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Abstract

In this research we develop an alternative to the Feltham Ohlson investment valuation model.
While the Feltham Ohlson model has no transparent role for management, in contrast, in our
model management need to make optimal investment or divestment decisions on a period by
period basis. We establish the functional relationship between accounting reports and optimal
investment decisions. Our model provides both an alternative rationale for published accounting
numbers having information content and an alternative framework for specifications of empirical
testing of the value relevance of accounting data.
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1 INTRODUCTION

The research is organised as follows. In the first subsection immediately below we discuss the es-
tablished Feltham Ohlson valuation model and briefly review the main findings. We argue that the
approach excludes consideration of important real options that typically arise empirically when mak-
ing investment decisions. This is outlined in more detail in section two. In section three we introduce
a new investment model in which real options naturally arise and can be solved for optimally. In the
following section we then introduce the possibility of accounting based valuation. We consider how
the optimal decision making arising from application of the the standard real options approach can
be replicated by reference to appropriately defined accounting valuation routines. The new derived
model of valuation based upon accounting numbers provides an alternative theoretical basis for test-
ing the information content of published accounting numbers. We present concluding comments in
section five.

1.1 The Feltham-Ohlson Model

There exists a number of review papers of the Feltham Ohlson (FO) approach such as Lo and Lys
(1999) and Walker (1997) which thoroughly review the model and provide a critique of the approach.
However, having critiqued the model these papers do not provide constructive alternative valuation
approaches. Our focus instead is upon one of the central limitations of the FO approach; its lack of
a well defined function for management with respect to project selection. In the following section
we derive an alternative valuation model in which management have a role to play in (real options)
project selection1.

The FO model is normally developed by first considering a transformation of the traditional dis-
counted future dividend valuation model:

Wt =
∞
∑

τ=1
γτEt(dt+τ ). (1)

HereWt = market price of equity in the firm/project at datet, dt = dividends paid at the end of
each periodt, γ = (1 + r)−1 the discount rate andEt = the expectations operator. There are two
natural interpretations of (1). The first has expectations computed using an equivalent martingale
measure for the equity price (a modelling assumption that such exists) and then the discount rater is
interpreted as the riskless rate. Alternatively, if the returns on equityWt are modelled as independently
and identically distributed (i.i.d.; assuming such a belief on the part of investors), then the physical
probability for the distribution of equity price may be used as an equivalent procedure, in which case
the discount rate becomes the constant expected rate of return and that of necessity is set equal to the
‘required rate of return’ for the given class of risk. Our model is based on the latter premise; that is
to say the model assumes that management control economic activities so that expected return is set

1To the best of our knowledge only one other author considers a similar modelling approach. Yee (2000) also incor-
porates project selection but as we shall see, his model is different in certain crucial ways.
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equal to the ‘required rate of return’. The precise significance of this rule is studied in later sections
and involves recognition of embedded investment call and put options which are the hallmarks or the
real options approach to investment. An objective for the analysis is to identify the risk class of a
project and hence the required rate of return.

Equation (1) requires a technical assumption2. From this equation, and also subject to a similar
kind of technicality3, appealing to the clean surplus identity gives:

Bt = Bt−1 + vt − dt (2)

(whereBt = book value of equity att, vt = earnings at the end of periodt ) leads to the identity:

Wt = Bt +
∞
∑

τ=1
γτEt(ṽt+τ ), (3)

where residual income, or ‘abnormal earnings’ as it is sometimes alternatively called, is defined by:

ṽt ≡ vt − rBt−1.

The most attractive feature of this approach is that it links valuation to observable accounting data.
The ability to re-express (1) in a way that gives accounting center stage via (3) has been well known
for a considerable time. Ohlson’s particular contribution was to set out a specific proposal for how
ṽt+τ came about. In particular he posited that:

ṽt+1 = ωṽt + xt + εt+1 (4)

where0 ≤ ω andxt = value relevant information not yet captured by accounting andεt+1 = is a
mean zero disturbance term. In turn he assumed:

xt+1 = gxt + ηt+1 (5)

whereg < 1 andηt+1 is a zero-mean disturbance term. Together (4) and (5) imply that abnormal
earnings follow an AR(1) process. It is apparent immediatedly that the Ohlson approach assumes a
black box model of management since nowhere does the Ohlson model consider project selection or
opportunities. Similarly the FO extension which allows for conservative accruals is silent with respect
to project opportunities (real options). Thus while the FO approach does establish a dependence of
abnormal earnings on book value it does so via a simple (decision opaque) mechanistic formulation.

In principle this exogenous method used to establish a dependence may be satisfactory if the
assumed dependence is empirically supported in a robust fashion. However, as has been argued by
numerous authors including recently Yee (2000), there are concerns that it is not. At the heart of the
various limitations of the FO approach is the lack of a role for management in decision making. We
shall now establish this limitation more formally by comparing and contrasting the FO approach to

2The ‘no bursting bubble’ assumptionγτE[Wτ ] → 0 asτ →∞ is required here.
3Namely: γτBτ → 0 asτ → ∞, i.e. book value does not grow faster than the riskless or required rate of return

(whichever is appropriate).
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the general real options valuation model. This allows us to see directly that a major limitation of the
FO approach is that it is essentially a static theory of investment in which once management make an
investment they implicitly ignore the type of strategic new investments and divestments that typically
characterize the rich empirical setting in which investment decisions are taken.

To summarise then, our objective is to develop an alternative model to one in which the dynamic
path forṽt+τ is imposed via a simple restrictive recursive assumption. Instead we wish to derive an
optimally dynamic flexible decision rule which requires investment levels to be dynamically adjusted
by management in response to time varying stochastic conditions. Put simply, we wish to develop a
model in which management, responding to current period reported poor (good) residual accounting
income may reduce (increase) investment. That is, we suggest that our model provides a more natu-
ral bridge to structure empirical observations in which firms routinely contract, shut down or expand
investment projects. Critical to our approach is the ability to identify optimal dynamic investment
strategies. Given the complexity of such problems in general, we shall adopt a simple stylised ap-
proach for capturing the investment environment in which firms operate. However, before presenting
our formal model we shall next briefly review an influential real options paper which leads naturally
to our model specification.

2 The Real Options Approach to Investment Valuation

We commence our discussion of the real options approach by first briefly reviewing the work of
Abel, Dixit, Eberley and Pindyck (1996) which presents an easily accessible introduction to the lit-
erature and clearly demonstrates the above outlined limitation with the Feltham Ohlson approach.
After setting out the ADEP model we discuss various extensions which lead in a natural way to the
specification of our alternative model.

In a simple two period setting the model considers the problem of whether a firm should add to
or reduce its opening (first period) stock of capitalK0 which is purchased at a unit price ofb0. This
is to be determined given the following three complications: the future (period one) purchase price
of capitalbH may exceed its current price (costly expandability;bH > b0); the future resale price of
capitalbL may be less than its current price (costly reversibility;bL < b0) and finally second period
revenues from employing capital are stochastic. The stochastic element is introduced as follows4. In
the first period total revenue from installed capital isr(K0), however in the second period the revenue
denotedR(K, a), has a stochastic component determined by the realisation ofa. Subsequently in the
second period aftera has been revealed the firm adjusts the capital stock to a new optimal level denoted
K1(a). Differentiating the revenue function with respect toK the following two critical values ofa
are identified:

RK(K0, aL) ≡ bL and RK(K0, aH) ≡ bH

that is, the optimal (marginal) decision rule is:
- whena < aL it is optimal to sell capital to the point thatRK(K1, a) = bL

- whenaL ≤ a ≤ aH it is optimal to neither purchase nor sell capital, that isK1(a) = K0

4For brevity we are not including details of all the regularity conditions since they can be found in the original text.
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- whena > aH it is optimal to purchase capital untilRK(K1, a) = bH ;
and so the present value of net cash flowsV (K0) accruing to the firm commencing with capital stock
K0 in period zero with inter period discount rateγ, is given by:

V (K0) = r(K0) + γ
∫ aL

−∞
{R(K1(a), a) + bL[K0 −K1(a)]}dF (a) (6)

+γ
∫ aH

aL

R(K0, a)dF (a) + γ
∫ ∞

aH

{R(K1(a), a)− bH [K1(a)−K0]}dF (a).

Thus the period one decision faced by the firm is:

K0 = arg max V (K0)− b0K0,

and the Net Present Value Rule can be interpreted from the first order condition as requiring:

V ′(K0) ≡ r′(K0) + γbLF (aL) + γ
∫ aH

aL

R′(K0, a)dF (a) + γbH [1− F (aH)] (7)

= b0.

This equates the period-one and onwards marginal return to capital to the initial marginal cost; note
that the terms afterr′(K0) which take into account the optimal change in capital stock in the following
period. An alternative interpretation is also available. ADEP point out that equation (7) can be
interpreted using Tobin’sq-theory of the marginal value of capital. In this instance the marginal value
of capital is

q ≡ V ′(K0),

and so the optimal investment rule can be identified by management if they determineq.
With respect to implementing this rule ADEP (p 761) comment that this (theoretically correct) rule

can be difficult to aply in practice because “for a manager contemplating adding a unit of capital, it
requires rational expectations of the path of the firm’s marginal return to capital through the indefinite
future” and thus in practice the most commonly used proxy for the correct NPV “treats the marginal
unit of capital installed in period 1 as if the capital stock is not going to change again”. In this case
the marginal value ofV ′(K0) is approximated by:

˜V ′(K0) ≡ r′(K0) + γ
∫ ∞

−∞
RK(K0, a)dF (a) (8)

and ADEP describe this replacement for the left-hand side of (7) as yielding thenaive NPV rule.
At this point it is very helpful to note that the difference between˜V ′(K0) andV ′(K0) is given

precisely by the embedded put and call options present in the problem. To see this we can rewrite (6)
as:

V (K1) = r(K1) + γ
∫ ∞

−∞
R(K0, a)dF (a) (9)

+γ
∫ aL

−∞
{[R(K1(a), a)− bLK1(a)]− [R(K0, a)− bLK0]}dF (a)

+γ
∫ ∞

aH

{[R(K1(a), a)− bHK1(a)]− [R(K0, a)− bHK0]}dF (a).
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or more succinctly as:
V (K0) = ˜V (K0) + γP (K0)− γC(K0) (10)

where

˜V (K0) ≡ r(K0) + γ
∫ ∞

−∞
R(K0, a)dF (a),

P (K0) ≡
∫ aL

−∞
{[R(K1(a), a)− bLK1(a)]− [R(K0, a)− bLK0]}dF (a)

C(K0) ≡
∫ ∞

aH

{−[R(K1(a), a)− bHK1(a)] + [R(K0, a)− bHK0]}dF (a)

where ˜V (K0) is the expected present value over both periods keeping the capital stock fixed atK0,
i.e. not allowing expansion or contraction of the capital stock. Now

P ′(K0) =
∫ aL

−∞
{bL −R′(K0, a)}dF (a) = E[max{bL −R′(K0), 0}]

is the value of a (marginal) put5 on the marginal product of capital with exercise pricebL correspond-
ing to selling back. SimilarlyC ′(K0) is the value of a (marginal) call on the marginal product of
capital with exercise pricebH :

C ′(K0) =
∫ aL

−∞
{−bH + R′(K0, a)}dF (a) = E[max{R′(K0)− bH , 0}]

Thus, given (7), to capture the incentives to invest and divest we can decompose the marginal value
into three components:

q = V ′(K0) = ˜V ′(K0) + γP ′(K0)− γC ′(K0).

Notice that the present value of expansion requires additional outlay (hence the negative term),
whereas contraction generates additional income (hence the positive term)

To summarise in the first period optimality requires management to chooseK0 so that

˜V ′(K0) = b0 − γP ′(K0) + γC ′(K0). (11)

That is under thenaive rulein which management set˜V ′(K0) = b0, management are ignoring
(strategic) options values to contract or expand in the second period and hence typically would choose
K1 suboptimally.

