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Abstract
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n-cube 2n that can be represented as the union of (n− k)-subcubes. In [3] the authors
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Here, we prove bounds on SAT(k;n) for k ≥ n/2; we see a variety of different types of
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1 Introduction

Let {x1, . . . , xn} be a collection of n Boolean variables. With each variable x is associated
a pair of literals x and x. The literal x is True/False if the variable x is False/True. A
k-clause is a set of k literals, and a k-SAT formula is a set {C1, . . . , Ct} of k-clauses. A
satisfying assignment for a k-SAT formula is an assignment of True/False to each variable
such that each clause Ci contains at least one True literal. A k-SAT formula gives rise to a
Boolean function of (x1, . . . , xn), where the output is 1 if and only if the input is a satisfying
assignment. A k-SAT function is a function that has such a representation by a k-SAT
formula. Observe that any function that can be represented by clauses of length at most k
is a k-SAT function.

The families of k-SAT functions are probably the most studied special classes of Boolean
functions, and our aim is to investigate how rich these families are. In other words, we
want to estimate the number SAT(k; n) of k-SAT functions of n variables. In this paper, we
are mostly interested in the range k ≥ n/2; as we shall see, there is a sharp divide in the
behaviour of the function SAT around k = n/2.

The number of k-SAT formulae is 22k(n
k), for any n and k, since the number of possible

k-SAT clauses is 2k
(n

k

)

. For k ≥ 0.2278n this is greater than 22n , the number of Boolean
functions, which leaves open the possibility that most Boolean functions are k-SAT functions.
In fact, it is quite easy to see that this is too much to expect, but it seems natural to
investigate how far from the truth this is. (Notice that the phase transition in the behaviour
of SAT(k; n) around k = n/2 is not revealed by this naive comparison of upper bounds.)

Another way to view any satisfiability problem is in terms of subsets of the discrete cube
2n. Here, we are interested in the number of subsets of the cube that can be represented as
unions of d-subcubes, i.e., sets of the form

{x ∈ 2n : xi = ai for all i ∈ I},

where I is a subset of [n] of size n− d, and each ai is 0 or 1. To be precise, let CU(d; n) be
the number of subsets of 2n that are unions of subcubes of dimension at least d. (Although
we shall normally assume d is an integer, CU(d; n) is defined for any real d.)

For d integer, it is well-known that CU(d; n) = SAT(n − d; n); to see this, identify the
variables x1, . . . , xn with the co-ordinates of the cube 2n – a set of assignments is a subset of
the cube, and to say that a set is the complement of the set of satisfying assignments for a
k-SAT formula is exactly to express it as a union of (n−k)-subcubes. Therefore each k-SAT
function corresponds to a subset of 2n that can be represented as a union of d-subcubes,
where d = n− k, and CU(d; n) = SAT(n− d; n), as claimed.

Estimating CU(d; n) seems to us to be an interesting question from a combinatorial point
of view. For instance, 2−2nCU(2; n) is the probability that a random subset of the n-cube
can be written as a union of 2-cubes. It is not too hard to see that this probability tends
to zero as n tends to infinity; in fact, we shall prove that it is about exp

(

−2
1
2 lg2 n

)

– here
and throughout, lg denotes the binary logarithm. In the language of satisfiability, this result
states that only this very small fraction of Boolean functions of n variables can be represented
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by an (n− 2)-SAT formula. (As we shall also see, about 61% of the Boolean functions of n
variables can be represented by an (n− 1)-SAT formula.)

Bollobás, Brightwell and Leader [3] studied the function SAT(k; n) for k ≤ n/2. The main
purpose of the research in [3] was a detailed investigation of the number of 2-SAT functions
(alternatively, sets that are unions of (n − 2)-subcubes). Bollobás, Brightwell and Leader
showed that SAT(2; n) = 2(1+o(1))n2/2, thus answering a question raised independently by
Ursula Martin. Note that the number of monotone 2-SAT formulae, i.e., formulae in which
only positive literals appear, is exactly 2(n

2), and these all correspond to different functions,
so the difficulty lies in showing a matching upper bound on SAT(2; n). It is conjectured in
[3] that almost all 2-SAT functions arise from monotone formulae, possibly after relabelling
literals as positive/negative.

It is also conjectured in [3] that, for each fixed k, SAT(k; n) = 2(1+o(1))(n
k). Again, the

family of functions arising from monotone formulae gives a lower bound of this form.

For larger values of k, Bollobás, Brightwell and Leader proved the following “monotonic-
ity” result:

SAT(k; n)1/(n
k) ≤ SAT(k; m)1/(m

k ), for k ≤ m ≤ n,

Applying this with m = 2k, using only the trivial bound SAT(k; 2k) ≤ 222k , gives

2(n
k) ≤ SAT(k; n) = CU(n− k; n) ≤ 2

√
π(k+1)(n

k),

whenever k ≤ n/2. See [3] for details.

In the context of the results for k = 2 in [3], the above bound SAT(k; n) ≤ 2
√

π(k+1)(n
k)

may not seem especially impressive for fixed k, and it is surely only the first step towards
proving the conjecture mentioned. It is probably more important that the inequality holds
whenever k ≤ n/2 since, in combination with the results of this paper, it reveals a “phase
transition” in SAT(k; n) as k goes through n/2. Indeed, if k = αn with α < 1

2 , then we
have SAT(k; n) = 2o(2n); on the other hand we prove that, when k = αn with α > 1

2 , there
is a constant β = β(α) > 0 such that SAT(k; n) ≥ 2β2n . We also prove a lower bound on
SAT(k; n) of the same general form.

In fact, we suspect that the “monotone formulae” lower bound might be roughly correct
not just for fixed k, but whenever k ≤ (1

2 − ε)n.

Conjecture 1.1 If ε > 0, and k = k(n) ≤ (1
2−ε)n, then SAT(k; n) = 2(n

k)(1+o(1)) as n →∞.

For the rest of the paper we only consider the case where k ≥ n/2. It is much more
convenient in this context to work with the function CU(d; n) = SAT(n−d; n), with d ≤ n/2.

Our results (and those from [3]) are summarised in the following theorem.
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Theorem 1.2

(1) d = 1 : lg CU(1; n) = 2n − 1
2 lg e + o(1).

(2) d ≥ 2 constant : lg CU(d; n) = 2n − 2
d−1
2 lg2 n+o(lg2 n).

