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Abstract

We show that if a graph H is k-colorable, then (k−1)-branching walks on H exhibit
long range action, in the sense that the position of a token at time 0 constrains the
configuration of its descendents arbitrarily far into the future.

This long range action property is one of several investigated herein; all are similar
in some respects to chromatic number but based on viewing H as the range, instead
of the domain, of a graph homomorphism.

The properties are based on combinatorial forms of probabilistic concepts from
statistical physics, although we argue that they are natural even in a purely graph-
theoretic setting. They behave well in many respects, but quite a few fundamental
questions remain open.
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Figure 1: Reconstructing a 2-branching walk on K3

1 Introduction

Suppose some token takes a walk on a connected graph H, stepping from node to adjacent
node at each tick of a clock. If we know its position at time 0, can we deduce anything about
its position at time t for large t?

Certainly we can if H is bipartite, and conversely if χ(H) > 2 then for large t (t ≥ 2|H|−2
will do) the token could be anywhere. Thus in the realm of connected graphs we could take
the property to be an alternate definition of 2-colorability, and seek an extension analogous
to k-colorability.

Suppose, for instance, that H = K3 and imagine that the token takes a 2-branching walk
on H; at each step the token divides into two (labeled) tokens both of which step at the next
tick, so that one token at time 0 yields 2t at time t, many of which may occupy the same
node. If it happens that at each time, the two “children” of each token take different steps,
then it is clear that the positions of the 2t descendents will uniquely determine the starting
node. We take this property of the constraint graph K3 as analogous to being 3-colorable.

A d-branching walk on H is nothing more than a graph homomorphism from the complete
d-branching tree T d to H. (We define T d to be the regular Cayley tree of degree d+1, although
it is often convenient to assume, as here, that the root r has degree only d). Fig. 1 illustrates
the reconstruction of a particular 2-branching walk on K3, viewed as a 3-coloring of T 2, from
positions at time t = 6.

We denote the set of homomorphisms from a graph G to a graph H by Hom(G,H);
later we will endow Hom(G,H) with its own graph structure. To avoid confusion we will
call vertices of H “nodes” (usually denoted by a, b or c) and vertices of G “sites” (usually
denoted by x, y or z). In this context G, which is often infinite but always countable and
locally finite, will be called the “board” and the elements of Hom(G,H) labelings of G.

To simplify notation we will often confuse a graph with its set of vertices. The “constraint
graph” H will always be finite and connected, and (unlike G) may have some loops; a loop at
a node a ∈ H allows a homomorphism in Hom(G,H) to affix the label a to adjacent sites of
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G. Some of what follows will be uninteresting for looped constraint graphs, however, for the
reason that a looped node causes the chromatic number to become infinite. We do require
that H contain at least one edge, thus it cannot consist of a single unlooped node.

We will say that Hom(G,H) exhibits long range action if, for every k > 0, there are sets
X and Y of sites of G with d(X, Y ) ≥ k, and maps ϕ and ψ in Hom(G,H), such that no
θ ∈ Hom(G, H) agrees with ϕ on X and with ψ on Y . Thus what happens in one part of
G can constrain what happens far away. Our “long range action” property is precisely the
negation of the property “strongly irreducible” of [1].

If G is a class of graphs, then 〈G, H〉 is said to exhibit long range action if Hom(G,H)
exhibits long range action for some G ∈ G.

When G is a Cayley tree, we shall show that we can always take X to consist just of
the root. A map ϕ in Hom(T d, H) is said to be cold if there is a node a of H such that for
any k, no ψ ∈ Hom(T d, H) agrees with ϕ on the sites at distance k from the root r but has
ψ(r) = a. Hom(T d, H) itself is said to be cold if it contains a cold map, i.e. if some label can
be forbidden at the root by values arbitrarily far away. We will see later that Hom(T d, H)
is cold if and only if it exhibits long range action.

It is easy to verify that if Hom(T d, H) is cold then so is Hom(T d′ , H) for any d′ > d. We
say that H is (d+1)-warm if Hom(T d−1, H) is not cold, and define the warmth w(H) of H to
be the greatest d such that H is d-warm; equivalently, the least d such that Hom(T d−1, H)
is cold. If H is d-warm for every d, we say w(H) = ∞. Every constraint graph H is 2-warm,
and w(H) = 2 if and only if H is bipartite.

Although we hope to persuade the reader that this notion is natural and interesting
within graph theory, some explanation of its origin may be in order here. A statistical
system in physics is said to exhibit “long range order” if its state in one region of space gives
non-disappearing information about its state in other regions far away. Thus, for example,
a magnetized bar exhibits long range order because the spin of a particle at one end is
correlated with the spin of a particle at the other end.

In our system the space is an infinite graph G, often the discrete Cayley tree T d; the
states are nodes of H constrained by requiring adjacent sites to be in adjacent states. Our
combinatorial notion of long range action is in a sense stronger than the probabilistic notion
from physics, and produces what what we call “frozen” or “semi-frozen” Gibbs measures in
[3] to which, along with [2] and [4], the reader is referred for a more complete explanation.

2 Warmth

We establish first that warmth and chromatic number coincide for complete graphs.

Theorem 2.1. For any integer d ≥ 2, the complete graph Kd has warmth d.

Proof. We have already observed, in effect, that Hom(T d−1, Kd) is cold; a cold map is ob-
tained by assigning all possible labels to the children of each site. To complete the proof we
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need to show that Hom(T d, Kd) is not cold; but this is obvious because any labeling of a site
and its grandchildren can be extended to its children.