5The put corresponds to the option to reduce the capital stockK1 by sellingk of the existing stock atbL whenever
a < aL. Thus the realized value of the firm when the realizationa is belowaL is to first order

r(K1) + γ(R(K1 − k)−R(K1) + bLk)

= r(K1) + γk(bL −R′(K1)).
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Moreover it is straight-forward to show6 that the FO model is an implementation of the naive in-
vestment rule which ignores the options to expand and contract available in most real options settings
and hence accounting valuation theory based upon that approach is unlikely to be able to capture how
accounting valuation impinges upon actual firm dynamic investment strategy including both expan-
sion and contraction possibilites.

The objective of the next section is to develop a simple model which overcomes this deficiency in
that management formally need to evaluate options to expand and contract each period and moreover
it extends the two period ADEP model to more realistic investment horizons ofN > 2 finite periods7.
After setting out the revised finite horizon investment model we then return to consider accounting
valuation issues in the following section.

3 Optimal Investment by Management Allowing Contraction and
Expansion

Our model specification is somewhat different from that of ADEP. At the heart of the difference is
the way in which capital is utilised, in particular we develop a model of (installed) capital in which
capital depreciates through use (as directed by management) rather than at a constant rate or not at all.
We make this assumption to allow for the possibility that the net book value of an investment asset
after subtracting accumulated depreciation could in principle be equal to the economic value of the
asset to the organization. In contrast in the ADEP framework the asset is assumed never to depreciate.
In addition we extend the investment planning horizon beyond a simple two period framework to a
general finite horizon setting. In order to introduce the difference in specification as transparently as
possible we first consider a two period model variant of the ADEP model.

3.1 The two period model

In general firm investment is subject to multiple sources of uncertainty. In the ADEP model the source
of uncertainty is the price of finished output. In contrast in our model we focus upon the input price
of capital as the principle source of uncertainty8. Our objective here will be to characteriseV (K0) the
optimal value function for capital usage. As we shall see by making certain functional assumptions
for the operating environment we will be able to go further than ADEP since not only can we identify
equivalent optimality conditions to (10) but moreover we can solve for the conditions once we have
derived the funtional form for the optimal value functionV (K0).

6See Lo and Lys (2000). The FO approach simply assumes constant expansion (such as in the Gordan growth model)
rather than period by period expansion or contraction as will be allowed for in the model developed below.

7This is not the only difference between the two models. As we shall see in the following section there are a number
of other differences the most significant perhaps being that in our model setting depreciation occurs through use rather
than at a constant rate or alternatively not at all as in the ADEP model.

8A generalised version of our model in which both the input price and the output price are stochastic is available from
the authors. The two sources of uncertainty complicates the analysis by requiring consideration be centered around the
ratio of output to the input price without changing the general nature of results substantitively.
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We now develop our model via direct comparison to the ADEP approach. Simplifying the output
return side9 we take the timet = 0 revenue to ber(K) = 2

√
K and the timet = 1 revenue to be

R(K, a1) = 2a1
√

K wherea1 > 0 represents the unit sale price of the output at timet = 1. To
further simplify the analysis since in our model the the input price is the prime source of uncertainty
we shall takea1 = 1. Concentrating upon the source of uncertainty we shall allowb1 the input
purchase price of capital at timet = 1 (corresponding to the constantbH considered by ADEP) to be
stochastic. In addition, we assume that the resale price of the input isb1φ1 at timet = 1 (instead of
bL in ADEP notation) where the discount factorφ1 < 1 reflects the partial irreversibility of earlier
investment. For clarity of expositionφ1 is deterministic in this model, but the model can be adapted to
allowφ1 to be stochastic. The fractional value ofφ1 is assumed to result from the input not being freely
tradeable and this creates a fundamental incompletenesses in the specialist capital input market. This
has important implications for the valuation of the firm; the assumptions of the standard martingale
approach in real option theory posit the existence of a ‘traded twin security’ perfectly correlated with
the real asset. In our case the real asset is the additional capital for which the purchase and sale prices
diverge at timet = 1 by the factorφ1 so that it is no longer possible to hold long and short positions
at one price. We therefore abandon the simple martingale approach10 and instead adopt the standard
‘private values’ dynamic programming approach11 for valuation using the physical distribution of the
input priceb1. This is the approach also taken by Abel and Eberley (1995) in their continuous-time
infinite horizon model.

Commencing at timet0, we assume that a firm hasu0 = ut0 (ut0 ≥ 0) units of capital in stock12.
Given the firm can purchase some more capital in the next period the decision of how to allocate
capital stock optimally between the current and latter period will ceteris paribus be driven by the
capital input price process. We shall denote the one-period discounted13 price of capital bybt.

Although in general we use a sequence of times and corresponding prices that evolve geometri-
cally, the price is nevertheless presented as though it evolves continuously as a geometric Brownian
motion. Such an approach is dictated purely by mathematical convenience; the mathematics of op-
timisation is much streamlined by the assumption that at each time, price is distributed continuously
rather than multinomially; the presence of interperiod prices is not referred to in any way because
we have periodic management decision making. The pricebt has positive drift14 (anticipated growth)

9In general we need not restrict attention to a square root formulation, all we need is concavity. The role of the square
root specification is to maximize the simplicity of the presentation.

10A related situation is that of a four state model in which prices of a traded asset move up or down and an investor
receives a preference shock to buy or sell. This single risky asset model is evidently incomplete and at best presents two
martingales one for expansion and one for contraction if the appropriate buy:sell margin ratio is interpreted as a discount.

11See Dixit and Pindyck (199) for an extended discusssion of this point.
12Noteu0 in our notation corresponds toK0 in ADEP notation. We do not adopt their notation because of the different

way in which capital is “consumed” in the two models.
13By one-period-discounted we mean that if the asset is purchased forpn = ptn at the commencement of the time

interval [tn, tn+1), then the unit opportunity cost of funds tied up in the asset arepn(1 + r) = bn wherebn stands for
btnandr is the one-period interest rate. Alternatively one can regard the supplier as asking a price payable at the end of
the period upon delivery.

14The drift is net of an implicitly assumed constant interest rate. Thusbt is to be regarded as a depreciated price.
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µb > 0, and is presented in the traditional stochastic differential form:

dbt = bt(µbdt + σbdWb(t))

whereWb(t) is a standard Wiener process. Fort > s, we letQ(bt|bs) denote the (log-normal) cum-
mulative distribution ofbt givenbs and we also letQn(b) = Q(btn|btn−1 = 1) denote the (log-normal)
cummulative distribution ofbn = btn given thatbtn−1 = 1. When the context permits we drop the
subscriptn.

In the simplest model the manager observes the price at discrete times, in this case at timest0
andt1 and can purchase/resell capital at these discrete moments which we shall denotez0 = zt0 and
z1 = zt1 . In order to track the stock of capital carried forward between periods we shall denote the
period t0 opening capital stock asvt0, or just v0, and closing stock asut0, or just u0. Let us now
consider how to determine the optimal amount of capitalut0 to carry forward to the next period given
the amount purchased in the period is unrestricted, that iszt0 ≥ 0.

The manager now needs to maximize over bothz0 (≥ 0) andx0 the profit15:

2
√

x0 − b0z0 + γV0(v0 + z0 − x0, b0).

HereV0(u0, b0) denotes the future expected value given the current priceb0 and the capital stock
carried forwardu0 paid for in a previous period. Equivalently, lettingu0 = v0 +z0−x0 we maximize:

2
√

x0 − b0(u0 + x0 − v0) + γV0(u0, b0). (12)

Then when choosing optimally the closing stock of capitalu0 the first order condition from (12) gives:

γV ′
0(u0, b0) = b0 (13)

and16:

x0 =
1
b2
0
, (14)

where the prime denotes differentiation with respect tou. Note that (13) implies that for investment
u0 to be chosen optimally the unit return need be equated to the constant return1 + r, namely

V ′
0(u0, b0)

b0
= γ−1 = (1 + r).

A firm planning to divest, i.e. takingz0 < 0 faces a similar problem. If the resale discount isφ0 the
firm considers the corresponding problem: maximize over bothz0 (< 0) andx0 the profit17 :

2
√

x0 − φ0b0z0 + γV0(v0 + z0 − x0, b0),
15That is choice of the variables to maximise the sum of current profit plus the optimal value functionV (.) reflecting

future optimal period payoffs.
16This very simple nature of this result is why we utilise the square root specification.
17That φ < 1 is standard in the literature, otherwise ifφ = 1 we would have the possibility of simple portfolio

rebalancing.
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or equivalently lettingu0 = v0 + z0 − x0 ,

2
√

x0 − φ0b0(u0 + x0 − v0) + γV0(u0, b0).

Thus the first order condition foru0 is:

γV ′
0(u, b0) = φ0b0 (15)

and forx0 is:

x0 =
1

φ2
0b2

0
. (16)

We return to the investment version and letu = û(b0) denote the solution to equation (13).

Remark (Identification of the two period optimal value function):
We note that in our two-period model we have:

V0(u|φ1, b0) =
∫

˜bL

0
(
1
b1

+ b1u)dQ(b1|b0) + 2
√

u
∫

˜bL/φ1

˜bL

dQ(b1|b0) (17)

+
∫ ∞

˜bL/φ1

(
1

φ1b1
+ φ1b1u)dQ(b1|b0)

where˜bL = 1/
√

u. The three integrals classify investment by the corresponding three input price
policy ranges18 according to the ranges of integration, as follows:

(U) The under-invested range (0 ≤ b1 ≤ ˜b1), in which additional investment in capital is made. Here
as in (12) one maximises overx1 ≥ 0 the second period profit

2
√

x1 − b1x1

with required inputx1 = 1/b2
1 made available thorugh the purchase ofx1 − u at a priceb1 and net

revenue2/b1 − b1(x1 − u) = 1/b1 + b1u. Clearly the extreme case is zero purchase whenu = 1/b2
1

whence the limit˜bL.
(IO ) The (endogenously) irreversible19 over-invested range (˜bL ≤ b1 ≤ ˜bL/φ1), where all remaining
capital (excess from period0) is put into production.
(RO) The reversible investment range (˜b1/φ1 ≤ b1 ≤ ∞), where some excess capital is resold. Here
one maximise overx1 ≤ u the second period profit

2
√

x1 + φ1b1(u− x1)
18Equivalent to the three output price ranges in the ADEP model.
19Endogenous in the sense that though reversal is possible, it is never optimal in this setting to choose it and hence the

firm acts as if the situation was irreversible.
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Figure 1:

obtained by reselling an amountu − x1 of the capital stock. The required input isx1 = 1/(φ1b1)2

yielding net revenue2/(φ1b1)+φ1b1(u−x1) = 1/(φ1b1)+φ1b1u. The extreme case isu = 1/(φ1b1)2

giving b1 = 1/(
√

uφ1). Thus:

V ′
0(v, b0, φ1) =

∫
˜bL

0
b1dQ(b1|b0) + ˜bL

∫
˜bL/φ1

˜bL

dQ(b1|b0) +
∫ ∞

˜bL/φ1

φ1b1dQ(b1|b0).

Again an alternative interpretation is possible with reference to Tobinsq. Consider a policy of
investment triggered by input prices below a threshold level ofB. The average marginal benefit of
such a strategy corresponds to the value of Tobin’s marginalq. This we may compute from the last
formula by writingB in place of˜bL obtaining the function:

q(B, b0) =
∫ B

0
b1dQ(b1|b0) + B

∫ ψB

B
dQ(b1|b0) +

∫ ∞

ψB
φ1b1dQ(b1|b0).