(3) log3/2 n ≤ 22d/(d−1) ≤ n1/4 : lg CU(d; n) = 2n − exp
{

22d/(d−1)(log n)d/(d−1)d2O(1)
}

.

(4) 6
√

lg n ≤ d = o(n) : 2n
(

1− d log(n/d)
n (1 + o(1))

)

≤ lg CU(d; n) ≤ 2n
(

1− d3

3n3

)

.

(5) d = αn, α < 1/2 : 2n 1−2α
1−α

(

α
1−α

)α/(1−2α) (1 + o(1)) ≤ lg CU(d; n) ≤ 2n
(

1− α3

3

)

.

(6) n/2 ≤ d ≤ n− 3 :
(n

d

)

≤ lg CU(d; n) ≤
√

π(n− d + 1)
(n

d

)

.

(7) d = n− 2 : lg CU(n− 2; n) =
(n

2

)

(1− o(1)).

(8) d = n− 1 : lg CU(n− 1; n) = lg(3n + 1) ' n lg 3.

Of the assertions in Theorem 1.2, (1) (which is quite simple) is Theorem 2.2; (2) is
Theorem 2.4 in the case d = 2 (where actually we prove a slightly stronger result) and
Theorem 2.8 for d ≥ 3. A slightly more precise version of (3) is Theorem 2.10; the range of
d covered here runs from about lg lg lg n to about lg lg n. The lower bounds in (4) and (5)
are special cases of Theorem 3.1, while the upper bounds are contained in Theorem 4.2. We
have already discussed (6) and (7), which are from [3], as is the easy final identity stated as
(8).

In the next section, we study CU(d; n) where d is constant or grows very slowly with
n. In these cases, as set out in parts (1)–(3) of Theorem 1.2, we shall be able to estimate
CU(d; n) fairly accurately.

Then we move on to larger values of d, establishing the lower bounds in Section 3 and the
upper bounds in Section 4. At this point, we shall have completed the proof of Theorem 1.2.

In the last section we show that, except possibly for a countable set of real numbers α,
2−n lg CU(αn; n) tends to a limit as n →∞.

We use a variety of techniques in the different sections. Of particular interest might be
the use of entropy methods, as pioneered by Kahn [6, 7], in Section 4.

Although our results give a reasonable picture of the behaviour of CU(d; n), there are
still plenty of gaps, especially in the transitions between the various ranges specified above.
It would also be interesting to close the gaps between lower and upper bounds, especially in
(4), (5) and (6) of Theorem 1.2.
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2 Small dimensional cubes

In the case where d is small, our approach is to take a random subset S of 2n, and ask for
the probability that S is a union of d-subcubes. If x is any fixed point in 2n, the probability
that it is taken into S but is not contained in a d-subcube in S will turn out to be very
small, although the expected number λ of “bad” points x will be large. We would hope that
the probability that there are no bad points is approximately e−λ. An especially versatile
tool for proving results of this kind is Suen’s Inequality [8] (or see Alon and Spencer [1],
Theorem 8.7.1).

We need some terminology and notation. Let (Ai) = {Ai : i ∈ I} be a family of events in
an arbitrary probability space. A symmetric relation ∼ on I defines a superdependency graph
for the family (Ai) if, whenever J1 and J2 are disjoint subsets of I such that we never have
j1 ∼ j2 for j1 ∈ J1 and j2 ∈ J2, then any Boolean combination of the events {Ai : i ∈ J1} is
independent of any Boolean combination of the events {Ai : i ∈ J2}. Suen’s Inequality is as
follows.

Theorem 2.1 Suppose that (Ai) = {Ai : i ∈ I} is a family of events in a probability space,
and ∼ defines a superdependency graph for the family (Ai). Let Q =

∏

i∈I(1−P(Ai)). Then:
B

|P(no Ai occurs)−Q| ≤ Q

(

exp

(

∑

i∼j

ϕ(Ai, Aj)

)

− 1

)

,

where
ϕ(Ai, Aj) = (P(Ai and Aj) + P(Ai)P(Aj))

∏

`∼i or `∼j

1
1− P(A`)

.

To illustrate the situation, let us describe the examples we are interested in. We shall
take the underlying probability measure to be the uniform measure on subsets S of 2n. Let
I = 2n, set x ∼d y if d(x, y) ≤ 2d, and let Ad(x) be the event that x ∈ S but x is not
contained within a d-subcube in S. Noting that Ad(x) depends only on whether or not those
points of 2n within distance d of x are in S, we see that ∼d defines a superdependency graph
for the family (Ad(x)) = {Ad(x) : x ∈ 2n}.

Let us now begin our investigation of CU(d; n). If d = 0, then of course all the 22n

subsets of 2n can be represented as unions of d-subcubes, so CU(0; n) = 22n . If d = 1, we are
asking how many sets can be represented as unions of 1-subcubes (edges). A set is a union of
1-subcubes if and only if it has no isolated points. So we are asking for the probability that
a random subset S of 2n contains no isolated points. This is straightforward to estimate.

Theorem 2.2 The probability that a random subset of 2n contains no isolated points is
e−1/2 + O(n22−n) ' 0.6065. Therefore CU(1; n) = 22n(e−1/2 + o(1)) as n →∞.

Proof. Let S be a random subset of 2n. We apply Suen’s Inequality to the family (A1(x))
and the superdependency graph given by∼1, defined as above. Note that P(A1(x)) = 2−(n+1),
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and so
Q =

∏

x∈I

(1− P(Ax)) =
(

1− 2−(n+1))2n

= e−1/2 + O(2−n).

If d(x, y) = 1, then x and y cannot both be isolated points of S, while if d(x, y) = 2 then
the probability that x and y are both isolated points is exactly 2−2n. Hence if x ∼1 y then
the quantity ϕ(Ax, Ay) of Suen’s Inequality is at most

(

2−2n + 2−2n−2) (

1− 2−n−1)−n2

≤ 2−2n+1,

for sufficiently large n. Hence
∑

i∼j ϕ(Ai, Aj) ≤ n22−n, and therefore the probability that
no x is isolated is e−1/2 + O(n22−n), as claimed. �

The remaining results in this section are all proved in much the same way. Let x be a
point of the r-dimensional cube 2r, and define a random subset H by taking x and all its
neighbours, and each other point of 2r independently with probability 1/2. Then let Br,d be
the event that H does not contain a d-subcube including x. We see that

P(Ad(x)) =
n

∑

r=0

2−(n+1)
(

n
r

)

P(Br,d),

since the r-term is the probability that, in a random subset S of 2n, x and exactly r of its
neighbours are in S, and Ad(x) occurs.

