correlated
equilibrium for such games is NP-hard to compute, even if the players have identical payoffs.
The set of correlated equilibria can therefore not be characterized by a polynomial number of
inequalities in the size of the game tree, unless P= NP. The proof of this result converts a SAT
instance to an extensive game ([7] actually uses a “possible worlds” model) where the strategic
form is similar to a truth table for the SAT formula, with a chance move picking one of the clauses.
The chance move can be replaced by an active randomization of one of the players, using an initial
generalized “rock–scissors–paper” game, to yield an even stronger result:

Theorem 2.1 [37]. For two-player, perfect-recall extensive gameswithout chance moves, it is
NP-hard to find a strategic-form correlated equilibrium with maximum payoff sum.

The exponential number of pure strategies in an extensive game seems to be unavoidable
when considering correlated equilibria, as long as these are defined in terms of the strategic form.
Our main contribution is analternative definitionof correlated equilibrium for extensive games,
which we callextensive form correlated equilibriumor EFCE. It is similar to the known strategic-
form correlated equilibrium in that it generates recommendations of movesbeforethe game starts.
However, a player receives the signal with the recommended movewhen reaching an information
set, as if in a “sealed envelope” that she can open then, but not earlier.

The EFCE generalizes Nash equilibria in behavior strategies, and is closer in spirit to the dy-
namic description of the game by a tree than the strategic-form correlated equilibrium. At the
same time, the game is altered minimally since the mediator generates the signals at the beginning
of the game. Other extensions of correlated equilibrium have been proposed forspecificclasses of
games, like Bayesian games [11, 31, 8, 12] or multi-stage games [10, 24]. In contrast, our concept
seems to be the first that applies togeneralextensive games. For instance, “autonomous” corre-
lated equilibria [10, 33] and “communication equilibria” [10, 24] are only defined for multistage
games, as they rely on devices which give private recommendations to each player at every stage
the game. In the case of communication equilibria, the players can send messages to the device at
every stage. Even more general communication equilibria are considered in [33] where the device
can also base recommendations on past play.

Any strategic-form correlated equilibrium is an EFCE, but the set of EFCE is in general larger.
This is known in special cases [24, Fig. 2] and unsurprising since in an EFCE the players have
less information and so incentives can be more easily met. In multistage games, any autonomous
correlated equilibrium is an EFCE. However, the converse is not true unless further assumptions
are made on the players’ information [33]. It is easy to see that there is no inclusive relationship
between communication equilibria and EFCE.

The definition of an EFCE applies to any extensive game. For two players andno chance
moves, the set of EFCEcan be described by a polynomial number of linear constraints, in the size
of the game tree. This positive result (Theorem 5.1 below) is the most substantive feature of the
EFCE concept from a computational viewpoint. Interestingly, EFCE are still hard to characterize
when a chance player or a third player are allowed in the game:

4



Theorem 2.2[7, 37]. Consider a set of “equilibria” which are convex combinations of pure strat-
egy pairs and include all Nash equilibria. Then for an extensive game with two players and chance
moves, or with three players, it is NP-hard to find an “equilibrium” with maximum payoff sum.

We will illustrate the EFCE concept in Section 3. Our main result is its polynomial-time
computatibility for two-player games without chance moves. Section 4 covers theconsistency
constraintsfor generating moves that may be correlated across the different information sets of the
two players. This is the main difficulty, since one has to avoid correlations of own moves, which
would re-introduce the complex mixed strategies that cannot be described by a small number
inequalities. Here, the absence of a third player or of chance, and the condition of perfect recall,
is crucial. From the “correlated move probabilities” one can generate “locally” a pair of pure
strategies, analogous to a behavior strategy of one player in a Nash equilibrium. The resulting
distribution on pure strategy pairs forms an EFCE if it fulfills additionalincentive constraints,
described in Section 5. These compare the own expected payoff when following a recommended
move (assuming the player will observe further recommendations in the future) with the possible
payoff whendeviatingfrom the recommended move, which must not be higher. The deviation
payoff is computed by optimizing in the tree against the behavior of the other player, according
to the current conditional probabilities. This is akin to dynamic programming and captured by
suitable variables associated with moves and information sets. Section 6 concludes.