At this point it is important to note that our assumption of a Cobb-Douglas type technology gives
rise to the following homogeneity property

q(B, b0) = b0q(B/b0, 1)

which we will then apply. An inductive argument shows that this homogeneity property extends to all
periods in the context of a Cobb-Douglas production function. The behaviour ofq(B, 1) is indicated
in Figure 1 (that too is characteristic for multiple period models).

The importance of this function stems from the induced decomposition of the solution of (13) into
two steps. The first step is to solve for˜b1

q(˜b1, b0) = b0. (18)
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and then solving˜b1 = ˜bL = 1/
√

u for u to obtain

û(b0) = 1/(˜b1)2.

We call (18) thecensor equation. The solution exists and is unique if and only ifb0 < E[b1|b0].
i.e. provided prices are expected to rise. We call the value ofb1 given by˜b1 above i.e. solving (18)
thecensor.The homogeneity property of the censor implies that the censor is linear inb0 so we have
for a constant̂g1 (the input price persistence factor)

˜b1(b0) = ĝ1b0 (19)

Thus

û(b0) =
1

(ĝ1b0)2 . (20)

The corresponding problem for divestment calls for the solution of

q(˜bφ, b0) = φ0b0

or equivalently
q(˜bφ, 1) = φ0 (21)

and this will have a solution if and only if

φ0 > inf
B

q(B, 1).

The intuition is simple: if there is no solution, then there is no resale possible in that period.
Comparing (6) and (17), we can make the same re-arrangement as ADEP to give:

V0(u, φ, b0) = 2
√

x(b0) + γ[2
√

u
∫ ∞

0
dQ(b1|b0)

+
∫

˜bL

0
(
1
b1

+ b1u− 2
√

u)dQ(b1|b0) +
∫ ∞

˜bL/φ1

(
1

φ1b1
+ φ1b1u− 2

√
u)dQ(b1|b0)]

thus re-defining their notation rather than introducing new notation (since we will not use their repre-
sentation again), we have similarly to (10)

V0(u) = ˜V0(u|b0)− γP (u, ˜b1|b0) + γC(u, ˜b1|b0)

where

˜V0(u|b0) ≡ 2
√

x(b0) + γ2
√

u
∫ ∞

0
dQ(b1|b0),

P (u, ˜b1|b0) ≡
∫

˜bL

0
2
√

u− (
1
b1

+ b1u)dQ(b1|b0)

C(u, ˜b1|b0) ≡
∫ ∞

˜bL/φ
(

1
φ1b1

+ φ1b1u− 2
√

u)dQ(b1|b0)
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with ˜bL = 1/
√

u and where as before˜V0(˜b1) is the expected present value over both periods keeping
the capital stock carried forward fixed atu. Note that in view of the reciprocal relation betweena and
b the put and call have switched roles vis a vis ADEP.

As before looking at the first order conditions20 we have, writing˜b1 for ˜bL:

V ′
0(u|φ1, b0) =

∫
˜b1

0
b1dQ(b1|b0) + ˜b1

∫
˜b1/φ1

˜b1
dQ(b1|b0) +

+φ1

∫ ∞

˜b1/φ1

b1dQ(b1|b0)

= ˜b1

∫ ∞

0
dQ(b1|b0)−

∫
˜b1

0
(˜b1 − b1)dQ(b1|b0)

+φ1

∫ ∞

˜b1/φ1

(b1 − ˜b1/φ1)dQ(b1|b0)

= ˜b1 − E[max(˜b1 − b1, 0)] + E[max(φ1b1 − ˜b1, 0)] (22)

= ˜V ′
0(˜b1|b0)/γ − P ′(˜b1|b0) + C ′(˜b1|b0)

= q.

Comparison of (22) and (11) yields the key insight that the firm should evaluate the embedded invest-
ment call and put options with strike price given by the censor. In this respect the censor˜b1 determines
the effective ‘future’ unit price (effective expected next period price) of inputs and thus delivery at
that price requires the planner to: (i) receive compensation against that price for surrender of ex-
pansion potential and (ii) pay additionally to that price a compensation for enjoyment of contraction
potential21.

20With due consideration for Leibniz Rule.
21Alternative interpretation: The naive non-linear view is that one unit of capital next period will be worth˜b1 and leads

to an inventory ofG(˜b1) but the marginal valuation ignores the present value of the option to expand when it is cheap to
do so (i.e.b1 < ˜b1) and this will call for extra outlay (hence the negative sign of this PV) and also ignores the option
to contract whenb1 > ˜b1/φ so that it is worth selling forφb1which brings in extra income. It is possible to use put-call
symmetry (parity) to obtain

F ′1(u, φ, b0) =
∫ b̃1

0
b1q(b1|b0)db1 +˜b1

∫ b̃1/φ

b̃1
q(b1|b0)db1 +

+φ
∫ ∞

b̃1/φ
b1q(b1|b0)db1

= E[b1]−
∫ b̃1/φ

b̃1
(b1 −˜b1)q(b1|b0)db1 +

−(1− φ)
∫ ∞

b̃1/φ
b1q(b1|b0)db1

This may be interpreted as comprising first: the naive expected value of holding one unit of stock, short a limited call
(operable in a limited range) and(1− φ) units short of an asset-or-nothing option..

13



Remark: The optimal investment rule is determined by evaluating the optimal investment or divest-
ment such that the marginal benefit of capital (q) is equal to the naive NPV together with the value
of the marginal (short) put and (long) call options which have a strike price given by the optimally
chosen censor.

3.2 Finite horizon (n > 2): Identification of Vn(.)

We now adopt the following notational assumption in aid of reducing subscript use. If at the end of
periodt− 1 we haveut−1 capital stock left over for the commencement of production in periodt, we
denote the capital stock at commencement of new production by:

ut−1 = vt.

Then when the period of analysis is unambiguous we can thus drop the time subscript and simply refer
to opening stockv and closing stocku for the period under consideration. Applying this simplified
notation the following general characterization is then possible: for eachn there exists a ‘capital
carry-forward function’u(v, b), and a input price censor functionb(v) and a constantψ such that:

V ′
n(v, bn, φn+1) =

∫ b(v)

0
bn+1dQ(bn+1|bn) +

∫ ψb(v)

b(v)
(v − u(v, bn+1))−1/2dQ(bn+1|bn)

+
∫ ∞

ψb(u)
φn+1bn+1dQ(bn+1|bn).

Assuming a general concave revenue functionf(x) in place of the square-root form, the presence
of an additional period of production moves the exercise price (trigger) down. Here is the intuition:
the provision for the future is the greater the further the horizon, but the trigger varies inversely with
quantity so the the trigger is smaller the further the horizon; at the same time the manager is less likely
to sell stock back at a discount if he has the option to use that same stock at a later date. The general
formula, though daunting, is not much different22:

V ′
n−1(un|φn, bn−1) = ˜bn − E[max(˜bn − bn, 0)] + E[max(φnbn − ˜bn, 0)]

+
∫

˜bn/φn

˜bn

(f ′(xn(un, bn))− ˜bn)dQ(bn|bn−1)

+
∫ hn(˜bn,φn)

˜bn/φn

(f ′(xn(un, bn))− ˜bn)dQ(bn|bn−1),

where the first line refers to a strategy of not carrying forward capital. Here˜bn = bn(u, 1) and
xn(u, bn) is the optimal demand in periodn for input given a stocku of input and current input price
of bn.

22The form of the optimal solution changes as we change the number of periods as follows. As we increase the number
of periods this increases the range of inactivity since with more periods (to act on the volatility) the chance of eventually
experiencing sufficiently good demand conditions to use up existing “excess” stock increases and hence the benefit of
selling it at a discount commensurately reduces.
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Generalising the two period model we can then show23 that the future expected value is given
by a formula incorporating three expected values according as the firm uses one of its three options:
investment, divestment or mere partitioning of its capital stock between current and future use. The
exact form of the formula is (see Appendix A)

Vn−1(v, bn−1) =
∫ bn(v,1)

0
f(G(bn))− bnG(bn) + bn(v − ûn(1, bn)) + Vn(ûn(1, bn), bn)dQn(bn)

+
∫ b(v,φ)

b(v,1)
f(v − un(v, bn)) + Vn(un(v, bn), bn)dQn(bn)

+
∫ ∞

b(v,φ)
f(G(φnbn))− φnbnG(φnbn) + φnbn(v − ûn(φn, bn)) + Vn(ûn(φn, bn), bn)dQn(bn),

wherev is the opening stock,φn the discount factor for the next period,ûn(1, bn) is the carry-forward
into a following period when investing,̂un(φn, bn) is the carry-forward when divesting andun(v, bn)
is the carry-forward in the absence of investment or divestment. Under the integral signs we see
periodn production income, future costs of additional investment or future income from divestments,
all these grantedv is treated as having sunk cost24. It is the first two terms on the right, namely
f(G(bn))−bnG(bn), which merit particular attention. HereG(bn) = (f ′)−1(bn) is an internal optimal
demand for input maximisingf(x) − bnx over x; let us denote it temporarily byxn. Sincebn =
f ′(G(bn)) = f ′(xn) we see that the indirect profitf(G(bn))− bnG(bn) can also be written asf#(xn),
wheref#(x) = f(x) − xf ′(x). An inductive application of the recurrence formula coupled with
some re-arrangements of the other terms yields the following identity in terms of indirect profits for
the undiscounted future value of the project given a current capital stockun :

Vn(un|bn) = qnun+1 + E[
N

∑

m=n+1
γm−n−1f#(x∗m)], (23)

that is, on the right-hand side we sum the existing carry-forward capital stockun+1 evaluated at
Tobin’s q, plus the sum of all future indirect profits where:
i) f#(x) = f(x)−xf ′(x) denotes the indirect profit function associated with the production function
f(x);
ii) um+1 = um+1(um|bn, ..., bm) is the optimal carry-forward from periodm to periodm+1 given the
price historybn, ..., bm;
iii) x∗m = x∗m(um−1, bm) is the general optimal demand for input at timem (so that in certain circum-
stancesx∗m = xm);
iv) qm = qm(um, bm) is the period-m Tobin’s marginalq, defined as the average marginal benefit of
utilization of a unit of input in periodm given the current value ofbm and theopeningstockum of the
current period. Hereq is characterized along the lines of ADEP as being composed of:

23Technical details are avaialbale from the authors upon request.
24Thus the total value of the firm in timetn money must add to the given formula past income and the historic cost of

v suitably compounded.
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- a certainty equivalent price less the put option to expand plus the call option to contract plus the
option to carry forward unused stock, i.e. typically is of the form:

q0 = ˜b1 − E[max(˜b1 − b1, 0)] + E[max(φ1b1 − ˜b1, 0)]

+
∫ h(˜b1,φ)

˜b1
(f ′(x1(u, b1))− ˜b1)dQ(b1|b0).

Note that the value of the firm measured in timetn values and ‘ignoring the past’ is

f#(x∗n) + γVn = f#(x∗n) + γqnun+1 + E[
N

∑

m=n+1
γm−nf#(x∗m)]

To summarise we can generalise the model to multiple periods and we can identify after taking ap-
propriate discounting the form of the optimal value function as taking the specific form:
- q adjusted value of the opening capital stock plus the sum of expected indirect incomes
At this stage we could potentially still be lost how to implement this rule because we may not know
how to predict expected indirect income. However we have established that given a Cobb-Douglas
technology or more specifically square root functionality:
- the periodn indirect profit function takes a notionally simple form; it is1/bn when the project is
under-invested,1/(φnbn) when it is over-invested, and an intermendiate value in the third regime.
Thus we can identifyVn(un|bn) by forming expectations over the input price processbn. Furthermore
forming this expectation simply requires looking at the appropriately censored sum of the current
input price weighted by the input price persistence factorsgi, the generalised version25 of (19).

Having now identified the optimal value function which guides mangement adjusting investment
behavior in response to time varying stochastic capital input price changes we now turn to consider
the implications for the usefulness of accounting based values such as residual income in guiding
optimal managerial decision making.