We can also think of the random subset H above as a random hypergraph H on a set R
of r vertices, where we take each subset of R of size at least 2 independently with probability
1/2. A d-subcube then corresponds to a d-set and all of its subsets of size at least 2 being
included in H.

From now on, we shall always be using Suen’s Inequality in the same way, so it is conve-
nient to state a lemma encapsulating what we obtain from the inequality, and in particular
specifying a sufficient set of conditions for its use.

Lemma 2.3 Suppose that d = d(n) is a function satisfying: d = o(n), P(Ad(x)) = 2−n+o(n),
and P(Bdn3/4e,d) ≤ 2−2n for sufficiently large n. Then

P(no Ad(x) occurs) = exp
(

−2nP(Ad(x)) + O(2−n+o(n))
)

.

Proof. We shall apply Suen’s Inequality with the superdependency graph defined by ∼d

on the family (Ad(x)). Note first that

Q = (1− P(Ad(x)))2n
= exp

(

−2nP(Ad(x)) + 2−n+o(n)) .

Next, for any x and y,

∏

z∼dx or z∼dy

1
1− P(Ad(z))

=
(

1
1− 2−n+o(n)

)O(( n
2d))

= 1 + 2−n+o(n),
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since
( n
2d

)

= 2o(n).

For the final ingredient, observe that, for any x and y,

P(Ad(x) and Ad(y)) ≤ P(|S ∩N(x)| < n3/4 and |S ∩N(y)| < n3/4)+
+P(Ad(x) | |S ∩N(x)| ≥ n3/4).

Note that |N(x) ∪ N(y)| ≥ 2n − 2, so the first term above is at most 2
( 2n
2bn3/4c

)

2−2n+2 =
2−2n+o(n), while the second is at most P(Bdn3/4e,d), which is at most 2−2n by assumption.
Hence P(Ad(x) and Ad(y)) = 2−2n+o(n).

These facts imply that ϕ(Ad(x), Ad(y)) = 2−2n+o(n) whenever x ∼d y. Hence

∑

x∼dy

ϕ(Ad(x), Ad(y)) = 2n
(

n
2d

)

(1 + o(1))2−2n+o(n) = 2−n+o(n).

Suen’s Inequality now tells us that

|P(no Ad(x) occurs)−Q| = O
(

Q2−n+o(n)) ,

which implies the result. �

The conditions of Lemma 2.3 will usually be relatively easy to check; most of the work
will be in estimating P(Ad(x)). We can deal with the case d = 2 very quickly now.

Theorem 2.4 The probability that, in a random subset S of 2n, every point of S lies in a
2-subcube in S is

exp
(

−2
1
2 lg2 n−lg n lg lg n+O(lg n)

)

.

Therefore
CU(2; n) = 22n

exp
(

−2
1
2 lg2 n−lg n lg lg n+O(lg n)

)

.

Proof. Recall that P(A2(x)) = 2−(n+1) ∑n
r=0

(n
r

)

P(Br, 2). Since P(Br, 2) = 2−(r
2), we have

P(A2(x)) = 2−n+O(lg n) max
r

{(

n
r

)

2−(r
2)

}

.

This maximum is attained at r = lg n− lg lg n + O(1), and is equal to 2
1
2 lg2 n−lg n lg lg n+O(lg n),

so
P(A2(x)) = 2−n+ 1

2 lg2 n−lg n lg lg n+O(lg n).

Also P(Bdn3/4e,2) = 2−O(n3/2) ≤ 2−2n for sufficiently large n.

Therefore we can apply Lemma 2.3 and obtain

P(no Ad(x) occurs) = exp (−2nP(Ad(x))) ,

which is the required result. �
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For higher values of d, the application of Lemma 2.3 will be equally straightforward, and
the crucial task is to estimate the probability of the event Ad(x), which we again approach
via the events Br,d.

Recall that, in a random hypergraph H on an r-element set R, Br,d can be thought of
as the event that there is no d-element set D such that all subsets of D of size at least 2
are in H. We can treat the subsets of size 2 in H as the edges of a random graph GH on
R, and note that a d-subcube induces a complete subgraph Kd in GH . Hence P(Br,d) is at
least the probability that the random graph GH contains no Kd, which is at least 2−r2/2(d−1).
(This is a lower bound on the probability that GH respects a particular partition into d− 1
independent sets as equal in size as possible.)

We will get an upper bound on P(Br,d) using Szemerédi’s Uniformity Lemma (see e.g.,
Bollobás [2]), of which we now remind the reader.

For a graph G, and disjoint subsets Y , Z of V (G), the density ρ(Y, Z) is defined as the
number of edges between Y and Z divided by |Y | |Z|.

Given a graph G and ε > 0, an ε-uniform pair in G is a pair of subsets (Y, Z) of V (G)
such that, for any S ⊂ Y and T ⊂ Z, with |S| ≥ ε|Y | and |T | ≥ ε|Z|, we have

|ρ(S, T )− ρ(Y, Z)| < ε.

Now, given G and ε, an ε-uniform partition of G is a partition of V (G) into sets
Y0, Y1, . . . , Ym with |Y0| ≤ ε|V (G)|, and |Y1| = · · · = |Ym|, such that all but at most εm2 of
the pairs (Yi, Yj) with 1 ≤ i < j ≤ m are ε-uniform.

Theorem 2.5 For any ε > 0, and any integer k, there is some K = K(k, ε) such that every
graph G on at least k vertices has an ε-uniform partition into sets Y0, Y1, . . . , Ym for some
m with k ≤ m ≤ K.

We also use the following lemma, which is a version of a standard tool for use with Sze-
merédi’s Uniformity Lemma. Its statement is designed for straightforward proof by induction
on d, exactly as in, for instance, Theorem IV.6.30 of Bollobás [2].

Lemma 2.6 Take any constant δ with 0 < δ ≤ 1/2. Let G be a graph, and suppose that
Y1, . . . , Yd are disjoint subsets of V (G) of size at least s such that, whenever Wi is a subset
of Vi of size at least δd|Yi|, and Wj is a subset of Vj (j 6= i) of size at least δd|Yj|, we have
ρ(Wi,Wj) ≥ δ. Then there are at least (s/2)dδ(d

2) copies of Kd in G, each with one vertex in
each Yi.