3 Example of an extensive-form correlated equilibrium

Figure 1 shows an example of an extensive game. Player 1, a student, chooses a good (G) or bad
(B) education, which defines his “type”. Afterwards, he applies for a summer research job with a
professor, player 2. Player 1 sends a signalX or Y (we add primes as inX ′ andY ′ only to make
choices at different information sets distinct). The professor can distinguish the signals but not the
type of player 1, as shown by her two information sets. She can either let the student work with
her (l) or refuse to do so (r). Mover always gives payoffs(0, 1) to players 1 and 2, butl results in
(2, 3) for G versus(3, 0) for B.

In games of incomplete information, the type is normally chosen by a chance move, not the
player himself. However, larger games of this sort are not easy to solve in general, so that this
game without chance moves demonstrates better our EFCE concept.

FIGURE 1
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The Nash equilibria of this game are given as follows. Player 2 refuses to work with the
student, with the strategy(r, r′), since any positive probability forl or l′ would induce player 1
to chooseB along with the appropriate signalX or Y , which is better thanG. Thenl or l′ is
certainly not optimal for player 2. Hence the choice ofB or G and of the signal for player 1 do
not matter (he gets payoff 0 anyhow), as long as in no information set of player 2, the probability
for G versusB is high enough to make her switch tol.

This “economically inefficient” outcome of the game could be avoided if player 1 could choose
G and signal this appropriately, without being able to mimic this when he is of typeB. This
requires coordination between the two players, as offered by a correlated equilibrium. However,
it is not possible with any such concept based on the strategic form, or multiple stages [10, 24],
where player 1 gets the recommendations for both typesG andB. An EFCE, however, gives this
possibility: Suppose the reduced pure strategy profiles((G,X, ∗), (l, r′)) and((G,Y, ∗), (r, l′))
are chosen with probability 1/2 each. The moves in these profiles are revealed to the players when
reaching their respective information sets. Player 1 is not recommended to playB and hence gets
no signalX ′ or Y ′, indicated by “∗”. After G, he knows that he will get a signalX or Y that is
perfectly correlated with player 2’s choicel or l′ to let him work with her, giving him payoff 2.
When deviating and choosingB, however, the signal will be not revealed, andX ′ andY ′ will both
have probability 1/2 for the responser or r′, giving the expected payoff 3/2 which is less than 2
when following the recommendation, so player 1 indeed follows it. Player 2 gets recommendation
l or l′ and knows that player 1 is of the good typeG when following his recommendation, sol
andl′ are also optimal for player 2.

4 Consistency constraints

Throughout, we consider an extensive two-person game with perfect recall and no chance moves.
We will show that the set of EFCE for such a game can be described by asmallnumber (polyno-
mial in the size of the game tree) of linear constraints. The linear constraints will beconsistency
constraintsthat describe the possible probability distributions on profiles of moves to be recom-
mended to the players, and additionalincentive constraints, described in the next section, that
assert when it is optimal for the players to follow these recommendations. As a prerequisite, we
first review correlated equilibria for a two-player game in strategic form, and subsequently the
sequence form of an extensive game as used for finding Nash equilibria.

A correlated equilibrium of a strategic-form two-player game can be defined as follows [2, 26].
Let i andj stand for strategies of player 1 and 2, respectively, with resulting payoffsaij andbij .
A correlated equilibrium is a distribution on strategy pairs. When a strategy pair(i, j) is drawn
according to this distribution, player 1 is toldi and player 2 is toldj. The probabilitiesZij are
nonnegative and sum up to one, which defines theconsistency constraints. Furthermore, for all
strategiesi andk of player 1 and all strategiesj andl of player 2,

∑

j

Zij aij ≥
∑

j

Zij akj ,
∑

i

Zij bij ≥
∑

i

Zij bil . (1)

The incentive constraints(1) state that player 1, when recommended to playi, has no incentive
to switch fromi to k, given (up to normalization) the conditional probabilitiesZij on opponent
strategiesj. Analogously, the second inequalities in (1) state that player 2, when recommended to
play j, has no incentive to switch tol.

The strategic-form description of an EFCE is computationally disadvantageous because the
number of pure strategies is exponential in the size of the game tree. For finding Nash equilibria,
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the sequence form is of linear size. However, its randomized strategies, called “realization plans”,
are more complicated to describe than mixed strategies. Similarly, our characterization of EFCE
with sequences will require more complicated consistency constraints than the strategic form.