4 Accounting Based Investment Decision Making

In order to illustrate the link between our results and that of the FO model we shall commence our
discussion by considering a special case of the investment model we developed in the previous sec-
tion. In this section our principle concern is to consider the possible justification for management
basing investment decisions on the level of accounting residual income. In their model FO posited a
linear model relationship. In contrast in our endogenous model setting we shall show that linearity
does not hold with generality. However, in order to aid development of intuition we first consider
in the following subsection one special case in which our model aproximately agrees with the FO
assumption. In the following subsections we then demonstrate the lack of generality of the FO linear
model.

25We will give a specific example in the next section below.
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This special case where the two models approximately coincide occurs when there is no stock of
capital in place and it is always optimal for management to increase the capital stock. As we shall see
shortly the empirical implications of our model will depend crucially upon what sort of investment
regime we are in, capital contraction, maintenance, or expansion. When testing the model a further
consideration will be the level of data aggregation, that is whether the current input purchase price
for investment is observed or only the physical stock level and its previous cost. We will develop our
analysis in each of the two situations.

Another important factor in our analysis is that we prefer to use an accounting valuation conven-
tion based on current value costs rather than historic costs. We explain in Appendix F that this leads to
a differently constructed residual income stream whose discounted sum, displayed in (23), is identical
to that based on historic cost. It is however more tractable for our analysis.

4.1 Regime (i): Under-invested in capital stock

In the multi-period setting, suppose first that at the start of business, there is no stock of capital. Via
a generalisation of (19) and (20) it can be shown that solving the first order condition for the optimal
value function to derive the optimal capital purchase corresponds to requiring that a capital stock be
purchased of:

v̂0 =
1
b2
0

+
1

(g̃1,1 ∗ b0)
2 + ... +

1
(g̃1,N ∗ b0)

2 , (24)

where
g̃n,m = ĝn · ĝn+1 · ... · ĝm

and ĝ1, ..., ĝN are the period by period price input persistence parameters of the model, acting like
Gordon growth factors associated with the individual stages of the project. Indeed

v̂0 =
1
b2
0

+ v̂1(b0g1)

=
1
b2
0

+
1

b2
0g2

1
+ v̂2(b0g1g2)...

=
1
b2
0

+
1

b2
0g2

1
+

1
b2
0g2

1g2
2

+ ...

Thus the stock is built up as though the prices in the future were known to bebm = ĝ1 · ĝ2 · ... · ĝmb0.
In general at timeti the optimal opening investment stock to purchase is given by:

v̂i(bi) =
1
b2
i

+ ûi(bi) =
1
b2
i

+
1

(g̃i+1,i+1 ∗ bi)2 + ..... +
1

(g̃i+1,N ∗ bi)2 . (25)

The significance of this result is that we can recover a valid form of the FO model under regime (i)
when opening stockvi < v̂i. Indeed the current optimal accounting profit is given by1/bi and the
optimal expected future residual income may be obtained by increasing the stock tov̂i = v̂(bi) and
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the value of that optimal expected future residual income is computed from the following formula
derived in Appendix B:

F (v̂(bi), bi) =
1
bi

F (v̂(1), 1).

Notationally we may write this in the form:

̂Vi =
Ci;N

bi
(26)

for some constantCi;N . That is the optimal future value of the firm is given by the current accounting
profit multiplied by a certain constant (which is dependent on volatility).

Since management find themselves with insufficient opening capital stockvi < v̂i, they respond
at timeti by:

- making an additional purchase ofv̂i − vi units of capital at a pricebi

- allocating1/b2
i to current production thus producing a residual incomecomponentyi = 1/bi;

and thus management estimates the optimal expected future residual income from the project is of the
form

̂Vi =
Ci;N

bi
= Ci;Nyi

which is linear in a component of the current period residual income as in the FO model.
The cash payment ofbi[v̂i−vi] is a further component of the full residual income which we denote

Yi and which is:

Yi =
2
bi
− [

v̂i(1)
b2
i
− vi]bi

=
1
bi
− [

v̂i+1(1)
b2
i

− vi]bi =
[1− v̂i+1(1)]

bi
+ vibi.

Notice that sincevi is assumed less than̂vi we haveYi ≤ 2/bi; the minimum ofYi relative tobi occurs
when(bi)2 = [1− v̂i+1(1)]/vi i.e. vi = v̂i(bi).

Our analysis now splits into two cases according as the value ofvi, or alternatively the value of
bi, is empirically observed. In the first case we establish the relationship between future valueVi and
residual incomeYi by eliminating the unobserved variablebi. We obtain the relation that

Yi =
̂Vi

Ci;N
[1− v̂i+1(1)] + vi

Ci;N
̂Vi

. (27)

This relation holds only forYi ≤ 2/bi and we need to consider the complementary interval in order to
specify the relation fully (and that will be obtained in the following subsections). For now notice that
the formula derived is hyperbolic, and so inverting it we see only the asymptotic linearity:

Vi ≈
Ci;N

[1− v̂i(1)]
Yi
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in play when the project is under-invested. Note that the slope of this line depends on volatility.
Furthermore note that in generalCi;N 6= Ci+1;N and so the linear coefficient will be time varying.

In the second case we need only note the self-evident linear relation between the total value and
the residual income which is

TV = Vi + Yi

=
Ci;N

bi
+ Yi (28)

with the parametersbi andCi;N known. We return to this formula below.
Having said our model is in partial agreement with the FO model when the firm is expanding its

investment we shall now show that under the two other regimes our model contrasts sharply with that
of FO.

4.2 Regime (ii): Reversibly over-stocked in capital

The case of a costly divestment is somewhat different as there is now the option to contract. For
a given pricebn there are now two bench marks for stock levels. The first and lower value is the
optimum levelv̂n (computed as above) below which the stock level should not fall but there is now
a second, larger, upper optimum levelv̂n(φn), dependent on the current resale rate, above which the
stock should not rise.

At time tn the optimal highest stock level worth keeping exists and is given by

v̂n(φn, bn) =
1

(bnφn)2 +
1

(bnφngn(φn))2

[

1 +
γ

g̃2
n+2,n+2

+ ... +
γN−n

g̃2
n+2,N

]

,

i.e. as though the current price wasφnbn and future prices were to bebn+1 = φnbn · gn(φn),
bn+2 = φnbngn(φn)ĝn+2, ..., bm = φnbn · gn(φn)g̃n+2,m, ... . Corresponding tôvn(φn) there is an op-
timal current revenue from production, namely1/(φnbn), and an optimal carry-forward̂un(φn, bn) =
v̂n(φn, bn) − 1/(bnφn), i.e. of the formûn(φn) = k/b2

n. As before the future value from carrying-
forward is:

F (ûn(φn, bn), bn) =
1
bn

F (ûn(φn, 1), 1)

which we can write as:

̂V φ
n =

Cφ
n,N

bn
.

This is linear in the production contributionyn = 1/(φnbn) to residual income. However, when price
bn is low enough so that the firm opening stock,vn is abovêvn(φn), there is an additional contribution
to residual income arising from the optimal amount to sell off namely[vn − v̂n(φn)] whose value is:

bnφn[vn − ûn(φn)− 1
(bnφn)2 ].
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The relationship between the full residual incomeYn given by

Yn =
2

φnbn
+ bnφn[vn − ûn(φn)− 1

(bnφn)2 ]

=
1
bn

[
1
φn
− kφn] + bnφnvn.

Note thatYn ≥ 2/(φnbn). Eliminatingbn as in the previous section, relates the future residual income
to the expected future value of the project on the assumption thatbn is not empirically observable. We
thus obtain

Yn = vnφn
Cφ

n,N

Vn
− Vn

Cφ
n,N

[
1
φn
− kφn], (29)

which is thus hyperbolic, just as in the overstocked case, however for largebn it is no longer the
asymptotically linear arm of the hyperbola that is significant. Instead the dominant behaviour is an
inverse linear relation:

Vn ≈ vnφn
Cφ

n,N

Yn
,

for Yn ≥ 2/(φnbn).
Of course it is also the case that

TV = Vn + Yn

=
Cφ

n,N

bn
+ Yn, (30)

which is a different linear relationship to (28) albeit a parallel line.

4.3 Regime (iii): Given φ < 1 the firm is neither over invested nor under
invested

In this intermediate input price range

bn(v, 1) < bn < bn(v, φn), (31)

which corresponds to
2
bn

< Yn <
2

φnbn

the firm neither invests nor divests. It partitions its stockvn into current optimal consumptionxn(vn, bn)
and investment carried forwardun(vn, bn). The residual income is thus

Yn = 2
√

xn(vn, bn),

a functional relation from whichbn can be deduced from the observableYn given knowledge ofvn.
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Figure 2:

In the case whenvn is empirically observed andbn is not, we can interpolate the graph of the
future value of the firm,Vn(un(vn, bn), bn), againstYn to fit between the two relations given implicitly
by (27) and (29), and here the appropriatebn range for the interpolation is given by (31). The resulting
graph is given in Figure 2.

In the case wherebn is observed andvn is not, the total value of the firm is

TV = Vn(un(vn, bn), bn) + Yn. (32)

We show in the middle section of Figure 3 an example plot ofTV againstYn in the appropriatevn

range given by
v̂n(bn) < vn < v̂n(φn, bn).

That section of graph is in fact non-linear despite its appearance. Together the three relations (28),
(30), (32) define an almost piecewise linear graph for the dependence of total value on residual income
given in Figure 3.

The future optimal value of the firm as a function of residual income whenbn remains empirically
unobserved is flat, joining the other two hyperbolic curves. To understand the nature of this functional
form we invite the reader to consider an extreme case, where there is no divestment possible.

4.3.1 Regime (iiia): Special case of irreversibly overstocked project

We begin by assuming there is no option to contract and for simplicity we consider a three period
model. Suppose the second period price isb1 and the last period price isb2 = b1h. The framework
adopted naturally allows the project in the middle period to be overstocked. In such a case the current
residual income isf(x∗1) since the optimal input given current opening stockv1 is x∗1 = x∗1(v1, b1),
is taken entirely from existing stock. This leavesu∗1 = u∗1(v1, b1) for the final period. As before, the
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Figure 3:

future value isF (u∗1, b1) and as before

F (u∗1, b1) =
1
b1

F (u∗1(b1)b2
1, 1)

but its explicit dependence onb1 is most easily traced through numeric work. Figure 2 graphs the
relationship betweenf(x∗1) and the future value. It is clear what is going on; irreversibility in the final
period leaves final residual income constant thus leading to a flattening of the curve. This feature is
similar to the Kenton Yee (2000) graph. In order to develop a relatively simple generalisable intuition
for the result, we develop the following informal argument. First we proxy the residual income of the
second periodf(x∗1) by y1 = b−1

1 (which thus equalsb−1
2 h). This being a quantity of the right order

of magnitude close to the frontier of this regime. Secondly, we assume some judiciously chosen fixed
positive proportion of the stock is allocated to the final period (selected according to some expectation
of the next period’s price). Asb−1

1 → 0 it is the case that alsoE[b−1
2 |b1] → 0 and so in the limit the

partitioning of the opening stockv1 into current usev1 − u1 and final period useu1 amounts to
maximisation of the revenue

2[
√

v1 − u1 + γ
√

u1],

which leads to the first order condition

1√
v1 − u1

=
γ
√

u1

and so the partition of stock between current and future use is asymptotic to1/γ2 = (1 + r)2. In any
case the ratio of current to future use is between the asymptotic value andĝ2

1.
So if the stock carried over to the final period isu = u1 then we have understocking in the final

period ifu < b−2
2 , i.e. y1 = b−1

1 > h
√

u; in this case the optimal profit is obtained by buying in extra
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stock where upon the final period profit is:

2
√

b−2
2 − b2(b−2

2 − u) = b−1
2 + b2u = h−1y1 + huy−1

1 .