It will be useful to note the very nice behavior of warmth with respect to products and
retracts. The product at issue is the “categorical” graph product, in which (a, a′) ∼ (b, b′) in
H×H ′ if and only if a ∼ b in H and a′ ∼ b′ in H ′. A retraction of H is a homomorphism ρ
from H to some (necessarily induced) subgraph H− of H, called a retract, such that ρ�H−

is the identity.

Theorem 2.2. (i) For any H and H ′, w(H×H ′) = max(w(H), w(H ′)); (ii) If H− is a
retract of H then w(H−) ≥ w(H).

Proof. Both parts are just a matter of chasing down the definition. A map in Hom(T d, H×H ′)
is nothing more or less than the pointwise product of maps in Hom(T d, H) and Hom(T d, H ′)
and is cold precisely if one of the two factor maps is cold. For the second statement, let
ρ retract H to H− and suppose ϕ is a cold map in Hom(T d, H−) which forbids the label
a ∈ H− at the root r. Then ϕ, regarded as a homomorphism to H, also forbids a at r within
Hom(T d, H), because if θ ∈ Hom(T d, H) agrees with ϕ on the sites at distance k from r and
θ(x) = a then ρ ◦ θ contradicts the coldness of ϕ.

We remark that the chromatic number analog of statement (ii), namely “χ(H−) ≥
χ(H)”, holds with equality. However, for the analog of statement (i), “χ(H ×H ′) ≤
min(χ(H), χ(H ′))” is easy but equality is a notoriously open conjecture of Hedetniemi [6].

It follows from Theorem 2.2 that w(H) ≤ χ(H) whenever H contains a clique of size
χ(H), since a χ(H)-coloring of H can then be regarded as a retraction. In fact, we will see
later that the clique condition can be dropped.

If A is a subset of (the nodes of) a constraint graph H, we let N(A) := {b ∈ H b ∼
a for some a ∈ A}. A collection {A1, . . . , As} of subsets of H is said to produce a subset A
of H if

⋂

N(Ai) = A. The idea is that, if what we know about the labels of s neighbors of
a site x is that neighbor xi has a label from the set Ai, then what we can deduce is exactly
that x has a label from A.

Theorem 2.3. Given a constraint graph H and a natural number d ≥ 1, the following are
equivalent:

(i) Hom(T d, H) exhibits long range action;

(ii) there is a cold H-labeling of T d (i.e., H is (d+2)-warm);

(iii) there is a d-stable family of subsets of H;

(iv) there is no ordering A1, . . . , AN of the non-trivial subsets of H such that each d-tuple
(Ai1 , . . . , Aid) of sets produces either ∅, H, or a set Aj with j > min{ik}.
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Proof. (ii) =⇒ (i) is obvious, taking X = {r} and Y the sites at distance k from the root.
We are using rather degenerately the fact that H is connected since otherwise the forbidden
label a might be an isolated node of H, preventing us from constructing ϕ.

(iii) =⇒ (ii). Suppose there is a d-stable family A. Then we define an H-labeling of T d

as follows. Associate the root r with a pair (Ar, ar) where Ar ∈ A and ar ∈ Ar. Now work
out from the root. If y is associated with a pair (Ay, ay), and y1, . . . , yd are the children of
y, let {Ay1 , . . . , Ayd} be a collection of sets from A producing Ay, and let ayi be a node in
Ayi adjacent to ay. When all the sites of T d have been treated in this manner, the labeling
ψ where ψ(y) = ay for each y is a member of Hom(T d, H). Furthermore, for any k ∈ N and
any H-labeling θ such that θ � (T d\Nk(x)) = ψ � (T d\Nk(x)), we see (by working in towards
the root) that θ(y) ∈ Ay for every y ∈ Nk(x). In particular, θ(x) can only take values in
Ax 6= H, so ψ is a cold H-labeling of T d.

(iv) =⇒ (iii). Suppose there is no d-stable family and let A0 be the family of all
non-trivial sets; this is not a d-stable family, so there is some set A1 ∈ A0 that cannot be
produced by d sets in A0. Now let A1 = A0\{A1}, and continue, thus generating an ordering
which contradicts (iv).

(ii) =⇒ (iv). Suppose A1, . . . , AN is an ordering forbidden by (iv), where N = 2|H|− 2.
Let ψ be any H-labeling of T d. For any site x at distance ` < N from r, let Sx be the set of
sites y at distance N from r such that x is on the r-y path, and let Cy be the set of nodes b
such that there is an extension of ψ �Sx in which x gets label b. Note that Cx is never empty,
since it contains ψ(x). Also note that Cx is exactly the set produced by {Cx1 , . . . , Cxd}.
Therefore, by induction, either Cx = H or Cx = Aj for some j ≥ N−`+1. In particular,
Cr = H, so that all labels are possible for x, and ψ is not cold.

(i) =⇒ (ii). Suppose from now on that Hom(T d, H) exhibits long range action.

Fix a k ∈ N. Suppose that, for all finite sets X, whenever Y is a set with d(X,Y ) ≥ k, and
ϕ, ψ ∈ Hom(T d, H), then there is some θ ∈ Hom(T d, H) extending both ϕ�X and ψ �Y . We
claim that (T d, H) fails to exhibit action at distance k, which will be a contradiction. Indeed,
let Z = {z1, z2, . . . , } be an infinite set of sites, let Y be a set with d(Z, Y ) ≥ k, and let
ϕ, ψ be homomorphisms. Set Zn = {z1, . . . , zn}, for all n. Then there are homomorphisms
θ1, θ2, . . . such that each θn agrees with ϕ on Zn and with ψ on Y . Now there is some
subsequence of (θn) that tends to a limit, and this limit is a homomorphism that agrees with
ϕ on all of Z and with ψ on Y , as required.