We use a standard notation for extensive games [39]. The non-terminaldecisionnodes of
the game tree are partitioned intoinformation sets. Each information set belongs to exactly one
playeri. The set of all information sets of playeri is denotedHi. The set of choices or moves at
an information seth is denotedCh. Each node inh has|Ch| outgoing edges, which are labeled
with the moves inCh. Choice setsCh andCk for h 6= k are disjoint. Thesequence formuses
sequences of moves of a particular player as encountered along the path from the root to any node
in the game tree. By definition, playeri hasperfect recallif all nodes in an information seth in
Hi define the same sequenceσh of moves for playeri. Hence, any movec at h is the last move
of a unique sequenceσhc. This defines all possible sequences of a player except for the empty
sequence∅. The set of sequences of playeri is denotedSi, so

Si = { ∅ } ∪ {σhc | h ∈ Hi, c ∈ Ch }.

For brevity, we also denote sequences of player 1 byσ and sequences of player 2 byτ , and the
sequence leading to an information seth of player 2 byτh.

The sequence form is applied to Nash equilibria as follows [18, 36, 39]. Sequences are played
randomly according torealization plans. A realization planx for player 1 is given by nonnegative
real numbersx(σ) for σ ∈ S1, a realization plany for player 2 by nonnegative numbersy(τ) for
τ ∈ S2. These denote the realization probabilities for the sequencesσ andτ when the players use
certain mixed strategies. For player 1, such a realization plan is characterized by the equations

x(∅) = 1,
∑

c∈Ch

x(σhc) = x(σh) (h ∈ H1) , (2)

and analogously for player 2 withy andH2 instead ofx andH1. Equations (2) hold naturally
when player 1 uses a behavior strategy, in particular a pure strategy, and hence also for a mixed
strategy which is a convex combination of pure strategies. A realization planx fulfilling (2)
results from a behavior strategy that chooses movec at an information seth ∈ H1 with probability
x(σhc)/x(σh) if x(σh) > 0 and arbitrarily ifx(σh) = 0. This yields a canonical proof of Kuhn’s
theorem [20] that asserts that a player with perfect recall can replace any mixed strategy by an
equivalent behavior strategy. The behavior ath is unspecified ifx(σh) = 0, which means thath is
unreachable due to an earlier own move. Not specifying the behavior at such information sets is
exactly what is done in the reduced strategic form.

Because the game has no chance moves, any leaf of the game tree defines a unique pair(σ, τ)
of sequences of the two players. Leta(σ, τ) andb(σ, τ) denote the respective payoffs to the players
at that leaf. Then if the two players use the realization plansx andy, their expected payoffs are
given by the bilinear expressions

∑

σ,τ
x(σ) y(τ) a(σ, τ) ,

∑

σ,τ
x(σ) y(τ) b(σ, τ) , (3)

respectively. The expressions in (3) represent the sum, over all leaves, of the payoffs, multiplied
by the probabilities of reaching the leaves. The sums in (3) may be taken over allσ ∈ S1 and
τ ∈ S2 by assuming thata(σ, τ) = b(σ, τ) = 0 whenever the sequence pair(σ, τ) does not
lead to a leaf. This is useful when using matrix notation, where the payoffs in the sequence form
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are entriesa(σ, τ) andb(σ, τ) of sparse|S1| × |S2| payoff matrices andx andy are regarded as
vectors. Using linear programming duality, conditions for Nash equilibria can then be written in
terms of payoffs and transposed constraints (2) which require one equation and one dual variable
for each information set [18, 36]. This results into a small linear program for zero-sum payoffs,
and a small linear complementarity problem for non-zero-sum payoffs [19].

In order to describe an EFCE, the productx(σ) y(τ) in (3) of the realization probabilities for
σ in S1 andτ in S2 will be replaced by a more generaljoint realization probabilityz(σ, τ) that
the pair of sequences(σ, τ) will be recommended to the two players, as far as this probability is
relevant. These probabilitiesz(σ, τ) define what we call acorrelation planfor the game.