Now the minimum value ofb−1
2 + b2u occurs atb2 = 1/

√
u and is equal to2

√
u = f(u). On the

other hand, wheny1 = b−1
1 < h

√
u the firm is overstocked and, in the absence of resale possibilities,

all of the input is committed to production so that the revenue is constantlyf(u). Thus, givenh the
dependence of profit in the last period on previous period proxy residual incomey1 is given by:

Π2(y1|h) =
{

2
√

u if y1 ≤ h
√

u,
h−1y1 + huy−1

1 if y1 > h
√

u.

The graph of profitΠ2 againsty1 (for h fixed, andu fixed) is convex and initially flat and thereafter
asymptotically linear. It follows immediately thatV (y1) = Eh[Π2(y1|h)] is likewise convex (being a
convex combination of convex functions) and for a log-normal distribution ofh flat at the origin.

In the multiperiod case one argues similarly that as the pricebn → ∞ so thatyn = b−1
n → 0 the

limiting problem is to maximize:

V = 2(
√

x0 + γ
√

x1 + ... + γn−1√xn−1)

subject to
x0 + x1 + ... + xn−1 = v.

A simple Lagrangian analysis shows that again the future valueV is proportional to2
√

v and so the
earlier observation of flatness near the origin does generalize to a multiperiod setting. In either case
the more the project becomes over-invested the more the relationship flattens out.

Comment. In the general analysis for a Cobb-Douglas production functionf(x), the functions
x∗n(v, b) andu∗n(v, b) can be derived from certain ‘special functions’ũn(v), which identify the op-
timal carry-forward when the current price is unity (so that the actual carry-forwardun(v, bn) for a
pricebn is obtainable by the substitutionun(v, bn) = ũn(vb1/α

n )b−1/α
n if the Cobb-Douglas index isα).

To summarise the above analysis, we see that, in contrast to the FO model, our real options model
predicts the relationship between accounting residual profit and firm value will be approximately
linear and non decreasing only if the firm is exercising the option to expand26. If it is exercising the
option to contract or chooses not to exercise either option the FO model and our model is at odds
concerning the link between firm market value and accounting residual income.

At this point it is interesting to note that a number of authors, as for instance reviewed in Yee
(2000), have found empirically that for low accounting profit the non decreasing linear relationship in
fact becomes convex which agrees with our model prediction. However in the model of Yee (2000)
the link between residual income and firm value being convex arises for somewhat different reasons.
In particular although his model is also a real options model, in his setting management operate within

26Recall the FO model implicitly assumes that the firm expands at a constant rate every period.
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a FO framework but are subjected to project payoff shocks which means certain projects may earn
only a small return. In such a case Yee argues that managers may switch out of poorly performing
projetcs and hence the concavity arises precisely because managers discretely switch out of poorly
performing projects. Thus the principal difference with our model is that he does not allow for the
option to contract as we do; in his model managers must switch to some exogenously provided project
if they are to not locate in the low valuation range whereas in our model setting they endogenously
cut back investment in existing projects.

5 Conclusion

For the FO model recall that FO superimpose (4) and (5) on (3). However, as has been argued exten-
sively above, superimposing this simpleAR(1) process on the way residual income grows, consid-
erably restricts the type of underlying investment behaviour that could be consistent with the model.
As Figure 2 illustrates, the objective of the previous section was to establish a more flexible model
which will allow an alternative representation ofEt(ṽt+τ ) based upon optimal managerial real options
evaluation. These findings are significant because the Feltham Ohlson valuation framework has been
used by empiricists to test the value relevance of accounting data. Some researchers have criticised
how empiricists have used the model to try to specify appropriate empirical testing procedures for the
value relevance of accounting information. In contrast, we show how, independently of specifications
issues, the underlying constant growth assumption which is central to the Feltham Ohlson framework
removes the possibility for management to have a role in deciding whether or not to exercise expan-
sion and contraction possibilities which do occur with most investment projects. Given this limitation
we develop an alternative valuation framework which does not suffer from these limitations because
the option to expand or contract optimally is given centre stage in our model of managerial decision
making. We hope in a future paper to present a further refinement of our model in applied empirical
settings which will aid researchers to re-appraise the value relevance of accounting data.
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6 Appendix A: NPV Rule

In this section we derive the NPV Rule. This follows from results obtained in from Gietzmann M.B.,
Ostaszewski A.J. (2000) page 42. The notation is as follows:F (v, b0, φ) denotes the discounted future
maximum expected profit ignoring the historic cost of the carry–forward inputv. Thus, for example
F0(v, b0, φ) = γV0(v, b0, φ) and the corresponding value of the firm ignoring past costs and revenues
is V0(v|b0) = f(G(b0))− b0G(b0) + F1(v, b0, φ). Now we have

γ−1F (v, b0, φ) =
∫ b(v,1)

0

[

f#(G(b1)) + b1(v − û(1, b1)) + F+(û(1, b1), b1)
]

dQ1

+
∫ b(v,φ)

b(v,1)

[

f(v − u(v, b1)) + F+(u(v, b1), b1)
]

dQ1

+
∫ ∞

b(v,φ)

[

φb1(v − û(φ, b1)) + f#(G(φb1)) + F+(û(φ, b1), b1)
]

dQ1.

Hence proceeding formally and applying the Liebniz Rule27

γ−1F ′(v, b0, φ) =
∫ b(v,1)

0
b1dQ1

+
∫ b(v,φ)

b(v,1)

[

f ′(v − u(v, b1))(1− u′) + F+
′(u(v, b1), b1)u′

]

dQ1

+
∫ ∞

b(v,φ)
φb1dQ1.

But f ′(v − u(v, b1)) = F+
′(u(v, b1), b1) by definition ofu(v, b1). So

F ′(v, b0, φ) =
∫ b(v,1)

0
b1dQ1 +

∫ b(v,φ)

b(v,1)
f ′(v − u(v, b1))dQ1 +

∫ ∞

b(v,φ)
φb1dQ1.

Hence

γ−1F ′(u, b0, φ) =
∫ b(u,1)

0
b1dQ1 +

∫ b(u,φ)

b(u,1)
f ′(x(u, b1))dQ1 +

∫ ∞

b(u,φ)
φb1dQ1,

=
∫

˜b1

0
b1dQ1 +

∫ h1(˜b1,φ)

˜b1
f ′(x(u, b1))dQ1 +

∫ ∞

h1(˜b1,φ)
φb1dQ1,

= ˜b1 +
∫

˜b1

0
(b1 − ˜b1)dQ1 +

∫ h1(˜b1,φ)

˜b1
(f ′(x(u, b1))− ˜b1)dQ1

+
∫ ∞

h1(˜b1,φ)
(φb1 − ˜b1)dQ1.

27We do not show cancelling terms.
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7 Appendix B: The optimal replenishment policy.

We prove the Recurrence Lemma

ûn+1(bn, φn+1) = G(b̂n+1(bn)) + ûn(b̂n+1(bn), φn+2).

Proof. Recall that the functionu = ûn(b, φ) is defined by the equation28

F ′
n(u, b) = φb.

We work inductively. To obtain the solutionv = ûn+1(bn, φn+1)of the first order condition

F ′
n+1(v, bn) = φn+1bn.

we begin by first solving the censor equation

qn(B, φn+1, , bn) = φbn.

We denote the solution29 by b̂n+1(bn, φ). Recall that

qm(B, φm+1, bm) =
∫ B

0
bmdQ(bm|bm−1)

+
∫ hm(B,φm+1)

B
f ′(xm(vm

B , bm))dQ(bm|bm−1) + φm+1

∫ ∞

hm(B,φm+1)
bmdQ(bm|bm−1),

Herevm
b = G(b)+ ûm(b, φm+1), andG(b) = {f ′}−1(b). Now for an appropriate functionBn+1(v) we

have
F ′

n+1(v, bn) = qn(Bn+1(v), bn),

so we now need to solve
Bn+1(v̂) = b̂n+1(bn, φ).

But recalling that in generalF (v, b) = f(v − u(v, b) + F+(u, b) we have

F ′
n+1(vb, b) = f ′(vb − u(vn+1

b , b))(1− u′) + F ′
n+2(u, b)u′

= f ′(vb − u(vn+1
b , b)) = b.

Thus we have the identity

Bn+1(vn+1
B ) = F ′

n(vn+1
B , Bn+1(vn+1

B )) = B.
28Recall the convention thatF = γV.
29In the Cobb-Douglas case

b̂n+1(bn) = φbnĝn(φ)

for some constant̂gn(φ).
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Hence forB = b̂n+1(bn, φ) we have identified that̂v = vn+1
B . In conclusion we have

ûn+1(bn, φ) = G(b̂n+1(bn, φ)) + ûn(b̂n+1(bn, φ), 1)
= G(b̂n+1(bn, φ)) + G(b̂n+2(b̂n+1(bn, φ), 1)) + ...

Corollary. The analysis prescribes an aggregate demand of

Dφ
n(bn) = G(b̂n+1) + ... + G(b̂i) + ...,

whereG(b) = {f ′}−1(b) and the sequencêbn+i is given by the iteration

b̂n+1 = b̂n+1(bn, φ),
b̂n+2 = b̂n+1(b̂n+1, 1),
b̂n+3 = b̂n+3(b̂n+2, 1),

...

It is now easy to describe the replenishment programme. Suppose we haven periods remaining
and we have a stockv. The acquisition programme calls for an optimal aggregate demand to be
purchased of

D1
n(bn) = G(b̂n+1) + ... + G(b̂i) + ...,

(i.e. with φ = 1) and either we havev below this amount in which case we need to top up to
this amount or else we are moderately over-stocked and must carry-forwardu∗n(v, φn+1, bn) without
selling, or else we must sell to the point where the stock isDφn+1

n (bn).Thus

u∗n(v, bn) =











ûn(1, bn) bn < bn(v, 1)
u(v, bn) bn(v, 1) < bn < bn(v, φn+1)
ûn(φ, bn) bn(v, φn+1) < bn

8 Appendix C: Derivation of Valuation formula

We study first the general two stage situation. The current price isb0 the next period price isb1 and the
resale rate isφ. Our notation in this section for the maximum expected value given a stockv of inputs
and given the knowledge ofφ = φ1 is F (v, b0, φ); onceb1 is revealed andu is carried forward into
the future the maximum expected revenue from the period beyond isF+(u, b1) where the bar signifies
expectation overφ2.

We note thatF = γV.

8.1 Step 1. We prove a recurrence

γ−1F (v, b0, φ) = Eb1 [f
#(x∗(v, b1)) + F+

#(u∗(v, b1), b1)] + γvq

28



where the notation is as in section 3.2 above and is recalled below.
Proof. We have (from Gietzmann M.B., Ostaszewski A.J. (2000) page 42) that

γ−1F (v, b0, φ) =
∫ b(v,1)

0

[

f(G(b1))− b1G(b1) + b1(v − û(1, b1)) + F+(û(1, b1), b1)
]

dQ1

+
∫ b(v,φ)

b(v,1)

[

f(v − u(v, b1)) + F+(u(v, b1), b1)
]

dQ1

+
∫ ∞

b(v,φ)

[

φb1(v − û(φ, b1)) + f#(G(φb1)) + F+(û(φ, b1), b1)
]

dQ1.

To understand the first integral (corresponding to the understocked situation), note that the additional
purchasez is specified byv + z = G(b1) + û(1, b1) and so the revenue isf(G(b1)) − b1(G(b1) +
û(1, b1)− v).

Now we reorganize the expression on the right. First note thatf#(x) = f(x)− xf ′(x) and since
G is the inverse off ′ we have

f#(G(b1)) = f(G(b1))− b1G(b1).

Similarly F+
∗(x) = F+(x)− xF+

′(x). But sinceu = û(1, b1) solves

b1 = γV ′
+(u, b1) = F+

′(u, b1)

we have
F+

#(û(1, b1), b1) = F+(û(1, b1), b1)− b1û(1, b1).

