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Abstract In this paper we discuss the chromatic polynomial of a ‘bracelet’, when the base
graph is a complete graph and arbitrary links between the copies are allowed. The resulting
graph will be denoted by Ln(b). We show that the chromatic polynomial of Ln(b) can be
written in the form

P (Ln(b); k) =
b

∑

`=0

∑

π``

mπ(k) tr(Nπ
L)n.

Here the notation π ` ` means that π is a partition of `, and mπ(k) is a polynomial that
does not depend on L. The square matrix Nπ

L has size
(b

`

)

nπ, where nπ is the degree of the
representation Rπ of Sym` associated with π.

We derive an explicit formula for mπ(k) and describe a method for calculating the matrices
Nπ

L . Examples are given. Finally, we discuss the application of these results to the problem
of locating the chromatic zeros.
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1. Introduction

The chromatic polynomials considered in this paper are associated with graphs, which we call
bracelets, constructed in the following way. Take n copies of a base graph, and join certain
vertices in the ith copy to certain vertices in the (i + 1)th copy, the joins being the same for
each i, and n + 1 = 1 by convention.
A relatively simple case occurs when we take the base graph to be the complete graph Kb, and
the joins to be the matching in which each vertex in one copy of Kb is joined to the same vertex
in the next copy. This gives a bracelet that we denote by Bn(b). The chromatic polynomials
of Bn(2) and Bn(3) were first calculated in 1972 [7] and 1999 [8], and the result for Bn(4) has
recently been obtained by two different methods [6, 10]. For the sake of illustration, and in
order to convince the reader that the problem is not quite trivial, we give in full the formula
for the number of k-colourings of Bn(4):

(73− 84k + 41k2 − 10k3 + k4)n

+ (k − 1)
(

(73− 50k + 12k2 − k3)n + 3(21− 22k + 8k2 − k3)n
)

+ k(k − 3)/2
(

(31− 11k + k2)n + 3(11− 7k + k2)n + 2(7− 5k + k2)n
)

+ (k − 1)(k − 2)/2
(

3(21− 9k + k2)n + 3(5− 5k + k2)n
)

+ k(k − 1)(k − 5)/6
(

(7− k)n + 3(3− k)n
)

+ (k − 1)(k − 2)(k − 3)/6
(

(1− k)n + 3(5− k)n
)

+ k(k − 2)(k − 4)/3
(

3(6− k)n + 2(4− k)n + 3(2− k)n
)

+ k4 − 10k3 + 29k2 − 24k + 1.

This formula suggests that the terms occur in ‘levels’, the terms at level ` being of the form

(

Polynomial of degree `
)

×
(

Integer
)(

Polynomial of degree b− `
)n,

where b = 4 in this example. The main result of [6] is that, for all b, the terms at level `
correspond to the partitions π of `. Specifically, the representation Rπ of Sym` associated with
π gives rise to a matrix Nπ with following property: each ‘Polynomial of degree b − `’ is an
eigenvalue of Nπ and the associated ‘Integer’ is its multiplicity. For example, when b = 4 and
` = 3 the matrix N [21] has eigenvalues 6−k, 4−k, 2−k, with multiplicities 3, 2, 3 respectively.
The corresponding terms are visible in the formula displayed above.
In the present paper we shall discuss a theoretical framework that justifies the existence of
formulae like the one displayed above, and describe methods for calculating the polynomials
that occur. We shall also explain briefly how this framework can be used to study the limiting
behaviour of the zeros of chromatic polynomials.

2. The theoretical framework

In this paper we discuss the situation when the base graph is a complete graph Kb, but
arbitrary links between the copies are allowed. The set of links between successive copies of
Kb will be denoted by L, a subset of V × V , where vw ∈ L if and only if vertex v in one copy
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is joined to vertex w in the next copy. The resulting graph will be denoted by Ln(b). Thus
the graphs Bn(b) correspond to the choice L = B = {11, 22, . . . , bb}.
The following basic result will be proved in this section.