In an EFCE, a player gets a move recommendation when reaching an information set. The
move corresponds uniquely to a sequence ending in that move. For player 1, say, the sequence
denotes a row of the|S1| × |S2| correlation plan matrix. From this row, player 1 should have
a posterior distribution on the recommendations to player 2. This behavior of player 2 must be
specified not only when player 1 follows a recommendation, but also when player 1 deviates, so
that player 1 can decide if the own recommendation is optimal. The recommendations to player 2
off the equilibrium path are therefore important. Otherwise, one could simply choose a distribution
on the leaves of the tree (with a correlation plan that is sparse like the payoff matrix), and merely
recommend to the players the pair of sequences corresponding to the selected leaf. This does not
suffice, since an EFCE must recommendstrategiesto the players.

Our first approach is therefore to define a correlation planz as a full matrix. Up to normal-
ization (which is not needed in (1) either), a column of this matrix should be a realization plan of
player 1 and a row a realization plan of player 2. Omitting the normalizing first equation in (2),
this means that for allτ ∈ S2, h ∈ H1, σ ∈ S1, andk ∈ H2,

∑

c∈Ch

z(σhc, τ) = z(σh, τ),
∑

d∈Ck

z(σ, τkd) = z(σ, τk). (4)

Furthermore, the pair(∅, ∅) of empty sequences is selected with certainty, and the probabilities are
nonnegative, which adds the trivial consistency constraints

z(∅, ∅) = 1, z(σ, τ) ≥ 0 (σ ∈ S1, τ ∈ S2). (5)

The constraints (4) and (5) hold for the special casez(σ, τ) = x(σ)y(τ) wherex and y are
realization plans. With properly defined incentive constraints, such a correlation plan of rank one
should define a Nash equilibrium, just as a strategic-form correlated equilibrium with a rank-one
matrixZ in (1) is a Nash equilibrium. In particular, ifx andy stand for pure strategies, where each
sequenceσ or τ is chosen with probability zero or one, then the probabilitiesz(σ, τ) = x(σ)y(τ)
are also zero or one. For anyconvex combinationof pure strategies, as in an EFCE, (4) and (5)
therefore hold as well, so these arenecessaryconditions for a correlation plan.

Figure 2 shows a correlation plan arising from a pure strategy pair, for the game in Figure 1
when the first move of player 1 is replaced by a chance move. Figure 3 shows a possible assign-
ment of probabilitiesz(σ, τ) that fulfills (4) and (5). These probabilities are “locally consistent”
in the sense that the marginal probability of each move is 1/2. However, theycannotbe obtained
as a convex combination of pure strategy pairs as in Figure 2. Otherwise, one such pair would
have to recommend moveX to player 1 and movel to player 2 to account for the respective entry
1/2. In that pure strategy pair, given that player 2 is recommended movel, the recommendation to
player 1 at the other information set must beY ′ since the move combination(X ′, l) has probability
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zero. Similarly, moveX requires that movel′ is recommended to player 2. This pure strategy pair
is thus((X, Y ′), (l, l′)) as in Figure 2, but that also selects(Y ′, l′), contradicting Figure 3. This
shows that (4) and (5) do not suffice to characterize the convex hull of pure strategy profiles. For
a game with chance moves, the NP-hardness in Theorem 2.2 shows that this convex set cannot be
characterized by a polynomial number of linear inequalities, unless P= NP.

For a two-player game without chance moves, however, this problem can be resolved by spec-
ifying only correlations of moves at “connected” information sets where decisions can affect each
other during play. Call any two information setsh andk (even of the same player)connectedif
there is a path from the root to a leaf containing a node ofh and a node ofk. If the node inh comes
earlier on the path, thenh is said toprecedek. The following lemma states that the two-player
games without chance moves considered here have a weak “temporal” structure in the sense that
a player can always tell if he is to move before or after the other player.

Lemma 4.1. For any two information setsh andk, if h precedesk, thenk does not precedeh.