Likewise
F+

#(û(φ, b1), b1) = F+(û(φ, b1), b1)− φb1û(φ, b1).

Lastlyu = u(v, b1) solves
f ′(v − u) = γV+

′(u, b1) = F+
′(u, b1)

hence

F+
#(u(v, b1), b1) = F+(u(v, b1), b1)− u(v, b1)f ′(v − u(v, b1))

= F+(u(v, b1), b1)− u(v, b1)f ′(x(v, b1))

wherex(v, b1) = v − u(v, b1). Of course

f#(x(v, b1)) = f(x(v, b1))− x(v, b1)f ′(x(v, b1))

We thus have, writingx for x(v, b1)

γ−1F (v, b0, φ) =
∫ b(v,1)

0

[

f#(G(b1)) + F+
#(û(1, b1), b1)

]

dQ1 + v
[

∫ b(v,1)

0
b1dQ1

]

+
∫ b(v,φ)

b(v,1)

[

f#(x) + F+
#(u(v, b1), b1)

]

dQ1 +
∫ b(v,φ)

b(v,1)
[xf ′(x) + u(v, b1)f ′(x)] dQ1

+
∫ ∞

b(v,φ)

[

f#(G(φb1)) + F+
#(û(φ, b1), b1)

]

dQ1 + v
[

∫ ∞

b(v,φ)
φb1dQ1

]
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or just

γ−1F (v, b0, φ) =
∫ b(v,1)

0

[

f#(G(b1)) + F+
#(û(1, b1), b1)

]

dQ1

+
∫ b(v,φ)

b(v,1)

[

f#(x) + F+
#(u(v, b1), b1)

]

dQ1

+
∫ ∞

b(v,φ)

[

f#(G(φb1)) + F+
#(û(φ, b1), b1)

]

dQ1

+v
[

∫ b(v,1)

0
b1dQ1 +

∫ b(v,φ)

b(v,1)
f ′(x)dQ1 +

∫ ∞

b(v,φ)
φb1dQ1

]

and this may be rendered in a more compact way as asserted above, namely :

γ−1F (v, b0, φ) = Eb1 [f
#(x∗(v, b1)) + F+

#(u∗(v, b1), b1)] + vq

provided we introduce the notation

x∗(v, b1) =











G(b1) b1 < b(v, 1)
x(v, b1) b(v, 1) < b1 < b(v, φ)
G(φb1) b(v, φ) < b1

and

u∗(v, b1) =











û(1, b1) b1 < b1(v, 1)
u(v, b1) b1(v, 1) < b1 < b1(v, φ)
û(φ, b1) b1(v, φ) < b1

where
x(v, b1) = v − u(v, b1)

and

q =
∫ b1(v,1)

0
b1dQ1 +

∫ b1(v,φ)

b1(v,1)
f ′(x(v, b1))dQ1 +

∫ ∞

b1(v,φ)
φb1dQ1.

It is convenient to define a functionh1 by the simultaneous equations

h1(B, φ) = b1(v, φ),
B = b1(v, 1).

}

i.e. h1(B, φ) = b1(v1
B, φ) wherev = v1

B solvesB = b1(v, 1). We identify these functions in the
Cobb-Douglas case in a later section. In conclusion we may define an important functionq0(B) as
follows.

q0(B) =
∫ B

0
b1dQ1 +

∫ h1(B,φ)

B
f ′(x(vB, b1))dQ1 +

∫ ∞

h1(B,φ)
φb1dQ1.

The solution forB of q0(B) = b0 is the censor˜b1 = ˜b1(b0).
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8.2 Step 2. Deduction from the Recurrence

We prove

V0(v, b0, φ) = E[
N

∑

n=1
γn−1f#(x∗n(bn))] + vq0(b1(v, 1)).

or

F0(v, b0, φ) = E[
N

∑

n=1
γnf#(x∗n(bn))] + γvq0(b1(v, 1)).

Proof. We already know that

γ−1F ′(v, b0) = V ′ = q(b(v, 1)) =
∫ b(v,1)

0
bdQ(b) +

∫ b(v,φ)

b(v,1)
f ′(x(v, b))dQ(b) +

∫ ∞

b(v,φ)
φbdQ(b)

(using generic notation), hence we may also write

V − vq = γ−1[F − vqγ]
= γ−1[F (v, b0, φ)− vF ′(v, b0)]
= γ−1F#(v, b0, φ)
= Eb1 [f

#(x∗(v, b1)) + F+
∗(u∗(v, b1), b1)]

and taking expectations overφ we have

γ−1F ∗(v, b0) = Eφ,b1 [f
#(x∗(v, b1)) + F+

∗(u∗(v, b1), b1)].

We may now apply this result inductively, the first steps being

γ−1F#
0 (v, b0, φ) = Eb1 [f

#(x∗1(v, b1)) + F1
#(u∗1(v, b1), b1)]

= Eb1 [f
#(x∗1(v, b1)) + γEb2 [f

#(x∗2(u
∗
1, b2)) + F2

#(u∗2(u
∗
1, b2), b2)]]

= Eb1 [f
#(x∗1(v, b1)) + γEb2 [f

#(x∗2(u
∗
1, b2)) + γEb3 [f

#(x∗3(u
∗
2, b3)) + F3

#(u∗3(u
∗
2, b3), b2)]]]

= Eb1 [f
#(x∗1(v, b1)) + Eb2 [γf#(x∗2(u

∗
1, b2)) + Eb3 [γ

2f#(x∗3(u
∗
2, b3)) + γ2F3

#(u∗3(u
∗
2, b3), b2)]]]

AssumingN steps so thatFN+1 = 0 we obtain on suppressing some notation that

γ−1F#
0 (v, b0, φ1) = E[

N
∑

n=1
γn−1f#(x∗n(bn))].

so

V0(v, b0, φ1)− vq1 = E[
N

∑

n=1
γn−1f#(x∗n(bn))].
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Rewriting we obtain the valuation

f#(x∗0(v, b0)) + γV0(v, b0, φ1)

= f#(x∗0(v, b0)) + E[
N

∑

n=1
γnf#(x∗n(bn))] + vγq1(b1(v, 1)),

where

q0(B) =
∫ B

0
b1dQ1 +

∫ h1(B,φ)

B
f ′(x(v1

B, b1))dQ1 +
∫ ∞

h1(B,φ)
φb1dQ1.

In the next section we identify the functional form for the Cobb-Douglas case.

9 Appendix D: The Cobb-Douglas case

In this section we give the explicit form of all relevant auxiliary functions needed to compute the
terms in the accounting identity. In particular we recall relevant formulas and results derived in our
CDAM paper apropriate to the casef(x) = x1−α/(1− α) when0 < α < 1. Note thatf ′ = x−α has
inverseG(b) = b−1/α and so

f#(x) =
α

1− α
x1−α,

f#(G(b)) =
α

1− α
b−(1−α)/α.

The homogeneity property is given by:

V ′
n(u, bn) = bnV

′
n(ub1/α

n , 1),

and more interestingly by
V ′

n(u, bn) = BV ′
n(uB1/α, bn/B).

Thus forφ = φn or φ = 1 the solutionu = û(bn, φ) to V ′
n(u) = V ′

n(u, bn) = bnφ is of the form
ub1/α

n = u (i.e. u = ub−1/α
n ) whereu = un(φ) solves

V ′
n(un, 1) = φ,

assuming
φ > inf

u
V ′

n(u, 1),

otherwise there is no solution (and therefore no need to sell-back stock).
It may be shown quite generally (see Appendix B) that

ûn+1(bn, φ) = G(b̂n+1(bn, φ)) + ûn+2(b̂n+1(bn, φ), 1)
= (b̂n+1(bn))−1/α + ûn+2(b̂n+1(bn), 1)

just as in (24).
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Now the equation
V ′

n(un, 1) = φ,

is equivalent (see Appendix B) under a transformation of variables to

qn(B, bn) = φbn

and trhis in turn to
qn(B/bn, 1) = φ.

So we letg = gn+1(φ) solve
qn(gφ, 1) = φ,

with the convention30 thatgn+1(φ) = 0 when

φ < inf
g

qn(g, 1).

Thus the original equation forB is solved by setting

B/bn = gn+1(φ)φ

i.e. B = gn(φ)(φbn). We thus have

ûn+1(bn, φ) = (gn+1(φ)φbn)−1/α + (gn+2(1)gn+1(φ)φbn)−1/α

+ (gn+3(1)gn+2(1)gn+1(φ)φbn)−1/α

and

v̂n(bn, φ) = (φbn)−1/α + (gn+1(φ)φbn)−1/α + (gn+2(1)gn+1(φ)φbn)−1/α + ...

= (φbn)−1/α
[

1 + (gn+1(φ))−1/α + (gn+2(1)gn+1(φ))−1/α + ...
]

(33)

By (33) we have
vn

φb = (κn(φb))−1/α

where
κn(φ)−1/α = 1 + (gn+1(φ))−1/α + (gn+2(1)gn+1(φ))−1/α + ... (34)

Note thatκN ≡ 1.Thus the solutionb = bn(v, φ) to v = vn
φb is

bn(v, φ) = φ−1κn(φ)−1v−α.

Note the identity
bn+1(ûn+1(bn, φ), 1) = φgn+1(φ)bn. (35)

30This ensures that the bench-mark stock, above which all is to be sold is infinity, in keeping with the idea that there
should be no resale.
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This is evident if we notice that we have to solve

ûn+1(bn, φ) = v̂n+1(bn+1, φ)

= (bn+1)
−1/α

[

1 + (gn+2)
−1/α + (gn+3gn+2)

−1/α + ...
]

= (gn+1(φ)φbn)−1/α + (gn+2(1)gn+1(φ)φbn)−1/α + ...

If the project is overstocked, the carry-forward equation

f ′(v − u) = V ′
n(u, bn) (36)

may be re-written using homogeneity as

f ′(ṽ − ũ(ṽ)) = V ′
n(ub1/α

n , 1)

whereũ = ub1/α
n , ṽ = vb1/α

n or in standardised form as

f ′(ṽ − ũ(ṽ)) = V ′
n(ũ, 1)

with solutionũn(ṽ). The solution of (36) is thenun(v, bn) = ũ(vb1/α
n )b−1/α

n . Note also

f ′([v/u]− 1) = V ′
n(1, bnuα)

so the utilization ratio v
u

= 1 + G(V ′
n(1, λnbn/bn+1(u)))

is a function of the ratio of the current price and the top-up limit. Hereλn is a constant.
Evidently the special functions̃un(ṽ) need numeric evaluation. They are defined inductively as

follows. The base of the induction is:

xN(v, bN) = v,
uN+1(v) = 0,

qN−1(B) =
∫ B

0
bNdQ(bN) +

∫ BψN

B
f ′(xN(vB, bN))dQ(bN) + φN

∫ ∞

BψN

bNdQ(bN),

ψN = 1/φN ,
vB = 1/B2,

bN(u, 1) = 1/
√

u,
WN−1(u) = u + [qN−1(bN(u))]−2,

ũN(v) = W−1
N−1(v).

The inductive step is very similar.
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xn(v, bn) = v − ũn+1(v),

qn−1(B) =
∫ B

0
bndQ(bn) +

∫ Bψn

B
f ′(xn(vn

B, bn))dQ(bn) + φn

∫ ∞

Bψn

bndQ(bn),

ψn = φ−1
n κn(φn)−1κn(1)

vn
B =

1
κn(1)2B2 ,

bn(v, 1) = κn(1)−1v−1/2

Wn−1(u) = u + [qn−1(bn(u, 1))]−2,
ũn(v) = W−1

n−1(v).

It is important to notice that the definition ofκn calls for values known from earlier in the induction
namely the numbersgm(φm) for m > n. (See (34) above.)