We now prove our promised upper bound on P(Br,d).

Lemma 2.7 For any integer d ≥ 3, and any η > 0, there is some r0 such that, for r ≥ r0,

P(Br,d) ≤ 2−r2/2(d−1)+ηr2
.
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Proof. We start by choosing parameters. Given d and η, take δ ∈ (0, 1/10) such that
4δ log(δ−1) < η. Set ε = δd, k = d1/εe, and let K = K(k, ε) be as in the statement of
Theorem 2.5. Let γ = ((1− ε)/2K)d δ(d

2), and finally choose r0 large enough to satisfy all of
the following:

K2 ≤ ηr2
0/2; 2(K + 1) ≤ 2ηr0/4;

(

1− 2−2d
)γr0/(d

3) ≤ 2−1/2(d−1).

Now take any r ≥ r0, noting that r also satisfies these inequalities, which we shall use as
required without specific reference. As before, take a random hypergraph H on a set R of r
vertices, and let GH be the graph formed by the 2-sets in H. Let Γ be the event that GH

contains at least γrd copies of Kd, and observe that

P(Br,d) ≤ P(Γ) + P(Br,d | Γ).

Our plan is to bound both of these terms above. We start with P(Γ), so our aim is to show
that the proportion of r-vertex graphs without γrd copies of Kd is suitably small.

Take an ε-uniform partition of GH into sets Y0, Y1, . . . , Ym, with k ≤ m ≤ K, as guaran-
teed by Theorem 2.5. Suppose that |Y1| = · · · = |Ym| = s, and note that s ≤ r/m ≤ εr.

For 1 ≤ i < j ≤ m, call the pair (Yi, Yj) dense if it is ε-uniform and ρ(Yi, Yj) ≥ 2δ. The
set of dense pairs can be thought of as a graph G′ on {Y1, . . . , Ym}.

Suppose that G′ contains a clique of size d, say on sets Y1, . . . , Yd. Then GH satisfies the
hypotheses of Lemma 2.6, so there are at least (s/2)dδ(d

2) copies of Kd in GH . Noting that
s ≥ r(1− ε)/K, and referring to the specification of γ, this means that Γ occurs. Therefore
P(Γ) is at most the proportion of graphs having an ε-uniform partition as specified without
a clique of size d in the graph G′ formed by the dense pairs.

There are at most (K + 1)r2K2/2 ways of partitioning the vertex set R and selecting a
graph G′. If G′ does not contain a clique of size d, then – by Turán’s Theorem – the total
number of edges in G′ is at most m2

2
d−2
d−1 . Given G′, the number of ways of constructing G

consistent with the prescription of dense pairs is at most

2|Y0|r+m(s
2)+s2

�
m2
2

d−2
d−1+εm2

�(
s2

2δs2

)m2/2(d−1)

.

The terms here count, respectively: choices of edges incident with Y0, choices of edges inside
the parts of the partition, choices of edges across the dense pairs and those pairs that are
not ε-uniform, and choices of (few) edges across the non-dense pairs. The quantity above is
at most

2
r2
2 (2ε+ε+ d−2

d−1+2ε)
( e

2δ

)δr2/(d−1)
≤ 2

r2
2

d−2
d−1+r2( 5ε

2 + δ
2 log(δ−1e/2)) ≤ 2

r2
2

d−2
d−1+δ log(δ−1)r2

.

So P(Γ) is at most

(K+1)r2K2/22
r2
2

d−2
d−1+δ log(δ−1)r2

2−
r(r−1)

2 ≤ 2−r2ηr2/42ηr2/42
r2
2

d−2
d−1+ηr2/42−r2/22r/2 ≤ 2−r2/2(d−1)+ 3

4ηr2
.
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It remains to bound P(Br,d | Γ). Suppose then that Γ holds: i.e., there are at least γrd

copies of Kd in GH . Each 3-set is contained in at most rd−3 of these copies of Kd, so each
copy of Kd shares a triangle with at most

(d
3

)

rd−3 other copies. Therefore, there is a collection
of at least γr3/

(d
3

)

d-cliques in GH , no two of which share a triangle. Let the vertex sets
of these d-cliques be W1, . . . ,Wt, and let Cj be the event that every subset of Wj of size at
least 2 is in the random hypergraph H, for j = 1, . . . , t. The events Cj are independent, and
each has probability at least 2−2d , so the probability that none of them occurs is at most

(

1− 2−2d
)γr3/(d

3) ≤ 2−r2/2(d−1).

Therefore P(Br,d) ≤ 2−r2/2(d−1)+ηr2 as claimed. �

Theorem 2.8 For fixed d ≥ 3, the probability that, in a random subset S of 2n, every point
of S lies in a d-subcube in S is

exp
(

−2
d−1
2 lg2 n+o(lg2 n)

)

.

Therefore
CU(d; n) = 22n

exp
(

−2
d−1
2 lg2 n+o(lg2 n)

)

.

Proof. Recall that

P(Ad(x)) = 2−(n+1)
n

∑

r=0

(

n
r

)

P(Br,d).

For η > 0, take any n > 2r0 , where r0 = r0(η) is as in the previous lemma. Then we have

2n+1P(Ad(x)) =
n

∑

r=0

(

n
r

)

P(Br,d ≤
r0

∑

r=0

nr +
n

∑

r=r0

nr2−r2/2(d−1)+ηr2
.

Each term in the first sum is at most nr0 ≤ 2lg2 n, while the r-term Yr in the second sum is
equal to 2−βr2+r lg n, where β = 1

2(d−1) − η. Now we have Yr ≤ 2lg2 n/4β, and 1/4β < d−1
2 + d2η

for suitably small η. Therefore

P(Ad(x)) ≤ 2−(n+1)n2
d−1
2 lg2 n+d2η lg2 n,

for any n > 2r0(η).

We also have a lower bound

P(Ad(x)) ≥ 2−(n+1)
(

n
r1

)

2−r2
1/2(d−1),

where r1 = d(d− 1) lg ne. This gives

P(Ad(x)) ≥ 2−n+(d−1) lg2 n− (d−1)
2 lg2 n+o(lg2 n).

10



From these bounds we conclude that

P(Ad(x)) = 2−n+ d−1
2 lg2 n+o(lg2 n),

as n →∞.