Amending our first approach, we define acorrelation planz: S1 × S2 → R as follows. First,
there is a joint probability distribution on the set of reduced pure strategy pairs(π1, π2) of the two
players so thatz(σ, τ) is the combined probability of the strategy pairs(π1, π2) whereπ1 agrees
with σ (that is, chooses all the moves inσ) andπ2 agrees withτ . Second,z is apartial function
wherez(σ, τ) is specified only for “relevant” sequence pairs(σ, τ). The pair(σ, τ) in S1 × S2 is
calledrelevantif σ or τ is the empty sequence, or ifσ = σhc andτ = τkd for connected infor-
mation setsh andk, whereh ∈ H1, c ∈ Ch, k ∈ H2, d ∈ Ck. Note that theinformation setsare
connected where the respective last move inσ andτ is made. It is not necessary that the sequences
themselves share a path. We specify correlations of moves at connected information sets, not just
of moves sharing a path, since a player may consider deviations from the recommended moves.
The following shows that equations (4) can be sensibly restricted to relevant sequence pairs.

Lemma 4.2. If the pair (σ, τ) of sequences is relevant, andσ′ is a prefix ofσ andτ ′ is a prefix
of τ , then(σ′, τ ′) is relevant.

In this way, we obtain the consistency constraints for correlation plans. The correlation plan
itself can also be used to generate, as a random variable, a pair of strategies to be recommended to
the two players.
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Theorem 4.3. In a two-player, perfect-recall extensive game without chance moves,z is a cor-
relation plan if and only if it fulfills(5), and(4) whenever(σhc, τ) and(σ, τkd) are relevant, for
anyc ∈ Ch andd ∈ Ck. A corresponding joint probability distribution on pairs of reduced pure
strategies can be generated directly fromz.

5 Incentive constraints

In an EFCE, a player gets a move recommendation when reaching an information set. This recom-
mendation induces a posterior distribution on the recommendations given to the other player. For
past moves, this induces a certain distribution on where the player is in the information set. For
future moves, it expresses the subsequently expected play. Both are represented by the eventual
distribution on the leaves of the game tree. The players want to optimize the expected payoffs
which they receive at the leaves, assuming the other player follows her recommendations.

Theincentive constraintsin an EFCE express that it is optimal to follow any move recommen-
dation, under two assumptions about the player’sownbehavior: Whenfollowingthe recommended
move, the player considers theexpectedpayoff when following recommendations in the future.
Whendeviatingfrom the recommended move, the playeroptimizeshis payoff, given the current
knowledge about the other player’s behavior. Any recommendations givenaftera deviation are ig-
nored, and are in fact not given, since an EFCE only generates a pair ofreduced strategies: When
a player deviates, he subsequently only reaches own information sets that would be unreachable
when following the original move in the strategy, so these later moves are left unspecified in a
reduced strategy.

The sequence form only allows specifications of reduced strategies. Assume that a pair of
reduced strategies is generated according to a correlation plan as in Theorem 4.3. Suppose that
player 1, say, gets a recommendation for movec at an information seth, corresponding to the
sequenceσ = σhc. For the sequencesτ of player 2, the row entriesz(σ, τ) of the correlation plan
z define, up to normalization, a realization plan that describes player 2’s conditional behavior.
This is only given for information sets connected toh, where(σ, τ) is relevant, which suffices for
any decision of player 1 at this point.

We first introduce auxiliary variablesu(σ) for anyσ ∈ S1 (and, throughout, analogously for
player 2). These denote the expected payoff contribution ofσ (that is, of all strategies agreeing
with σ) when player 1 follows recommendations. They are given by

u(σ) =
∑

τ
z(σ, τ) a(σ, τ) +

∑

k∈H1: σk=σ

∑

d∈Ck

u(σkd) . (6)

In (6), a(σ, τ) is the payoff to player 1 at the leaf defining the sequence pair(σ, τ), which is then
obviously a relevant pair; if there is no such leaf,a(σ, τ) = 0. The first sum in (6) captures the
expected payoff contribution whereσ and suitable sequencesτ of player 2 are defined by leaves.
The second, double sum in (6) concerns the information setsk of player 1 reached byσ. The sum
of the payoff contributionsu(σkd) for d ∈ Ck is the expected payoff when player 1 follows the
recommendation to choosed atk, given the new posterior information obtained there.

Applying (6) recursively, starting with the longest sequences, gives for the empty sequence
u(∅) =

∑

σ,τ z(σ, τ) a(σ, τ). This denotes the overall payoff for player 1 under the correlation
planz (and similarly for player 2), which generalizes (3).