However, before one can use these special functions, we need to know just when to apply them,
i.e when and how much stock to resell. With this in mind, recall the definition of the functionshm

given by by the simultaneous equations

hm(B, φ) = bm(v, φ) = φ−1κm(φ)−1v−α,
B = bm(v, 1) = κm(1)−1v−α.

}

Solving we obtain

hm(B, φ) = φ−1κm(φ)−1κm(1)B = ψmB
= hm(1, φ)B,

so that, as asserted earlier in the finite horizon section, the dependence onB is linear. Note that
ψN = φ−1

N .
As for the carry-forward we have the explicit forms:

u∗n+1(v, φn+1, bn) =











(κn(1)−1/α − 1)b−1/α
n bnvα < κn(1)−1

un+1(v, bn) κn(1)−1 < bnvα < φn+1
−1κn(φn+1)−1

(κn(φn+1)−1/α − 1)b−1/α
n φ−1

n+1κn(φn+1)−1 < bnvα

and

x∗n(v, φn+1, bn) =











b−1/α
n bnvα < κn(1)−1

xn(v, b1) κn(1)−1 < bnvα < φn+1
−1κn(φn+1)−1

(φn+1b1)−1/α φn+1
−1κm(φn+1)−1 < bnvα

10 Appendix E: Linear dependence of profits on output

In this appendix we prove that in the Cobb-Douglas case that

F (v ·G(b0), b0) = F (v, 1)f#(G(b0)),
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so that in the square-root case we have31

F (vb−2
0 , b0) =

1
b0

F (v, 1).

Our main conclusion is the result that:

F (v̂(b0), b0) =
1
b0

F (v̂(1), 1)

which asserts that for an optimally carried forward stock, the future expected indirect profits are
linearly dependent on current indirect profit.

We note that in general, iff(x) = x1−α/(1 − α), so thatf#(G(b)) = α
1−αb−(1−α)/α, then the

formula at the head of this section in explicit terms is as follows.

F (vb−1/α
0 , b0) =

α
1− α

b−(1−α)/α
0 F (v, 1).

For notation see section ?? above.
Proof. For transparency we write the proof in the square-root case.
We again refer to the formula (from Gietzmann M.B., Ostaszewski A.J. (2000) page 42):

γ−1F (v, b0, φ) =
∫ b(v,1)

0

[

f#(G(b1)) + b1(v − û(1, b1)) + F+(û(1, b1), b1)
]

dQ1

+
∫ b(v,φ)

b(v,1)

[

f(v − u(v, b1)) + F+(u(v, b1), b1)
]

dQ1

+
∫ ∞

b(v,φ)

[

φb1(v − û(v, b1)) + f#(G(φb1)) + F+(û(φ, b1), b1)
]

dQ1.

We begin by assuming inductively the property that for allv > 0

F+(vg−2b−2
1 , gb1) =

1
b1

F+(vg−2, g)

and show that for allv we have

F (vg−2b−2
0 , gb0) =

1
b0

F (vg−2, g).

In the formula above replaceb0 by b0g andv by vg−2b−2
0 . We also make the substitutionh = b1/(gb0).

We now factorize outb−1
0 using inductive assumptions and some simple manipulations. To see this

done note the following calculations. First note that sinceb(v, 1) = K/
√

v (for some constantK) we
haveb(v(gb0)−2, 1) = Kb0/

√
vg−2 = b(vg−2, 1)b0. Next we have

F+(u(vg−2b−2
0 , b1), b1)

= F+(u(vg−2b−2
0 , hgb0), hgb0)

= F+(ũ(vg−2b−2
0 (hgb0)2)(hgb0)−2, hgb0)

= F+(ũ(vg−2(hg)2)(hgb0)−2, hgb0)
= F+(ũ(vg−2(hg)2)(hg)−2, hg)/b0

= F+(u(vg−2, hg), hg)/b0
31ThusH(w, b) = F (1/w2, b) is homogeneous of degree−1.
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Similarly

f(vg−2b−2
0 − u(vg−2b−2

0 , hgb0))
= f(vg−2b−2

0 − ũ(vg−2b−2
0 h2g2b2

0)h
−2g−2b−2

0 )
= b−1

0 f(vg−2 − ũ(vg−2h2g2)h−2g−2)
= b−1

0 f(vg−2 − u(vg−2, hg)).

(Sinceun(v, bn) = ũ(vb1/α
n )b−1/α

n ). Finally

F+(û(1, gb0h), gb0h)
= F+(û(1, 1)(gb0h)−2, gb0h)
= F+(û(1, 1)(gh)−2, gh)b−1

0

= F+(û(1, gh), gh)b−1
0 .

We thus obtain (dropping the display of the third term in view of its similarity to the first) that

γ−1F (vg−2b−2
0 , gb0, φ)

=
∫ b(vg−2,1)

0

[

1
gb0h

+ gb0h(
1

(gb0h)2 −
1

g2b2
0
û(1, gh)) + F+(û(1, gb0h), gb0h)

]

dQ1(h)

+
∫ b(vg−2,φ)

b(vg−2,1)

[

f(vg−2b−2
0 − u(vg−2b−2

0 , b1)) + F+(u(vg−2b−2
0 , gb0h), gb0h)

]

dQ1(h) + ...

=
∫ b(vg−2,1)

0

(

1
b0

[

1
gh

+ gh(
1

gh2 − û(1, gh))
]

+ F+(û(1, gh), gh)b−1
0

)

dQ1(h)

+
∫ b(vg−2,φ)

b(vg−2,1)

[

b−1
0 f(vg−2 − u(vg−2, hg)) + F+(u(vg−2, hg), hg)/b0

]

dQ1(h)

+...

= b−1
0

∫ b(vg−2,1)

0

([

1
gh

+ gh(
1

gh2 − û(1, gh))
]

+ F+(û(1, gh), gh)
)

dQ1(h)

+b−1
0

∫ b(vg−2,φ)

b(vg−2,1)

[

(f(vg−2 − u(vg−2, gh)) + F+(u(vg−2, gh), gh)
]

dQ1(h) + ...

=
1
b0

γ−1F (vg−2, g, φ)

Taking averages we obtain the required result.

11 Appendix F: Book-value in the Feltham Ohlson model

It bears remarking here that the framework of the Feltham-Ohlson model takes as its primitive a notion
of accounting valuation, namely the book-value (from which ‘earnings’ are defined once dividends
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are known). Properly speaking, implicit to the model is therefore avaluation function b(.) defining
the book value from the portfolioHt = (c, v0, v1, ..., vt) of ex-dividend cash,c, and unused investment
assetsv0, ..., vt wherevi was bought at timesti and pricebi then the historic cost convention is that

Bt = c + v0b0 + ... + vtbt,

that is the valuation takes the general form:

Bt = b(t,Ht)

However, the realisation of the abnormal earnings stream˜Nt = {ṽt}, as defined fromb(., .), is then
predicted by a model of its dynamicsM , which typically depends upon the current book value as
initial condition 32, and so implies first of all a stochastic process˜Mt = {ṽM

t }, i.e. stochastically
generated prediction of the realised stream˜Nt, and then the price of equity via the identity (3). Thus
predicted price of equity is affected by the accounting convention (which is the historic cost conven-
tion in the Feltham Ohlson model). To see this more clearly supposeb′ is an alternative accounting
convention, yielding the alternative valuations

B′
t = b′(t,Ht),

ṽ′t ≡ vt − rB′
t−1,

then, providedB′
t also satisfies the standard technical assumption, we have, by the usual argument

Bt +
∞
∑

τ=1
γτEt(ṽt+τ ) = Wt = B′

t +
∞
∑

τ=1
γτEt(ṽ′t+τ ).

So, abbreviating the summation of discounted expected values temporarily toVt we have

Bt + Vt[˜Nt] = B′
t + Vt[˜N ′

t]. (37)

It could therefore be that the same model of the earnings stream dynamicsM gives a value

B′
t + Vt[˜M ′

t]

which is a better predictor ofWt than Bt + Vt[ ˜Mt]. Now observed actual discrepancies from the
realization could either deny validity of theAR(1) assumption, or require that any explanation absorb
the discrepancy in a dividend policy consistent with theAR(1) assumption via (2), i.e.

dM
t = ṽM

t −Bt + (1 + r)Bt−1.
32By formulas like

Pt = yt +
ω

R− ω
ṽt +

R
(R− ω)(R− γ)

xt.

38



However, an alternative accounting convention could perhaps generate different model predictions
closer to reality despite using the same underlying stochastic dynamics.

Evidently, the technical assumption proving (3), namely thatγτBτ → 0 asτ →∞ (i.e. that book
value does not grow faster than the bank yield1 + r), implicitly favours thehistoric cost convention
(as perpetually unused stock is in the limit discounted to zero). However, the technical assumption
may be satisfied by an other convention governing unused production input assets provided, for in-
stance, that these assets are utilized almost surely within a uniformly bounded horizon. In reality
there is an expiry date for most inputs and this guarantees that it is optimal to utilize them ahead of
the best-before date.

Fortunately no such technicalities arise in a finite horizon, and in that setting there is a identity
corresponding to (3) that includes final book-valueBT (possibly as final dividend). There is thus an
alternative convention directly justifiable by the definition of residual income itself. Inspection of an
equivalent to the defining equation, namely

ṽt = Bt − (1 + r)Bt−1 + dt (38)

in which old book-value is interest-adjusted before being deducted from current book value suggest
a common value rendering of the two book-values. We may therefore justifiably use as accounting
valuation functionb′(.) by following thecommon value accounting conventionso that

B′
t = c + v0(1 + r)tb0 + v1(1 + r)t−1b1 + ... + vtbt

and the valuationB′
t thus includes inc interest on cash in the bank from recorded earlier revenues and

also attracts cost of capital charges on top of historic costs.
Thus cost of unused stock recorded in bothB′

t andB′
t−1 on this convention cancel each other

out in the (38) calculation of residual income, allowing treatment of unused ‘stock in hand’ just like
interest on any earlier cash deposits sitting in the bank. This has two important consequences:

(i) residual income attributable to immediate utilization of fresh stock isincreasedby comparison
to the historic cost convention which would includes in addition the cost of unused capital;

(ii) residual income attributable to eventual utilization of long unused stock isdecreasedrelative
to the historic cost convention.

Both these factors properly reflect return from investment in rewarding the record of profitable
activity from investment and down-playing unprofitable activity. See section below for a worked
example. Note that any unused stock sold back will also increase the value of residual income as a
cash addition.

We stress that both conventions must of necessity give rise to the same value of the firm by (37),
and either earnings stream may be interpreted from the other, for instance

Vt[˜Nt]hist = (Vt[˜N ′
t ] + B′

t)common− (Bt)hist,

or as
(ṽt)hist = (ṽ′t)common+ [Bt − (1 + r)Bt−1]hist− [B′

t − (1 + r)B′
t−1]common.
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However, as each gives a different interpretation to the term ‘residual income’, each offers a different
route to predicting managerial activity and predicted residual earnings stream. In each dividends are
still left outside the scope of equity value computation.

We should point out an additional advantage of the modified convention that well serves our
purposes. If we employ a model of economic activity with constant expected return then common
value convention automatically gives constant returns to unused stock.

11.0.1 Example: A stylised two period residual income model

Suppose we start withx + u units of capital att = 0 purchased forp0 a unit33 and we plan to usex of
the units in the first period andu of the units in the second period34 with a square root returns function
operating in both periods, that is:

opening net assetsB0 = p0(u + x)

We assume a square root returns function.