We also see that, for n sufficiently large, P(Bdn3/4e,d) ≤ 2−n3/2( 1
2(d−1)+η) ≤ 2−2n. Having

verified this condition, the result now follows from Lemma 2.3. �

For d growing, even very slowly, with n, we cannot use Szemerédi’s Uniformity Lemma.
We suspect that Theorem 2.8 remains valid for d growing more slowly than about lg lg lg n
but, as we shall now show, the behaviour is quite different just above that.

For the next result we need a version of the Janson inequalities (see Janson,  Luczak and
Ruciński [5]). These results are similar to Suen’s Inequality, but apply in a more specialised
framework. For more details and proofs, see also Alon and Spencer [1].

Theorem 2.9 Let L be a set, and let H be a random subset of L defined by taking each
element ` of L with probability p`. Let (Li) = {Li : i ∈ I} be a family of subsets of L, and,
for i ∈ I, let Ci be the event that Li ⊆ H. Define a relation ∼ on the index set I by i ∼ j if
|Li ∩ Lj| ≥ 1 and i 6= j. Set

µ =
∑

i∈I

P(Ci); ∆ =
∑

i∈I

∑

j∼i

P(Ci and Cj).

Then
∏

i∈I

P(Ci) ≤ P(no Ci occurs) ≤ e−µ+∆/2.

If also ∆ ≥ µ, then
P(no Ci occurs) ≤ e−µ2/2∆.

The lower bound in the first inequality above is basically the statement that the events Ci

are non-negatively correlated: it is the upper bounds that constitute the Janson Inequalities.

Our next result is part (3) of Theorem 1.2.

Theorem 2.10 If n is sufficiently large, and

lg lg lg n + lg lg lg lg n + 1 ≤ d ≤ lg lg n + lg lg lg n− 2,

then
22n

exp
(

−f(n; d)2) ≤ CU(d; n) ≤ 22n
exp

(

−f(n; d)1/20) ,

where
f(n; d) = exp

(

22d/(d−1)(log n)d/(d−1)d
)

.

11



This result shows fairly precisely how CU(d; n) grows from about 22n exp
(

−2lg3 n
)

to

about 22n exp
(

−2n1/4
)

. The probability that a random subset S of 2n is a union of d-

subcubes falls off very roughly as 2−222
d

. (This is comfortably fast enough that the ranges
stated above for CU(d; n), for different d, do not intersect.) Given that we know this prob-
ability is already as small as 2−2O(lg2 n) for constant d, and that the probability is certainly
not smaller than 2−2n , the range of d stated above is almost as large as it could be: the
inequalities do not hold if the bounds are extended by 2 in either direction.

Proof. For convenience, let us note that our assumptions on d imply that:

3
2

lg lg n ≤ 2d

d− 1
≤ 1

4
lg n,

so also lg3/2 n ≤ 22d/(d−1) ≤ n1/4, and exp(lg5/2 n) ≤ f(n; d) ≤ exp(n1/3).

Our basic strategy is still to use Lemma 2.3. Accordingly, our main aim is to prove that

1
2
f(n; d)1/18 ≤ 2nP(Ad(x)) ≤ n

2
f(n; d), (1)

which will certainly verify the condition P(Ad(x)) = 2−n+o(n), required for an application of
Lemma 2.3. A minor variation on our proof will show that the condition

P(Bdn3/4e,d) ≤ 2−2n

is also met for sufficiently large n, and so (as we certainly have the final condition d = o(n))
the result will follow.

Recall that 2nP(Ad(x)) = 1
2

∑n
r=0

(n
r

)

P(Br,d). To prove 1, we will show that, for some r0,
(

n
r0

)

P(Br0,d) ≥ f(n; d)1/18,

while, for all r,
(

n
r

)

P(Br,d) ≤ f(n; d).

Let R be a fixed r-set, let L be the family of subsets of R of size at least 2, and as
before let H be a random hypergraph defined by taking each element of L independently
with probability 1/2. For a d-set D, let CD be the event that all subsets of D of size at
least 2 are in H. Thus P(CD) = 2−2d+d+1, and Br,d is the event that no CD occurs. The
Janson Inequalities apply to the family (CD) of events, with D ∼ E if |D ∩ E| ≥ 2.

For the lower bound on some P(Br0,d), we need only that the events CD are mutually
non-negatively correlated (see Theorem 2.9), so

P(Br,d) ≥
(

1− 2−2d+d+1
)(r

d)

12



and
logP(Br,d) ≥ −

(er
d

)d
2−2d

3d.

Let r0 =
⌊

d
3e

(

22d log n
)1/(d−1)

⌋

. Note that r0 ≤ 22d/(d−1) log n ≤ n1/4 log n and so

log
(n

r0

)

≥ r0 log(n/r0) ≥ 2
3r0 log n. Therefore

log
((

n
r0

)

P(Br0,d)
)

≥ r0

(

2
3

log n− rd−1
0

(

3e
d

)d

2−2d

)

≥ r0 log n
(

2
3
− 3e

d

)

≥ 1
2
r0 log n,

since rd−1
0 ≤ 22d log n(d/3e)d−1. This gives that

(

n
r0

)

P(Br0,d) ≥ exp
(

22d/(d−1)(log n)d/(d−1) d
18

)

= f(n; d)1/18,

as claimed.

It remains to prove upper bounds on P(Br,d), namely that
(n

r

)

P(Br,d) ≤ f(n; d) for all r,
and specifically P(Bdn3/4e,d) ≤ 2−2n, for sufficiently large n. Let r1 = 22d/(d−1)(log n)1/(d−1)d,

and note that r1 ≥ log3/2 n. For r ≤ r1, we have
(n

r

)

≤ nr1 ≤ exp
{

22d/(d−1)(log n)d/(d−1)d
}

=
f(n; d), which is as required. For r > r1, we claim that nrP(Br,d) ≤ 1, or equivalently
− logP(Br,d) ≥ r log n, which will imply that

(n
r

)

P(Br,d) ≤ 1 ≤ f(n; d).