The payoffu(σ) when following the recommended movec in σ = σhc must be compared
with the possible payoff when deviating fromc. This is described by an optimization against the
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behavior of player 2 in rowσhc of z, by considering the other moves ath, as well as moves at
information setsk that are reached later on. By optimizing in this way, the payoff contribution at
an information setk of player 1 is denoted byv(k, σhc). The parameterσhc indicates the given
row of the correlation planz against which player 1 optimizes. Fork = h, we define

v(h, σhc) = u(σhc). (7)

The recommended movec should be optimal ath. This incentive constraint is expressed by the
following inequalities, for any information setk in H1 with k = h or h precedingk, and all moves
d atk:

v(k, σhc) ≥
∑

τ
z(σhc, τ) a(σkd, τ) +

∑

l∈H1: σl=σkd

v(l, σhc) (d ∈ Ck). (8)

The first sum in (8) is well defined, since when(σkd, τ) leads to a leaf, then(σhc, τ) is relevant
becauseσh is a prefix ofσkd. If there are no further information setsl andk = h, then (8) is
analogous to (1), with movesc, d instead of strategiesi, k. Here as there, the posterior distribution
from the given recommendationσhc is used for the comparison with other choices. In general,
a moved at k can lead to further information setsl, also preceded byh, where the best possible
payoff contribution is computed asv(l, σhc). This variable is based on thesamebehavior of
player 2 given by rowσhc of z.

The number of variablesv(k, σhc) is quadratic in the number of sequences of player 1 because
they are indexed by the information setsk and the sequencesσhc. The latter reflect the conditional
behavior of the other player, which varies in a correlated equilibrium. In a Nash equilibrium,
it would be fixed, andz(σhc, τ) is replaced byy(τ) for an unconditional realization plany of
player 2. Furthermore, the variablesv(k, σhc) are replaced by single variablesv(k), one for each
information setk of player 1. Then the inequalities (8) are exactly those expressing the Nash
equilibrium condition, withdual variablesv(k). These dual variables also express, like here, the
optimization by “dynamic programming” [36, p. 239].

Together with the consistency constraints, the incentive constraints above characterize an
EFCE. We summarize our main result as follows.

Theorem 5.1. In a two-player, perfect-recall extensive game without chance moves, a correlation
planz as in Theorem 4.3 that fulfills the incentive constraints (6), (7), (8) defines an EFCE. The
number of variables and constraints is polynomial in the size of the game tree, so that an EFCE is
polynomial-time computable.

6 Conclusions

A substantive game-theoretic setup seems required even to describe the problem addressed in this
paper. However, the basic framework of correlated equilibria, namely coordination, communica-
tion, and incentives, is pervasive in economic theory, in particular mechanism design [25]. Our
results are also of interest for pure game theory, where adapting equilibrium concepts to the dy-
namic tree structure has a long history, both for Nash [35] and correlated equilibria [10, 24, 12, 33].

Most saliently, our approach profits from, and contributes to, theinteractionof computer sci-
ence and game theory. Computational tractability of game-theoretic concepts is increasingly ap-
preciated in economics [39]. The new EFCE concept is not only “natural” but also useful in being
easy to computefor two-player game trees without chance moves. It seems new that, unlike, for
example, in zero-sum games [18], the absence of chance can mark the borderline of P.
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Appendix: Proof outlines

In this appendix, we sketch the proofs of Theorems 4.3 and 5.1. We emphasize the conceptual
aspects, in particular the crucial assumption of two players with perfect recall and no chance
moves for Theorem 4.3.

Proof sketch of Theorem 4.3. In an EFCE, a move is recommended at each information set,
where that recommendation is revealed to the player. Given a correlation planz according to the
equations (4) and (5) for relevant sequence pairs, we define inductively a move probability for
each information set, assuming that moves have been recommended for allprecedinginformation
sets. The induction therefore proceeds “top down” from the root towards the leaves of the tree. It
cannot “get stuck” because of Lemma 4.1.

Consider an information seth, say of player 1, under the inductive assumption that move
recommendations have been generated for all information sets precedingh. If not all moves in
the unique sequenceσh leading toh have been recommended, thenh will not be reached when
player 1 follows the recommendations. In that case, a reduced strategy for player 1 will leave the
move ath unspecified, and consequently no move will be recommended forh.