Therefore, for each k ∈ N, there is a finite set X, a set Y with d(X, Y ) ≥ 2k, and
homomorphisms ϕ, ψ such that ϕ � X and ψ � Y cannot be simultaneously extended. We
can also take Y to be finite (for instance we can assume it consists of the sites at distance
exactly 2k from X). Now let X be minimal with this property, and then take Y minimal
with the property. Take any shortest path from X to Y , and let x be the site on this path
at distance k from X. The site x is thus at distance at least k from X ∪ Y , and separates
X ∪ Y . By minimality of X and Y , for each branch B from x there is some homomorphism
θB of Hom(T d, H) such that θB agrees with ϕ on X ∩ B and with ψ on Y ∩ B. Since we
cannot glue these homomorphisms together to make a homomorphism θ extending all of
ϕ �X and ψ �Y , there must be some branch B and some label a ∈ H such that there is no
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Figure 2: H8, G7 and G5

homomorphism θ with θ(x) = a, agreeing with θB on (X ∪ Y ) ∩B.

Therefore, for all k, there is a singleton set x (which we may take to be the root of T d in
each case), a set Yk with d(x, Yk) ≥ k (which we may take to be T d\Nk(x)), a label ak, and
a homomorphism ψk, such that there is no θ with θ �Yk = ψk �Yk and θ(x) = ak. By taking
a subsequence, we may assume that the label ak is always equal to a. Now there is some
subsequence of the ψk that tends to a limit ψ. It is now clear that ψ is a cold H-labeling of
T d.

3 Examples

We have seen that w(Kd) = d; note that the singletons comprise a (d−1)-stable family.
In fact in any d-colorable graph the color classes are candidates for being a (d−1)-stable
family; if the graph is uniquely d-colorable then they indeed will be, since every node is then
adjacent to nodes of all other colors. We could extend this argument to show that containing
a uniquely d-colorable graph is enough to prevent (d+1)-warmth, but, again, we will prove
a stronger result later.

Having girth at least 5, even for looped constraint graphs, already prevents 4-warmth.
For, let a1a2 · · · asa1 be a shortest cycle in H, with s ≥ 5, and let A = {{a1}, . . . , {as}};
then {ai} is produced by {{ai−1}, {ai+1}}. Indeed, this construction works whenever there
is a long cycle in H not sharing two consecutive edges with a 4-cycle (or 3-cycle, when loops
are present). We can use this idea to produce examples H that are not 4-warm but have
arbitrarily large cliques, for instance. This in turn shows that we can have w(H−) > w(H)
for H− a retract of H (cf. Theorem 2.2).

For another example that is not 4-warm, consider the graph H8 defined by taking an
8-cycle a1a2 · · · a8a1, and adding the four “diagonal” edges {aiai+4} (see left-hand side of
Fig. 2.) This graph has chromatic number 3, and is not 4-warm; the family of singletons is
2-stable, since each {ai} is produced by {{ai−1}, {ai+1}}. However, this family has no obvious
connection to a 3-coloring, or to a shortest odd cycle. There is another quite different 2-
stable family, namely {{a1, a4}, {a2, a5}, . . . , {a8, a3}}; note that {{a8, a3}, {a2, a5}} produces
{a1, a4}.
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For the next two examples we use the Grÿotszch construction, defined as follows: if H has
vertices a1, . . . , an then Gr(H) has vertices a1, . . . , an, b1, . . . , bn and c; if ai ∼ aj in H then
ai ∼ aj and bi ∼ aj in Gr(H), and c is adjacent to every bi. One of the nice properties of
the construction is that always χ(Gr(H)) = 1 + χ(H).

In the graph G7 := Gr(C7) (center, Fig. 2) the family

A = {{a1}, {a2}, . . . , {a7}, {b7, b2}, {b1, b3}, . . . {b6, b1}, {c}}

is 2-stable: for instance {a1} is produced by {{a7}, {b2, b4}}, {b7, b2} is produced by {{a1}, {c}},
and {c} is produced by {{b1, b3}, {b2, b4}}. Therefore G7 is not 4-warm. However, there is
no 2-stable family consisting of disjoint sets—our later proof will show that disjoint sets are
always obtainable if H is 3-colorable.

The standard Grÿotszch graph G5 := Gr(C5) (right-hand side of Fig. 2) also fails to be
4-warm. One nice 2-stable family is

A = {{a1}, . . . , {a5}, {a1, b1}, . . . , {a5, b5}, {b1, b3}, {b2, b4}, . . . , {b5, b2}, {c}} .

Notice that A contains some pairs of sets related by inclusion, and simply taking the
inclusion-minimal elements of A does not yield a 2-stable family. Note however that, for
every set A in A, there is an element u ∈ A such that A is minimal in A subject to con-
taining u—we say that A is semi-minimal in A. In general, if A is any d-stable family in a
graph H, the family of semi-minimal sets in A is again d-stable.

We expect that there are constraint graphs where inclusion relations in a d-stable family
are unavoidable. However, for G5, a careful pruning of the family A leaves the smaller
2-stable family

{{a2}, {a3}, {a4}, {a5}, {a1, b1}, {b1, b3}, {b1, b4}, {b2, b5}, {c}} ,

where no pair of sets is related by inclusion.

An example of a graph that is 4-warm is the 5-wheel W5 (right-hand side of Fig. 3). To
see this, let a1, . . . , a5 be the nodes of the 5-cycle in W5, each attached to the center c. Order
the subsets of W5 by size, beginning with the smaller sets, and listing those that contain c
after those that do not. It is straightforward to check that each pair of sets produces a set
later in this order than the earlier of the two sets.