As mentioned earlier, we can apply the Janson Inequalities, Theorem 2.9, to the events
CD. The quantities appearing in the Inequalities are

µ =
∑

D

P(CD) =
(

r
d

)

2−2d+d+1

and

∆ =
∑

D

∑

E∼D

P(CD and CE) =
(

r
d

) d−1
∑

`=2

(

d
`

)(

r − d
d− `

)

2−2·2d+2`+2d−`+1 =
(

r
d

) d−1
∑

`=2

U`,

where the `-term U` in the sum accounts for the d-sets E intersecting D in exactly ` elements.
A short calculation shows that the sequence (U`) of terms is log-convex, so the largest term
is either the first or the last. Hence

∆ ≤
(

r
d

)

(d− 2) max
{(

d
2

)(

r − d
d− 2

)

2−2·2d+2d+3, d(r − d)2−
3
22d+d+2

}

.

Since
(r−d

d−2

)/(r
d

)

≤ d2/r2, we can write this as

∆ ≤ max{µ2d5

r2 , 2µd2r2−
1
22d}.

13



As it happens, for r > r1 the first term is always larger; to see this, recall that µ =
(r

d

)

2−2d+d+1 ≥
(

r
d

)d 2−2d , and observe that

µd32
1
22d

r3 ≥
(r

d

)d−3
2−

1
22d ≥

(r
d

)d−3
r−(d−1)/2 ≥ 1.

Hence ∆ ≤ µ2d5/r2. Depending on the value of r, it may or may not be the case that ∆ ≤ µ,
so we shall need both Janson Inequalities. Together, they tell us that

P(Br,d) = P(no CD occurs) ≤ max{e−µ/2, e−µ2/2∆}.

Combining this with our bound ∆ ≤ µ2d5/r2 gives

− logP(Br,d) ≥ min{µ/2, r2/2d5}.

Now
µ
2
≥

(

2r
d

)d

2−2d ≥ r log n
2d

d
≥ r log n,

since rd−1 ≥ (r1 + 1)d−1 ≥ 22d log ndd−1. Also r/2d5 ≥ log3/2 n/2d5 ≥ log n, so we have
− logP(Br,d) ≥ r log n for all r > r1, as required. This establishes equation 1.

To complete the proof, we need to check that − logP(Bdn3/4e,d) ≥ 2n, for n sufficiently
large. This follows from the above calculations since, for r = dn3/4e and n sufficiently large,

µ
2
≥

(

2dn3/4e
d

)d

2−2d ≥
(

2n3/4

d

)d

n−
1
4 (d−1) ≥ nd/4

and r2/2d5 ≥ n3/2/ log n. �

Consider the quantity X(d; n) = 2n − lg CU(d; n) (this is the logarithm of the reciprocal
of the probability that a random set is a union of d-subcubes). For constant values of d,
X(d; n) is around 2

d−1
2 lg2 n, while for values of d above about

√
lg n, X(d; n) is already much

larger, namely 2n divided by a term polynomial in n/d. Theorem 2.10 shows how X(d; n)
grows very rapidly from about 2lg5/2 n to about 2n1/4 . We leave open the question of what
happens just either side of the range covered in Theorem 2.10: it seems reasonable to expect
that X(d; n) ∼ 2lg2 n for d ≤ lg lg lg n, and that X(d; n) = 2n1−o(1) for d ≥ (1 + ε) lg lg n.

3 Lower Bounds

We now move on to higher values of d. Here to get a lower bound we have to construct many
unions of d-subcubes, rather than hope to find one by chance.

We first state our result in a general form, and then specialise to various ranges of d. Not
surprisingly, this result is not close to the truth for d ≤ lg lg n.
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Theorem 3.1 For any function d = d(n) taking values in the positive integers and satisfying
(n− 2d)/

√
n →∞, we have

lg CU(d; n) ≥ 2n n− 2d
n− d

(

d
n− d

)d/(n−2d)(1+o(1))

,

as n →∞.

Proof. Take any set T ⊆ 2n, and let U = U(T ; d) be the set of points at distance exactly
d from T . Now, for each point u ∈ U , take a d-subcube Cu including both u and a point tu
of T ; necessarily Cu ∩ U = {u}, since all other points of Cu are at distance less than d from
the point tu of T . Now, for each subset V of U , consider the set RV =

⋃

u∈V Cu. All the
sets RV are distinct, since RV ∩ U = V for each V . Therefore CU(d; n) ≥ 2|U | for any set
U = U(T ; d). To complete the proof, we will show that there is some set T such that

|U(T ; d)| ≥ 2n n− 2d
n− d

(

d
n− d

) d
n−2d (1+o(1))

.

Let T be a set chosen at random, with P(y ∈ T ) = p for all y, all choices made indepen-
dently; p will be specified shortly. The probability that a fixed x ∈ 2n is at distance exactly
d from such a random set T is then

(1− p)1+n+···+( n
d−2)+( n

d−1)
(

1− (1− p)(
n
d)

)

.

Now, provided (n− 2d)/
√

n →∞, we have

1 + n + · · ·+
(

n
d− 2

)

+
(

n
d− 1

)

=
d

n− 2d

(

n
d

)

(1 + o(1)),

and so
P(d(x, T ) = d) = (1− p)

d
n−2d(n

d)(1+o(1))
(

1− (1− p)(
n
d)

)

.

To maximise the above probability, we choose p so that (1− p)(
n
d) = d

n−d , and so obtain

P(d(x, T ) = d) =
n− 2d
n− d

(

d
n− d

) d
n−2d (1+o(1))

.

This gives the desired result, since E|U(T ; d)| ≥ 2nP(d(x, T ) = d). �

The bound in Theorem 3.1 can be made more explicit in various ranges covered by the
theorem. We obtain the following:

lg CU(d; n) ≥ 2n
(

1− d log(n/d)
n

(1 + o(1))
)

for d = o(n);

lg CU(d; n) ≥ β2n(1 + o(1)) for d = αn with 0 < α < 1/2,
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where

β =
1− 2α
1− α

(

α
1− α

)α/(1−2α)

;

lg CU(d; n) ≥ 2n
(

4m
en

)

(1 + o(1)) for d = n/2−m, with
√

n � m � n.

For d = (1
2 − ε)n, we have that lg CU(d; n) ≥ δ2n, for some δ = δ(ε) > 0. On the other

hand, part (6) of Theorem 1.2, from [3], implies that, for d = (1
2 + ε)n, lg CU(d; n) ≤ 2(1−δ)n

for some δ = δ(ε) > 0. Thus there is a definite “phase transition” around d = n/2, and the
proof of Theorem 3.1 perhaps gives some insight into why this is the case. Indeed, if we try
to use the same construction as in that proof when d ≥ n/2, the best we can do is to take
|T | = 1, which gives only CU(d; n) ≥ 2(n

d). Of course, this is the same bound as we obtain
from the family of monotone formulae, because the two constructions amount to the same
thing. As mentioned earlier, we think that this simple lower bound may be roughly correct,
at least for d ≥ (1

2 + ε)n.