So suppose that all moves inσh have been generated as recommendations so far. The move
recommendation ath has to be made in agreement with the recommendations given to player 2.
Since these have been generated for all preceding information sets of player 2, we will now identify
auniquesuch information setk in H2. The moves ath will then be correlated withk, that is, they
will be generated according to the joint probabilities, as specified in the correlation planz, of
sequence pairs ending inCh × Ck. (If the game had chance moves, it would not be possible to
identify such a unique information setk of the other player, as Figure 2 shows, which refers to
Figure 1 with the first move of player 1 replaced by chance. A correlation plan for the given game
in Figure 1 would look different, with sequences∅, G, B, GX,GY, BX ′, BY ′ for player 1.)

The nodes inh (if there are several) define different sequences for player 2, since they define
the same sequenceσh for player 1 and no other player or chance is involved. The union of all
the paths leading to the nodes inh defines a subtreeTh of the game tree. All branching points
(nodes with more than one child) ofTh belong to player 2, since player 1 has perfect recall. These
decision points belong to information sets of player 2 where move recommendations have already
been given. Following the move recommendations from the root toh, we grow a sequenceτ for
player 2 until the generated path leaves the treeTh, if ever. That is, the last move inτ is made at
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a node inTh, and hence at an information setk precedingh. The last move inτ itself need no
longer be on the path toh. If no information sets of player 2 precedeh, thenh is a singleton and
we setτ = ∅. The recommended movec ath is then determined according to the probability

z(σhc, τ)
z(σh, τ)

(c ∈ Ch). (9)

By construction ofτ , the sequence pair(σhc, τ) in (9) is relevant, and the denominator is positive
since bothσh andτ have been recommended. (This assumes, inductively, that the numbersz(σ, τ)
are indeed the probabilities that these sequence pairs(σhc, τ) will be recommended to the players.)
Moreover, (9) defines a probability distribution onCh by (4) and (5).

By looking at all information sets in this way and generating moves at each information set that
is reachable due to the own earlier moves, a pair(π1, π2) of reduced pure strategies is generated,
which is a random variable. It remains to show that this does not depend on the order in which
one looks at the information sets, and that forany pair (σ, τ) of relevant sequences,z(σ, τ) is
the probability that it will be recommended. The main observation here is that if either of two
information sets can be chosen in the inductive construction, then the moves at these two sets are
generatedindependently. This generalizes the independence observed in behavior strategies as
used for Nash equilibria.

Proof sketch of Theorem 5.1.The main arguments for the correctness of the incentive constraints
(6), (7), (8) have already been given in Section 5. In particular, when a player deviates, then the
assumed behavior of the other player is based on the last own recommendation that the player
received, in agreement with the preceding proof sketch of Theorem 4.3.

We mention here only an interesting case omitted in Section 5, namelyk = h andc = d in (8).
This is the optimality condition for therecommendedmovec. It states that anoptimizationfollow-
ing movec, given the current knowledge about the other player as represented by the parameter
σhc of the variablev(h, σhc), will not a give higher payoff to the player than when following the
recommendation as expressed byu(σhc) in (6). In other words, the player may choose to follow
the move recommendationc now, but henceforth ignore all future recommendations and the as-
sociated Bayesian update about the other player’s behavior. Intuitively, a player cannot gain by
ignoring information. Formally, the claim requires that (8) is true in a bottom-up induction, start-
ing with the information sets that are closest to the leaves. We merely prove the notationally much
simpler analog for the strategic-form incentive constraints (1). The first of the inequalities (1)
obviously imply for any strategyk of player 1 that

∑

i

∑

j

Zij aij ≥
∑

i

∑

j

Zij akj =
∑

j

(
∑

i

Zij

)

akj . (10)

The left hand side in (10) is the aggregate payoff to player 1 in the correlated equilibriumZ. This
is the analog to the aggregate own payoffu(σhc) when following the move recommendationc,
and using all future information, according to (6). The right hand side in (10) is the payoff for
any own strategyk when using themarginalprobabilities

∑

i Zij for the strategiesj of the other
player. These marginal probabilities are the analog to the entries in rowσhc of the correlation
planz when planning an optimized response, given the limited knowledge at the time of getting
the recommendationc at h. So it is indeed optimal to follow recommendations in the future, and
use the additional knowledge about the other player gained from these.
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