4 Circular Chromatic Number

In the next section, we shall prove that w(H) ≤ χ(H) for all unlooped constraint graphs H.
To motivate our approach, we begin by considering the case of chromatic number 3, when
we will be able to prove a little more. In a sense, it is not χ(H) ≤ 3 that forces 3-warmth
but χ(H) < 4.

For integers 1 ≤ k ≤ d, a (k, d)-coloring of a loopless graph H is a function ϕ : H →
{0, . . . , k−1} such that, whenever a ∼ b, d ≤ |ϕ(a)− ϕ(b)| ≤ k−d. The circular chromatic
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number χc(H) of H is the infimum of the set {k/d : there is a (k, d)-coloring of H}. This
parameter is also known as the star-chromatic number.

The following facts were established by Vince [14].

• For all H, χ(H) = dχc(H)e.

• The infimum in the definition of χc(H) is always attained; furthermore if χc(H) = k/d
with k and d positive and relatively prime, then there is a (k, d)-coloring of H.

• If ϕ is a (k, d)-coloring of a graph H with χc(H) = k/d, there is a cycle a0a1 · · · as−1a0

in H such that ϕ(ai+1) ≡ ϕ(ai) + d (mod k). We call such a cycle tight.

Zhu [15] has written a useful survey of work relating to the circular chromatic number.

Theorem 4.1. If H is an unlooped constraint graph, with circular chromatic number less
than 4, then there is a 2-stable family of disjoint subsets of H, and so H is not 4-warm.

Proof. Take a (k, d)-coloring ϕ of H, where χc(H) = k/d < 4 and k and d are relatively
prime. Let a0a1 · · · as−1a0 be a tight cycle C, with ϕ(ai+1) ≡ ϕ(ai) + d (mod k). Without
loss of generality, ϕ(a0) = 0, so that ϕ(ai) ≡ id (mod k), and therefore s is a multiple of k.

For i = 0, . . . , k− 1, let Ci be the set of nodes of C that are assigned color id, so
Ci = {ai, ai+k, ai+2k, . . . , ai+s−k}. Now define the sets Ai ⊇ Ci recursively by putting node a
in Ai whenever there are nodes a− and a+ of H with a− ∈ Ai−1 and a+ ∈ Ai+1.

We claim that ϕ(j) = id for every a ∈ Ai. We establish this recursively; it is true for
a ∈ Ci, and if a is adjacent to nodes a− ∈ Ai−1 and a+ ∈ Ai+1 for which the claim is true,
then ϕ(j) /∈ ((i−2)d, id) and ϕ(j) /∈ (id, (i+2)d); since k < 4d, id is the only color available
for a.

This proves that the Ai are disjoint. By construction, {A0, . . . , Ak−1} is a 2-stable family,
with {Ai−1, Ai+1} producing Ai for each i.

This completes the proof.

5 Warmth and Chromatic Number

We are now in a position to connect these two parameters, one of which treats H as the
range of a homomorphism, the other as the domain.

Theorem 5.1. For every unlooped H, the warmth of H is at most its chromatic number.

Proof. Let χ(H) = d+1 with the object of constructing a cold labeling of T d by H. We
begin by finding a map Ψ from H to the unit vectors of Rd with the following property:

If u ∼ v in H then Ψ(u) ·Ψ(v) < 0 .
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To do this we fix a regular simplex in Rd which is centered at the origin and sized so that
its vertices are unit vectors, then color H properly with d+1 colors and replace each color
by a different vertex of the simplex.

Now that we know such a map exists, we fix such a Ψ which maximizes

α = min{−Ψ(u) ·Ψ(v) u ∼ v}

and then minimizes the number of edges {u, v} of H for which Ψ(u) · Ψ(v) = −α. We call
these edges “tight”, likewise any node incident to a tight edge. Note that, in the case d = 2,
a map with the property above exists if and only if χc(H) < 4; in this case, the tight edges
and nodes are those lying on some tight cycle. Thus our approach here generalizes that in
Theorem 4.1.

We now digress slightly to prove a geometric lemma. We say that a set A of vectors
forces ~v if ~v is a unit vector which satisfies ~v · ~u ≤ −α for every ~u ∈ A, but no unit vector ~w
satisfies ~w · ~u < −α for every ~u ∈ A. We say that A fixes the unit vector ~v if (a) ~v · ~u = −α
for every ~u ∈ A, and (b) if ~w · ~u ≤ −α for every ~u ∈ A then ~w = ~v.

Lemma 5.2. Fix α with 0 < α < 1, and let A be a finite set of unit vectors in Rd which
forces a certain unit vector ~v. Then there is a subset C of A with |C| ≤ d which fixes ~v.

Proof. We may assume without loss of generality that ~v = (1, 0, . . . , 0); let B consist of those
members of A which lie on the (d−2)-sphere

S := {~w |~w| = 1, w1 = −α} .

We claim that every closed hemisphere of S contains some ~u ∈ B.

If not, we may assume the hemisphere S− := {~w ∈ S w2 ≤ 0} is missed, so that u2 > 0
for ~u ∈ B. For ε > 0 let

~v(ε) := (
√

1− ε2,−ε, 0, 0, . . . , 0)

so that
~u · ~v(ε) = −α

√
1− ε2 − εu2 < −α

for ~u ∈ B and sufficiently small ε. If we also take ε small enough so that ~u · ~v(ε) < −α for
those u ∈ A\B, we have a contradiction to A forcing ~v.

It follows by the separating hyperplane theorem that the point ~z := (−α, 0, 0, . . . , 0) lies
in the convex hull of B. Moreover, since the dimension of the hyperplane defined by w1 = −α
is d−1, Carathéodory’s Theorem (see e.g. [9]) tells us that there is a subset C ⊆ B of size
at most d such that ~z already lies in the convex hull of C.