4 The Upper Bound

Our purpose in this section is to establish the upper bound stated in parts (4) and (5) of
Theorem 1.2.

Our result will be proved using techniques of entropy, as presented by Kahn [6, 7]. Our
method will follow that used in [6], in particular in the proof of Theorem 1.9, pp.226-7. Our
description of the method will be somewhat brief; we encourage the interested reader to
consult Kahn’s papers.

Let X be a discrete random variable, taking values in a finite set J , with P(X = j) = pj

for j ∈ J . The entropy of X is

H(X) =
∑

j∈J

pj log(1/pj).

We have H(X) ≤ lg |J |, with equality if and only if X is uniform on J .

If Y is another discrete random variable, then the conditional entropy of X given Y is

H(X | Y) = EH(X | Y = y).

If Z is a function of Y, then H(X | Y) ≤ H(X | Z).

If X1, . . . ,Xm are discrete random variables on the same probability space, then we can
regard the random vector X = (X1, . . . ,Xm) as a single discrete random variable, and we
have

H(X) = H(X1) + H(X2 | X1) + · · ·+ H(Xm | X1, . . . ,Xm−1),
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which implies that

H(X) ≤
m

∑

i=1

H(Xi).

A powerful extension of this last inequality is the following result, proved by Shearer
(see [4]), and stated in this form by Kahn [6, 7]. If X1, . . . ,Xm are random variables on
the same probability space, and A = {a1, . . . , as} ⊆ [m], let XA be the random vector
(Xa1 , . . . ,Xas). Shearer’s Lemma is as follows.

Lemma 4.1 Let X = (X1, . . . ,Xm) be a random vector, and let A = (A1, . . . , At) be a
family of subsets of [m] (possibly with repetitions), with each element of [m] covered at least
k times by the A`. Then

H(X) ≤ 1
k

t
∑

`=1

H(XA`).

We are now ready for our main upper bound on CU(d; n).

Theorem 4.2 For any d ≥ 18 and n with 6
√

lg n ≤ d ≤ n/2,

lg CU(d; n) ≤ 2n
(

1− d3

3n3

)

.

Proof. Let E and O be the two classes of the bipartition of the cube 2n.

The general principle underlying the proof is that, if some point x is in a union S of
d-subcubes, then this severely restricts the choice of what can happen to the set of points
at distance 2 from x; in particular there are at most 2(n

2)
(n

d

)

2−(d
2) choices for how S can

intersect this set. We are not able to use this idea as it stands; however if we move to the
set of points at distance 3 from x, then we can see explicitly how choices of S ∩ E severely
constrain how we can choose S∩O. The entropy framework, in particular Shearer’s Lemma,
allows us to bound how much “information” the random set S encodes.

We continue to follow Kahn [6, 7], in particular pp.226-7 of [6]. Let S be a set chosen
uniformly at random from those subsets of 2n that are unions of d-subcubes. We think of S
as a discrete random variable, so that H(S) = lg CU(d; n).

For x ∈ 2n, let 1x denote the indicator random variable of the event that x is in S. Let
Xx = (1y : y ∈ N3(x)), where N3(x) is the set of points at distance 3 from x in 2n. Thus
Xx encodes the intersection of S with N3(x).

Let Qx be the event that, for some d-subcube C containing x, C ∩ N3(x) ⊆ S. By
symmetry, the probability of Qx in this uniform measure is independent of x – we denote
the probability by q.

As in the papers of Kahn, we have that

lg CU(d; n) = H(S) = H(S ∩ O) + H(S ∩ E | S ∩ O).
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Now

H(S ∩ E | S ∩ O) ≤
∑

x∈E

H(1x | S ∩ O) ≤
∑

x∈E

H(1x | 1Qx) = 2n−1H(1v | 1Qv),

for any v ∈ E , where the equality holds since all the terms are equal. Furthermore,

H(1v|1Qv) = qH(1v|Qv) + (1− q)H(1v|Qv) ≤ q × 1 + (1− q)× 0 = q,

since the event Qx is necessary for x to be in S. Therefore we have

H(S ∩ E | S ∩ O) ≤ 2n−1q.

To bound H(S∩O), we apply Shearer’s Lemma with the family {N3(x) : x ∈ E}, noting
that each element y ∈ O is covered exactly

(n
3

)

times by the members of this family. We
obtain

H(S ∩ O) ≤ 1
(n

3)
∑

x∈E H(Xx)

= 2n−1

(n
3)

(H(1Qv) + H(Xv | 1Qv)) ,

for any v ∈ E . Certainly H(1Qv) ≤ 1, while

H(Xv|1Qv) = qH(Xv|Qv) + (1− q)H(Xv|Qv).

We see that H(Xv|Qv) ≤ |N3(v)| =
(n

3

)

. Under Qv, Xv can take at most 2(n
3)

(n
d

)

2−(d
3) values,

so

H(Xv|Qv) ≤ lg
(

2(n
3)

(

n
d

)

2−(d
3)

)

≤
(

n
3

)

−
(

d
3

)

+ d lg n.

Now we have

H(S ∩ O) ≤ 2n−1
(n

3

)

(

1 + q
{(

n
3

)

−
(

d
3

)

+ d lg n
}

+ (1− q)
(

n
3

))

.

Combining the bounds on H(S ∩ E | S ∩ O) and on H(S ∩ O) gives:

lg CU(d; n) ≤ 2n−1

(n
3)

[

1 + q
{(n

3

)

−
(d
3

)

+ d lg n
}

+ (1− q)
(n

3

)]

+ 2n−1q

= 2n−1

[

1 + 1
(n

3)
+ q

(

1− (d
3)−d lg n

(n
3)

)]

.

Certainly q ≤ 1, so

lg CU(d; n) ≤ 2n−1
[

2− d(d− 1)(d− 2)− 1− 6d lg n
n3

]

≤ 2n
[

1− 5d3/6− d3/6
2n3

]

,

which is the result claimed. �

While the bounds from the last two sections – see parts (4) and (5) of Theorem 1.2 –
reveal the basic behaviour of CU(d; n), they are still quite far apart. For instance, if d = n/4,
our results are that

2
3
√

3
(1 + o(1)) ≤ 2−n lg CU(d; n) ≤ 1− 1

192
.
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To be specific, one topic that seems worthy of study is to determine how fast 2−n lg CU(d; n)
approaches 1 as d/n tends to 0 slowly. Our upper bound of 1− O((d/n)3) on this function
seems unlikely to be correct, but we think our lower bound of 1− O((d/n) log(n/d)) might
not be far from the truth.