Version 1: stylised model under historic cost convention We compute the two periods’ respective
earnings and residual incomes under the historic cost convention

B1 = 2
√

x + p0u B2 = (1 + r)2
√

x + 2
√

u
B1 −B0 = v1 B2 −B1 = v2

v1 = 2
√

x− p0x v2 = 2
√

u− p0u + 2
√

xr
ṽ1 = v1 − rp0(u + x) ṽ2 = v2 − r(2

√
x + p0u)

= 2
√

x− (1 + r)p0x− rp0u = 2
√

u− (1 + r)p0u

Note that the revenue2
√

x included inB1 arises at the end of the first period (i.e. timet = 1). As
a check, note the value of the firm at timet = 0 is

B0 +
ṽ1

1 + r
+

ṽ2

(1 + r)2

= p0(u + x) +
2
√

x− (1 + r)p0x− rp0u
1 + r

+
2
√

u− (1 + r)p0u
(1 + r)2

= p0u +
2
√

x− rp0u
1 + r

+
2
√

u− (1 + r)p0u
(1 + r)2

=
2
√

x
1 + r

+
2
√

u
(1 + r)2 .

33Assume this is financed by the owners initial equity investment.
34In order to make the simplist representation we shall assume thatu is the dynamically optimal second period usage;

that is even though the firm could buy or sell more units after observing the second period input price of capital it is not
optimal to buy or sell capital. Our immediate object here is to map the the two models into a common notation rather than
to concentrate on optimization. Once the mapping is established we will return to optimization issues.
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Version 2: stylised model under ‘common values’ convention And now we compute using the
common value accounting convention, as given below equ

ation (38):

B′
1 = 2

√
x + p0u(1 + r) B′

2 = (1 + r)2
√

x + 2
√

u
B′

1 −B′
0 = v′1 B′

2 −B′
1 = v′2

v′1 = 2
√

x− p0x + p0ur v′2 = 2
√

u− p0u(1 + r) + 2
√

xr
ṽ′1 = v′1 − rp0(u + x) ṽ′2 = v′2 − r(2

√
x + p0u(1 + r))

= 2
√

x− (1 + r)p0x = 2
√

u− (1 + r)2p0u

Here

p0(u + x) +
2
√

x− (1 + r)p0x
1 + r

+
2
√

u− (1 + r)2p0u
(1 + r)2

=
2
√

x
1 + r

+
2
√

u
(1 + r)2

Observe thatB′
1 includes the current income and the interest-adjusted historic valuation of unused

stock left languishing; hence the residual incomeṽ′1 comprises the profit on current production using
stock valued at the interest-adjusted historic valuation (as it was bought one period ago). Similarly,B′

2
includes the current cash revenue and deposited cash revenues from the previous period (compounded
up); consequent on the treatement inB′

1 of unused stock, the residual incomeṽ′2 here equals the
profit from final production using long unused stock valued at the interest-adjusted historic valuation
(bought two periods ago). Recalling

(ṽt)hist = (ṽt)common+ [Bt − (1 + r)Bt−1]hist− [B′
t − (1 + r)B′

t−1]common.

we have
(B1)hist− (B′

1)common= (2
√

x + p0u)− (2
√

x + p0u(1 + r)) = −p0ur

(B2)hist− (B′
2)common= 0
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12 Appendix G: Alternative stylised models

We follow through the valuation formula in some simple instances. We begin with an important
comment.

12.1 Comment on a Simple Example.

Consider the Cobb-Douglas model with production functionf(x) = 2
√

x. (This example is charac-
teristic of all the Cobb-Douglas models). Heref#(x) =

√
x and{f ′}−1 ≡ G(b) = b−2. Observe first

that the myopic one-period problem at timet = tm is to maximize

f(x)− pm(1 + r)x,

wherepn is the observed price, the factor(1 + r) = γ−1 represents an interest load on the cost
payable at the end of the period. If the firm is in the black this is only the opportunity cost of capital.
The above formalism assumes that there is no technical progress factor. Note thatf(x) represents
payments received at the end of a production period. Thus the first order condition is

f ′(x) = bm

where
bm = pm(1 + r).

Thus the optimal demand for input isx∗ = G(bm) and so the (indirect) profit35 is

f(x∗)− bmx∗ = f#(G(bm)) = b−1
m .

12.2 Two period model with a capital stock ofu at the end of the first period

In the two period model we have:

V1(u, b0, φ1) =
∫ b1(u)

0
(
1
b1

+ b1u)dQ(b1) + 2
√

u
∫ b1(u)/φ1

b1(u)
dQ(b1) +

∫ ∞

b1(u)/φ1

(
1

φ1b1
+ uφ1b1dQ(b1)

=
∫ b1(u)

0

1
b1

dQ(b1) +
∫ b1(u)/φ1

b1(u)

√
udQ(b1) +

∫ ∞

b1(u)/φ1

1
φ1b1

dQ(b1)

+u
[

∫ b1(u)

0
b1dQ(b1) +

1√
u

∫ b1(u)/φ1

b1(u)
dQ(b1) +

∫ ∞

b1(u)/φ1

φ1b1dQ(b1)
]

=
∫ b1(u)

0
f ∗(G(b1))dQ(b1) +

∫ b1(u)/φ1

b1(u)
f ∗(u)dQ(b1) +

∫ ∞

b1(u)/φ1

f ∗(G(φ1b1))dQ(b1)

+u
[

∫ b1(u)

0
b1dQ(b1) + b1(u)

∫ b1(u)/φ1

b1(u)
dQ(b1) +

∫ ∞

b1(u)/φ1

φ1b1dQ(b1)
]

= E[f∗(x∗1(b1))] + uq(b1(u)).
35This is of course the Fenchel dual

˜f(b) = max
x

[f(x)− bx].
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Recall b1(u) is known at timet0. Thus the future value derived from the project given a sunk
resourceu equals the Tobin valuation of the resource plus the expected indirect profit. In particular if
u = 0 we have

V1(0, b0) = E[f ∗(x∗1(b1))] =
∫ ∞

0

1
b1

dQ(b1)

and ifu = û1 we have

V1(û1, b0) = E[f∗(x∗1(b1))] + û1q0(b1(û1))
= E[f∗(x∗1(b1))] + û1b0.

If the project begins with zero stock and carries forwardu and the charge on the capitalu is b0

then the clean surplus is

f#(G(b0)) + γV1(u, b0)− b0u = f#(x∗0) + γE[f ∗(x∗1(b1))] + û1[γq(b1(u))− b0],

and if the amountu is selected optimally at̂u1 we haveγq(b1(û1)) = b0 and so the clean surplus is

f#(x∗0) + γE[f ∗(x∗1(b1))].

12.3 Two period model with0 capital stock at the beginning of the first period

First consider timet = t0 with zero stock. The optimal stock to purchase is

v̂0 =
1
b2
0

+ û1(b0)

and this is bought for a priceb0 (valued at end of period timet1, i.e. b0 = p0(1 + r) wherep0 is the
price announced/revealed at timet0). From this investment the project generates immediate revenues
of

2
b0

and offers an additional expected PV (=present value)

γV1(û1, b0).

In the two period case we have

V1(û1, b0) = E[f ∗(x∗1(b1))] + û1b0,

and in general

V1(û1, b0) = Eb1 [f
#(x∗(û1, b1)) + γV2

#(u∗(û1, b1), b1)] + û1b0

= û1b0 + E[
N

∑

n=1
γn−1f#(x∗n(bn))].
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Let V (v̂0) be the present value of the project (at timet1 ) net of v̂0 then

V (v̂0) = f(x0) + γV1(û1, b0)

= f(x0) + γq0û1 + E[
N

∑

n=1
γn−1f#(x∗n(bn))]

and inclusive of costs we have clean profit equal to

V0(v̂0)− b0v̂0 = f#(x0) + E[
N

∑

n=1
γn−1f#(x∗n(bn))].

Here is an alternative derivation. Begin with a valuation as follows:

credits less debits

where credits comprise: revenues + discounted valuation of future indirect profits +book-value of
stock, whereas debits consist entirely of capital charge. The valuation term thus assumes the stock
carried forward is a sunk cost. Nowγq0 = b0 (noting thatb0 = γp0, the price at timet0 so that in fact
we haveq0 = p0). Here we have that the PV of the project net ofv̂0 is

V (v̂0) = f(x0) + γV1.

So the clean surplus is

V (v̂0)− b0v̂0 = f#(x0) + [γq0 − b0]û1 + E[
N

∑

n=1
γn−1f#(x∗n(bn))]

= f#(x0) + E[
N

∑

n=1
γn−1f#(x∗n(bn))].

Thus the valuation on the rhs contains the PV of the charge for the sunk cost ofû1.

12.4 Two period model with initial stock0 at time t0, and understocked at time
t1

Given the initial stock of zero the project commences the periodt = t1 with stock û1. Here we
suppose that the optimal stock to hold is greater thanû1 and is

v̂1 =
1
b2
1

+ û2(b1).

Additional stock required is thus

v̂1 − û1 =
1
b2
1

+ û2(b1)
1
b2
1
− û1(b0).
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The project generates new revenue
2
b1

thus the present value of the project at timet1 is as before:

credits less debits

where credits comprise: past and present revenues + discounted valuation of ‘continued activity’
(meaning future indirect profits with stock carried forwardû2 treated as a sunk cost) +book-value of
stock, whereas debits consist entirely of capital charge. Here we have, sinceγq1 = b1 that the PV is

2
b0

+
2γ
b1

+ E[
N

∑

n=2
γn−1f#(x∗n(bn))] + γ2q1û2(b1)

−b0(
1
b2
0

+ û1(b0))− γb1(
1
b2
1

+ û2(b1)− û1(b0))

=
1
b0

+
γ
b1

+ γ2V2(û2) + γb1û2(b1)− b0û1(b0)− γb1(û2(b1)− û1(b0))

= f#(x0) + γf#(x1) + E[
N

∑

n=2
γn−1f#(x∗n(bn))]− (b0 − γb1)û1(b0).

Thus the value of the project comprises the realized indirect profits plus the future valuation of indirect
profits less an adjusted charge on the initial forward outlay.

Alternatively derivation: we have, given a sunk costû2

V2(û2, b1) = Eb2 [f
#(x∗(û2, b2)) + γV3

#(u∗(û1, b1), b1)] + û2q1

= û2q1 + E[
N

∑

n=2
γn−1f#(x∗n(bn))].

so we have current plus expected revenues

V (v̂0) = f(x0) + γf(x1) + γ2V2(û2, b0)

less costs
b0v̂0 + γb1[v̂1 − û1]

giving clean profit of:

f#(x0) + γf#(x1) + γ2[û2q1 + E[
N

∑

n=2
γn−1f#(x∗n(bn))]]

−b0û1 − γb1[û2 − û1]

= f#(x0) + γf#(x1) + E[
N

∑

n=2
γn−1f#(x∗n(bn))]− û1[b0 − γb1].
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12.5 Three period model initial stock0 at time t0, and understocked at timet1
and again at timet2

Given the stated assumptions at timet = t2 the stock on opening is equal toû2 and is less than optimal
stockv̂2. Buy extrav̂2 − û2 at priceb2. Here we have net of̂v2 new revenues of

W = f(x2) + γV3(û3, b2)

So

W − b2v̂2 = f#(x2) + γq2û3 + E[
N

∑

n=3
γn−1f#(x∗n(bn))]− b2û3

= f#(x2) + E[
N

∑

n=3
γn−1f#(x∗n(bn))]

Hence all revenues amount to

f(x0) + γf(x1) + γ2f(x2) + γ3V3(û3, b2)

with total costs being
b0v̂0 + γb1[v̂1 − û1] + γ2b2[v̂2 − û2]

leading to a profit of

f#(x0) + γf#(x1) + γ2f#(x2) + E[
N

∑

n=3
γn−1f#(x∗n(bn))] + γ3q2û3

−{b0û1 + γb1[û2 − û1] + γ2b2[û3 − û2]}

= f#(x0) + γf#(x1) + γ2f#(x2) + E[
N

∑

n=3
γn−1f#(x∗n(bn))] +

−{[b0 − γb1]û1 + γ[b1 − γb2]û2}.
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