If some vector ~w satisfies ~w · ~u ≤ −α for each ~u ∈ C then it also satisfies ~w · ~z ≤ −α,
thus w1 ≥ 1, and cannot be a unit vector unless ~w = ~v. Hence C fixes ~v.

We are now ready to finish the proof of Theorem 5.1. We define a labeling of T d by H
as follows.
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Choose any tight node u ∈ H to label the root r. By Lemma 5.2 there is a set X of at
most d (tight) neighbors of u whose images under Ψ fix Ψ(u). Use all the elements of X to
label the children of r and proceed in like fashion to label the rest of T d.

To see that this labeling is cold, imagine that all sites at distance less than k are unlabeled,
and then relabeled in some consistent fashion. We claim that at every site the old and new
labels have the same image under Ψ. This can be seen by induction working in from distance
k−1.

It follows that Hom(Td, H) is cold.

The methods used in the above proof call to mind the vector chromatic number of a
graph H, defined by Karger, Motwani and Sudan [8] as the minimum k such that there
exists a labeling Ψ of V (H) by unit vectors in R|V (H)| in which adjacent nodes u and v
satisfy 〈Ψ(u), Ψ(v)〉 ≤ − 1

k−1 . Karger, Motwani and Sudan show that the vector chromatic
number of H can be approximated arbitrarily closely in randomized polynomial time. They
also show that the vector chromatic number of H is at most ϑ(H), where ϑ is the Lovász
theta-function (see for instance Grÿotschel, Lovász and Schrijver [5]). For us, the key issue is
not the extremal value of the inner product, but the minimum dimension in which the inner
product of adjacent nodes can be made negative, and we know of no connection between
warmth and the Lovász theta-function.

Our particular version of “vector labeling” has occurred before in a very different context
connected with the Ramsey number R(3, 3, . . . , 3); see for instance the survey article by
Nešetřil and Rosenfeld [10]. In the language of that paper, we are interested in the minimum
d such that the graph H is α-embeddable in Rd for some α >

√
2.

We now introduce two new graph parameters, “heat” and “mobility”, but warmth will
remain in the picture.

6 Heat

If in condition (i) of Theorem 2.3 the d-regular tree T d−1 is replaced by a general graph of
maximum degree d, we obtain a strengthening of the notion of warmth as follows.

Let Gd be the class of all (locally finite) graphs of maximum degree at most d. A constraint
graph H is said to be d-hot if the pair 〈Gd−1, H〉 does not exhibit long range action, i.e., if
Hom(G,H) does not exhibit long range action for any board of maximum degree at most
d− 1. The heat h(H) of H is the greatest d such that H is d-hot, or, equivalently, the least
d such that Hom(G,H) exhibits long range action for some board of maximum degree d.

Theorem 6.1. The following are equivalent for any d ≥ 2 and any constraint graph H:

(i) for all k > 0 there is a graph G ∈ Gd−1 such that Hom(G,H) exhibits action at distance
k;
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(ii) H is not d-hot (i.e., there is a single graph G ∈ Gd−1 such that Hom(G,H) exhibits
action at all distances k);

(iii) there is a graph G ∈ Gd−1 such that, for all k > 0, there are finite witnesses X, Y ⊂ G
to action at distance k.

Proof. Clearly we have (iii) =⇒ (ii) =⇒ (i).

(i) =⇒ (ii). Suppose that (i) holds and choose, for each k > 0, a Gk ∈ Gd−1 together
with subsets Xk and Yk and maps ϕk and ψk in Hom(Gk, H) with no common extension of
ϕk �Xk and ψ �Yk. If H is d-hot there is a distance k′ which is enough to eliminate action on
the disjoint union G :=

⋃∞
k=1 Gk, but the sets Xk′ and Yk′ , and extensions to G of the maps

ϕk′ and ψk′ , testify otherwise.

(ii) =⇒ (iii). Take a board G ∈ Gd−1 such that Hom(G, H) exhibits long range action.
So, for any distance k, there are sets X and Y with d(X, Y ) ≥ k, and labelings ϕ and ψ with
no common extension of ϕ�X and ψ �Y . Suppose however that no finite subset X ′ ⊂ X can
replace X. Then, as in the proof of Theorem 2.3, we get a contradiction by taking a nested
sequence (Xi) of finite subsets of X whose union is X, and letting θ be any pointwise limit
of the labelings θi obtained as common extensions of ϕ �Xi and ψ �Y . Once X is finite we
can limit Y to the (finite) set of sites at distance exactly k from X.

Thus we have a range of conditions for H equivalent to having heat less than d. However,
the situation is not quite as good as for warmth; we don’t know whether we can strengthen
condition (iii) further to find a single finite set X in a graph G ∈ Gd−1 which can be used
for each k. It is conceivable that there is a constraint graph H of heat less than d for which
the sets X = Xk and Y = Yk in (iii) necessarily grow with k, whatever board G ∈ Gd−1 is
chosen, but we know of no examples of this phenomenon.

Clearly the heat h(H) is always at most the warmth w(H) of H. Since Hom(G, H)
may be empty when G is not a tree, there is a tendency for T d−1 to be the easiest board
in Gd on which to exhibit long range action, in which case heat and warmth will be equal.
For instance, Hom(T 3, K4) exhibits long range action, whereas Hom(Z2, K4) (4-coloring the
plane grid) does not. Indeed it is easily checked that h(Kd) = w(Kd) = d for complete graphs
Kd. Also, as for warmth, every constraint graph H is 2-warm, and H is 3-warm unless it is
bipartite.