5 Convergence

In this section, we change tack somewhat. We concentrate on a particular range of d, namely
d = αn, for α ≤ 1/2 constant. In this range, we have shown that

2β′(α)2n(1+o(1)) ≤ CU(αn; n) ≤ 2β′′(α)2n(1+o(1)),

where 0 < β′(α) and β′′(α) < 1 for α ∈ (0, 1/2]. It seems very likely that there is a single
function β(α) such that CU(αn; n) = 2β(α)2n(1+o(1)) as n → ∞. We shall not quite be able
to prove this, but we shall get very close.

To state our result precisely, we define

βn(α) =
lg CU(αn; n)

2n ,

for every n and every α ∈ (0, 1
2 ].

One natural approach to proving that βn(α) converges for each fixed α would be to show
that the function is monotonic in n. We do not know whether this is true, but the next
result is of a similar nature.

Lemma 5.1 There exists an absolute constant n0 such that, for any α ∈ (0, 1
2 ], and any

integers n, m with n0 ≤ n ≤ m ≤ 2n,

βm(α) ≤ βn(α− log n/
√

n) + e−2 log2 n.

Proof. Let S be any subset of 2m that is a union of cubes of dimension at least αm.
Such a set can be written as a union of at most 2m such subcubes; say S = C1 ∪ · · · ∪ Ct.
Suppose that Cj is defined by fixing the co-ordinates outside the set Vj ⊂ [m], so |Vj| ≥ αm
for j = 1, . . . , t.

Now choose a random set A ⊂ [m] with |A| = n. For each j, the probability that |A∩Vj|
is less than αn −

√
n log n is at most

∑

k≥
√

n log n

(

1 + 2k
n

)−2k, for any α ∈ (0, 1
2) and any

m ∈ [n, 2n]. This probability is at most e−3 log2 n, for sufficiently large n. Therefore there is
a set A ⊂ [m] of size n such that |A ∩ Vj| ≥ αn−

√
n log n for all but at most 2me−3 log2 n of

the subcubes Cj.

For such an A, we decompose 2m as the union of s = 2m−n cubes D1, . . . , Ds of dimension
n, each defined by a choice of the co-ordinates outside A. If Cj intersects Di, then their
intersection is a subcube of dimension |Vj ∩ A|.
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Hence, for some A, S can be written as a union S0 ∪ S1 ∪ · · · ∪ Ss, where S0 is a union
of at most 2me−3 log2 n subcubes, and Si ⊆ Di is a union of cubes each of dimension at least
αn−

√
n log n.

The number of choices for A is at most 2m. The number of choices for S0 is at most
(3m)2me−3 log2 n , since the total number of subcubes of 2m is 3m. The number of choices for
each Si is CU(αn −

√
n log n; n) = 22nβn(α−log n/

√
n). Therefore the binary logarithm of the

number CU(αm; m) of possible sets S is at most

m + lg 3m2me−3 log2 n + s2nβn(α− log n/
√

n) ≤ 2m
(

βn(α− log n/
√

n) + e−2 log2 n
)

.

By definition of βm(α), this is the claimed result. �

We now prove our main result of this section.

Theorem 5.2 Suppose 0 ≤ α1 < α2 ≤ 1
2 . Then

lim inf
n

βn(α1) ≥ lim sup
n

βn(α2).

Proof. Suppose the statement is false, and take any α1 < α2, and ε > 0, such that
lim inf βn(α1) = β0 while lim sup βn(α2) ≥ β0 + ε.

Choose n1 larger than the constant n0 of the previous lemma, such that in addition:
βn1(α1) ≤ β0 + ε/3,

∑∞
k=0 e−2 log2(n12k) ≤ ε/3, and

∑∞
k=0

log(n12k)√
n12k

≤ α2 − α1.

Now take any n′ ≥ n1, and let t be the integer such that 2tn1 ≤ n′ < 2t+1n1. We claim
that, for ` = 0, . . . , t,

βn12`

(

α1 +
`−1
∑

k=0

log(n12k)√
n12k

)

≤ βn1(α1) +
`−1
∑

k=0

e−2 log2(n12k).

Indeed, the statement for ` = 0 is trivial, and the statement for ` > 0 follows by induction on
using the previous lemma, setting n = n12`−1 and m = n12`. Applying the previous lemma
again then shows that

βn′(α2) ≤ βn′

(

α1 +
∑̀

k=0

log(n12k)√
n12k

)

≤ βn1(α1) +
∑̀

k=0

e−2 log2(n12k) ≤ β0 + 2ε/3.

This holds for all n′ ≥ n1, contradicting the assumption that lim sup βn(α2) ≥ β0 + ε. �

What this tells us is that, for any β, there is at most one α such that lim inf βn(α) < β <
lim sup βn(α). In particular this implies that there are at most countably many α such that
limn→∞ βn(α) does not exist. The following obvious conjecture is surely true.

Conjecture 5.3 For every α ∈ (0, 1
2 ], there is a real β = β(α) such that βn(α) → β as

n →∞. Equivalently, CU(αn; n) = 2β2n(1+o(1)) as n →∞.

We know that, for 0 < α < 1/2, the value β(α) would have to lie strictly between 0
and 1.
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6 Open Problems

While it would be nice to settle Conjecture 5.3, we feel that there are more important issues
left to resolve, and we conclude by reminding the reader of some of the main outstanding
problems.

As we have already mentioned, there are some ranges of d = d(n) not covered by Theo-
rem 1.2, and there are significant gaps between the lower and upper bounds in several parts
of that result, notably (5), dealing with the range d = αn, with α < 1/2.

We also wish to stress that the picture for d = n − k, k constant, is far from complete.
In particular, Bollobás, Brightwell and Leader [3] showed that there are constants ck with
lg SAT(k; n) = ck

(n
k

)

(1 + o(1)) for each fixed k ≥ 2, but were only able to determine ck for
k = 2. Our Conjecture 1.1 would imply that ck = 1 for all k.
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