However, the 5-wheel W5, which we served earlier as an example of a 4-warm graph, is not
4-hot. We start with a copy of T 2 having a root of degree 2, and form G ∈ G3 by replacing
each site by a triangle, each vertex of which becomes incident to one of the edges incident to
the original site. Let z be the lone site in G of degree 2 and suppose that ϕ ∈ Hom(G,W5) is
chosen so that in every triangle the site nearest z is labeled by the center node c of W5 (see
Fig. 3). Since in any labeling one site from each triangle must map to c, any θ consistent
with ϕ outside some neighborhood of z must also label z by c; we have long range order for
Hom(G,W5).

The other examples we considered earlier, namely H8, Gr(C7) and Gr(C5), all have
warmth 3 and are not bipartite, and therefore have heat 3.
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Figure 3: W5 is not 4-hot

7 Mobility

Our third new parameter is somewhat different from heat and warmth but again motivated by
considerations from statistical physics. There is also a connection to the theory of computing.
It is often useful to obtain a random sample from Hom(G,H) when the board G is large
but finite. This can potentially be done by “heat bath”, or “single-site Glauber dynamics”,
in which labels are randomly changed one site at a time in accordance with the constraints
imposed by H. Let us define a graph structure on Hom(G,H) by making two maps adjacent
when they differ on one site; then we see that the heat bath can only work if Hom(G,H) is
connected.

We will say that H is d-mobile if Hom(G, H) is connected for any finite board G ∈ Gd−2.
The mobility m(H) of H is the greatest d for which H is d-mobile, or equivalently the least
d for which Hom(G,H) is disconnected for some finite G ∈ Gd−1. If H is d-mobile for every
d, i.e. Hom(G,H) is connected for every finite G, then we say m(H) = ∞. Every constraint
graph is trivially 2-mobile (graphs in G0 being collections of isolated points) and as with heat
and warmth, m(H) = 2 if and only if H is bipartite.

Mobility also matches the other parameters on complete graphs.

Theorem 7.1. For any integer d ≥ 2, m(Kd) = d.

Proof. That Kd is not (d+1)-mobile is clear from taking G = Kd itself, since Hom(Kd, Kd)
consists of d! isolated points.

To see that Kd is d-mobile, we repeat an argument from [7] where the objective was to
use a heat bath to estimate the number of d-colorings of G. For the heat bath to work in
polynomial time, connectivity is not enough; “rapid mixing” of the Markov chain is also
required, but has been proven only when the maximum degree of G exceeds d by a constant
factor (currently 11/6 [13]).

Let ϕ and ψ be any two labelings by Kd (i.e. proper d-colorings) of a graph G of maximum
degree at most d−2. We change ϕ sequentially to obtain ψ, as follows. Our first goal is
to ensure that ϕ(y) = 1 whenever ψ(y) = 1; to do this, we look at all those z such that
ϕ(z) = 1—these form an independent set of sites, and for all of them there is some alternative
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label that can be used, and we do so. Now we can use label 1 on all the sites we want; we
shall not relabel these sites again. We now repeat with label 2, and so on.

Among our earlier examples are some where mobility and warmth differ. For the 5-wheel
W5, we have m(W5) = 3 < 4 = w(W5); to verify that W5 is not 4-mobile, take the board
to be K3 and note (as we did when showing that h(W5) < 4) that every labeling uses the
center node of W5 exactly once.

The Grÿotzsch graph G5 = Gr(C5) is an example of a graph whose mobility exceeds its
warmth and heat. Recall that w(G5) = h(G5) = 3; we now demonstrate that G5 is 4-mobile.

We need to show how to get from any G5-labeling of a cycle Cn to any other. Note
that there are no G5-labelings of C3, so we may take n ≥ 4. Set A = {a1, . . . , a5} and
B = {b1, . . . , b5}, so V (G5) = A ∪B ∪ {c}.

Our first step is change any G5-labeling to eliminate all uses of label c. If label c is used
at any point in the cycle, the label to its left is some bi ∈ B, and the label to the left of that
is in A∪ {c}: in either case we have the option of changing the label bi to at least one other
bj. There are at least three nodes of A adjacent to either bi or bj, and we similarly get a
set of three possible nodes of A from the right side. Thus one element of A is possible from
both sides, and the label c can be changed to this element by first changing its neighboring
labels if necessary. Proceeding in this way, we can indeed eliminate all the uses of label c.
Then of course we can replace each use of label bi by the corresponding ai.

We now have a homomorphism from Cn to G5 �A—a copy of C5. It is easy to see that the
graph Hom(Cn, C5) in general falls into several connected components, with each component
identified by the winding number, the number of times the sequence of labels winds around
C5; if n is a multiple of 5, there are also 10 isolated vertices of Hom(Cn, C5), namely those
homomorphisms with winding number ±n/5. The winding number always has the same
parity as n.

To complete the argument, it is enough to show that, working in Hom(Cn, G5), we can
reverse a sequence of labels such as a1a2a3a4a5a1 that winds around G5, hence changing the
winding number by 2. To do this, we step through the following labelings in turn:

a1a2a3a4a5a1, a1a2b3a4b5a1, a1a2b3cb5a1, a1a2b1cb2a1,
a1a5b1cb2a1, a1a5b4cb2a1, a1a5b4a3b2a1, a1a5a4a3a2a1.

Our other example Gr(C7) is not 4-mobile: take C5 as a board. Figure 3 summarizes the
parameter values for the various examples we have been considering.

In Section 4 we saw that if H has circular chromatic number less than 4, then H is not
4-warm; in fact it is not 4-mobile either. To see this, take a (k, d)-coloring ϕ of H, where
χc(H) = k/d < 4, and k and d are relatively prime, and take a tight cycle a0a1 · · · as−1a0 in
H, so that ϕ(ai+1) = ϕ(ai) + d (mod k). Now let the board G be an s-cycle x0x1 · · ·xs−1x0,
and consider the H-labeling defined by ϕ(xi) = ai. We see that, for any ψ in the component
of Hom(G,H) containing ϕ, ψ(xi) ∈ Aj for all i, where j ≡ i (mod k). In particular, the
H-labeling θ given by θ(xi) = ai+1 is not in the same component of Hom(G,H) as ϕ.
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Figure 4: Warmth, heat, mobility and chromatic number
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The next two results connect mobility with heat and warmth.

Theorem 7.2. Any (2d−3)-hot constraint graph H is d-mobile.

Proof. Let k be an integer such that, whenever G ∈ G2d−4, X and Y are subsets of G with
d(X,Y ) ≥ k, and ϕ and ψ are H-labelings of G, there is an H-labeling θ simultaneously
extending ϕ �X and ψ �Y . The fact that H is (2d−3)-hot guarantees that such an integer
k exists.

Let G be any finite board in Gd−2, let x1, x2, . . . , xn be the sites of G, and form the board
G′ as follows. The set of sites of G′ consists of k+1 copies X0, . . . , Xk of the set of sites of G,
with the mth copy of site xi labeled xi,m (0 ≤ m ≤ k). For each edge xixj of G, with i < j,
and each m, there are edges xi,mxj,m and xj,mxi,m+1 of G′. The graph G′ thus has maximum
degree at most 2d−4, and also d(X0, Xk) ≥ k.

Now let ϕ and ψ be two H-labelings of G. These labelings lift to G′ in the obvious way:
set ϕ′(xi,m) = ϕ(xi) for all i,m, and similarly for ψ. Now consider an H-labeling θ of G′

simultaneously extending ϕ′ �X0 and ψ′ �Xk.

The homomorphism θ tells us how to get from ϕ to ψ: we start with ϕ as our labeling,
and look at the sites of G′ in the order x1,1, x2,1, . . . , xn,1, x1,2, . . . , xn,2, . . . , x1,k, . . . , xn,k. At
each site, interpret θ(xi,m) = a as an instruction to (re)label site xi of G with label a. The
fact that θ is a homomorphism of G′ with θ �X0 = ϕ′ �X0 tells us exactly that this procedure
is legitimate; the fact that θ �Yk = ψ′ �Yk tells us that the final labeling of G is ψ.

Theorem 7.3. Any (2d−3)-mobile constraint graph H is d-warm.

Proof. We shall suppose that H is not d-warm, take a (d−2)-stable family A of subsets of
H, and construct a finite graph G in G2d−4, together with two H-labelings of G that are not
connected in Hom(G,H).

For each pair (A, a), with A ∈ A and a ∈ A, we choose d−2 pairs (A1, a1), . . . , (Ad−2, ad−2)
such that all the Ai are in A and {A1, . . . , Ad−2} produces A, and each ai is a neighbor of a
in Ai. The fact that A is a (d−2)-stable family ensures that we can do this.

Next we form a digraph D whose vertex set consists of all 4-tuples (A, a; B, b) where
A,B ∈ A, a ∈ A, b ∈ B. We direct arcs from (A, a; B, b) to each (Ai, ai; Bi, bi), i = 1, . . . , d−2.
Thus every vertex of D has outdegree d−2.

Let N be the total number of vertices in D, and let M be the N×N incidence matrix of
D, so the entry mαβ is equal to 1 if there is an arc from α to β, and 0 otherwise.

Note that (1, . . . , 1) is an eigenvector of M, with largest eigenvalue d−2. Therefore there
is a positive rational vector r such that Mtr = (d−2)r. By multiplying up we can take r to
be an integer vector. Now take rα copies of each vertex α of D. Our intention is to form
a digraph D′ on this blown-up vertex set by directing one arc from each copy of α to some
copy of each β with αβ an arc of D. If we do this, the total number of arcs arriving at the
rβ copies of β is

∑

α→β rα = (Mtr)β = (d−2)rβ, so we can distribute the incoming arcs so
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that every vertex of D′ has indegree d−2. (We can also ensure at this stage that our digraph
D′ has no loops.)

Now we form our graph G by forgetting the orientation of all the arcs of D′. Thus the
maximum degree of G is at most 2d−4.

There are two H-labelings ϕ and ψ of G given by projections: in ϕ, each copy of the
vertex (A, a; B, b) of D is given label a; in ψ, each copy of (A, a; B, b) gets label b. We claim
that, in the component of Hom(G,H) containing ϕ, each copy of (A, a; B, b) gets a label
from A. Indeed, if θ satisfies this and θ′ is an adjacent labeling, differing only on a copy γ
of (A, a; B, b), then γ is adjacent to some copy of each (Ai, ai; Bi, bi), which are each given a
label from Ai by θ—since the Ai produce A, θ′(γ) ∈ A.

Therefore, considering any vertex (A, a; B, b) in which b /∈ A, we see that ψ is not in the
component of ϕ. (It may be that G is not connected, in which case we take a component
containing such a vertex.) This completes the proof.

It is convenient to collect here the various inequalities we have been able to prove between
our parameters.

h(H) ≤ w(H) (trivial)
w(H) ≤ χ(H) for unlooped H (Theorem 5.1)
h(H) ≤ 2m(H)− 2 (Theorem 7.2)
m(H) ≤ 2w(H)− 2 (Theorem 7.3)

Some other inequalities can be deduced from these, notably that m(H) ≤ 2χ(H)− 2 for
unlooped H. Furthermore, if χ(H) ≤ 3, then χc(H) < 4 and so, as we noted earlier, m(H) ≤
3. Indeed, it seems very likely to us that, as has also been suggested by Lovász, m(H) ≤ χ(H)
in general. This would be of particular interest as it is a statement referring only to finite
boards; another way of expressing it is that, for every unlooped H with chromatic number d,
there is some finite graph G of maximum degree d−1 such that Hom(G,H) is disconnected.
(Alternatively, no graph of chromatic number d exhibits greater mobility than Kd.)

8 Loops and Dismantlability

We have seen that d-warmth, d-heat, and d-mobility all match for d=2 or 3; in fact a theorem
from [3] shows that they match at the other end of the scale as well, that is, at d = ∞. We
conclude with a short description and proof of this result.

The constraint graph consisting of a single looped node has infinite warmth, heat and
mobility, but not every looped constraint graph is so lucky. For example, if H is a path on
three nodes with a loop at each end but not in the middle, then w(H) = 3; to see that this
H is not 4-warm, label T 2 in such a way that every node has children with two different
labels.

The difference here is that this last H is not dismantlable. The notion of dismantlability
goes back twenty years to the study of pursuit games on graphs (see e.g. [11, 12]) and
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Figure 5: Some examples of dismantlable and non-dismantlable graphs

reappeared in [3], where numerous equivalent conditions are given, among them the ones
which interest us here. We may define the notion recursively by saying that the graph with
one node and a loop is dismantlable, and if H has two distinct nodes a and b with N(a) ⊆
N(b) then H\{a} is dismantlable. Note that an unlooped graph cannot be dismantlable.
Some dismantlable and non-dismantlable graphs are illustrated in Fig. 5.

In any H, if N(a) ⊆ N(b), the map which sends a to b and every other node of H to
itself is a retraction of H onto H\{a}, which we call a fold and denote by ρab.

Theorem 8.1. If ρab : H → H− = H\{a} is a fold then w(H) = w(H−), h(H) = h(H−)
and m(H) = m(H−).

Proof. The first two statements follow if we show that for any board G, long range action
for Hom(G,H−) is equivalent to long range action for Hom(G,H). The forward direction
is easy because if X, Y ⊂ G with d(X,Y ) ≥ k and ϕ−, ψ− ∈ Hom(G,H−), then we can
find θ ∈ Hom(G,H) which agrees with ϕ− � X and ρ− � Y , and ρab ◦ θ works similarly in
Hom(G,H−).

The reverse implication is not much harder. Choose a distance k over which there is
no action in Hom(G,H), and let d(X, Y ) ≥ k+2. We need to expand X and Y slightly to
X ′ := X∪N(X) and Y ′ := Y ∪N(Y ). Then d(X ′, Y ′) ≥ k and for any ϕ and ψ in Hom(G,H)
we can find θ− which matches ρab ◦ ϕ on X ′ and ρab ◦ ψ on Y ′. Now we claim that the map
θ which agrees with ϕ on X, ψ on Y and θ− everywhere else is a legal H-labeling. Indeed,
the only possible problem is for an edge from, say, x ∈ X to z ∈ N(X)\X where ϕ(x) = a
and θ−(x) = b. If ϕ(z) = a also then a is looped, thus a ∈ N(a) ⊆ N(b) and it is legal for θ
to label x with a and z with ρab(ϕ(z)) = b. Otherwise θ(z) = θ−(z) = ϕ(z) ∼ ϕ(x) = a and
we still have a homomorphism.

For mobility it suffices to show that Hom(G, H) is connected if and only if Hom(G,H−)
is; the forward implication is easy because if θ1, . . . , θk is a path in Hom(G,H) then so is
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ρab ◦ θ1, . . . , ρab ◦ θk after redundant points have been discarded. For the reverse, we first
convert ϕ and ψ to members of Hom(G,H−) by changing a-labels to b-labels one by one.
Then a path in Hom(G,H−) completes the connection.

Now the definition of dismantlability, and induction on the number of nodes of H, gives
our final result.

Corollary 8.2. The following are equivalent for any constraint graph H:

(i) H is dismantlable;

(ii) w(H) = ∞;

(iii) h(H) = ∞;

(iv) m(H) = ∞.

9 Problems

Many basic questions about warmth, heat and mobility remain open; we list here some of
our favorites.

1. There are many missing bounds. Is there, for example, a function f such that f(d)-
warm implies d-hot, or f(d)-warm implies d-mobile? Or such that f(d)-mobile implies
d-hot, or f(d)-mobile implies d-colorable? (As far as we know, f(d) = d+1 could work
for all of these.) Are the bounds in Theorems 7.2 and 7.3 best possible?

2. We know that girth at least 5 forces warmth at most 3, and it is similarly easy to
show that it also forces mobility at most 3. There are examples of triangle-free graphs
of warmth 4, but are there triangle-free graphs of arbitrarily large warmth? Heat?
Mobility?

3. Suppose we say that H is strongly d-mobile if for any board G, finite or infinite, in
Gd−2, whenever ϕ and ψ in Hom(G,H) differ on only a finite number of sites, there is a
finite path in Hom(G,H) from ϕ to ψ. This is what we need for the one-site condition
to be equivalent to the Gibbs condition for H-labelings of boards in Gd−2 (see [2]).
Does mobile imply strongly mobile? If not, is there at least a function f such that
f(d)-hot implies strongly d-mobile?

4. There are many computational issues concerning warmth, heat and mobility; we guess
that the question of whether a graph is d-anything is NP-hard for any fixed d > 3.
We do not know if the 4-warm graphs are even in NP∪ co-NP; it would be nice, for
example, to have a decent bound on how far action can extend on Hom(T d−2, H) when
H is an n-node, d-warm graph; or, when it is not d-warm, on the size of a minimum
(d−2)-stable family. Worse, it is not evident that there is any finite algorithm for
determining whether a graph is 4-hot!
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