Theorem 1 The chromatic polynomial of Ln(b) can be written in the form

P (Ln(b); k) =
b

∑

`=0

∑

π``

mπ(k) tr(Nπ
L)n.

Here the notation π ` ` means that π is a partition of `, and mπ(k) is a polynomial that
does not depend on L. The square matrix Nπ

L has size
(b

`

)

nπ, where nπ is the degree of the
representation Rπ of Sym` associated with π.
Comparing this formula with the terminology used in the Introduction, we see that mπ(k)
must be the ‘Polynomial of degree `’; this will be referred to as a global multiplicity. The trace
of (Nπ

L)n is a sum of the form
∑

µiλn
i , where µi is the multiplicity of the eigenvalue λi of Nπ

L ,
so µi must be the ‘Integer’: this will be referred to as a local multiplicity. It is worth noting
that only in favourable cases will each individual λi be a ‘Polynomial of degree b−`’, although
the situation can be rescued by collecting algebraically conjugate sets of eigenvalues.
Let the vertex-set of Kb be V = {1, 2, . . . , b}. For all k ≥ b let Γk(b) denote the set of k-
colourings of Kb (that is, injections from V to {1, 2, . . . , k}) and let Vk be the vector space of
complex-valued functions defined on Γk(b). The canonical basis for Vk is the set of functions
[α] (α ∈ Γk(b)) such that [α](β) = 1 if β = α, and 0 otherwise.
Two colourings α, β ∈ Γk(b) are said to be compatible with a given linking set L if α(v) 6= β(w)
whenever vw ∈ L. The compatibility operator T = TL(k) is defined (with respect to the
canonical basis of Vk) by the matrix whose entries are

Tαβ =

{

1 if α and β are compatible with L;
0 otherwise.

It follows from a simple argument [2] that P (Ln(b); k), the number of k-colourings of Ln(b),
is equal to the trace of TL(k)n.
The elements of the set Γk(b) are just ordered b-tuples of distinct elements of the set of colours,
and the symmetric group Symk acts in the obvious way on this set. In other words Vk is a
CSymk-module, the action S being defined by

S(ω)[α] = [ωα] (ω ∈ Symk).

Clearly, if α and β are compatible with L, then so are ωα and ωβ, so that

TL(k)S(ω) = S(ω)TL(k) for all ω ∈ Symk.

This means that TL(k) belongs to the centralizer algebra of S, for any linking set L.
The decomposition of S can be deduced from the standard works on representations of the
symmetric group [12, Sections 4, 14]. The irreducible submodules of S are in bijective cor-
respondence with the partitions τ of k that satisfy τ � γk,b, where the relation � is the
dominance order, and γk,b is the partition (k − b, 1b). The condition τ � γk,b means that, for
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some `, (0 ≤ ` ≤ b), τ is a partition in which the largest part is k− ` and the remaining parts
form a partition π of `. The degree (that is, dimension) of the corresponding submodule is
equal to the number nτ of standard tableaux of shape τ , and its multiplicity is equal to

(b
`

)

nπ.

For our purposes it is convenient to reverse the correspondence between τ and its ‘truncation’
π. Given π such that π ` ` and ` ≤ b ≤ k, let the parts be π1 ≥ π2 ≥ . . . ≥ π`, where all
the terms except π1 can be zero. Then we define πk to be the corresponding τ , that is the
partition of k with parts k − ` ≥ π1 ≥ π2 ≥ · · · ≥ π`, and write mπ(k) instead of nπk .
Since TL(k) centralizes S, its action on Vk decomposes in the same way as that of S, with the
degree and multiplicity interchanged. Thus TL(k) can be represented by a matrix in which
there is a diagonal block for each pair (π, `) with π ` ` ≤ b, this block consisting of mπ(k)
matrices Nπ

L of size
(b

`

)

nπ. It follows that

P (Ln(b); k) = tr(TL(k))n =
b

∑

`=0

∑

π``

mπ(k) tr(Nπ
L)n.

This completes the proof of Theorem 1.

3. A formula for the global multiplicities

For a given partition π of `, there is a strictly decreasing partition σ of 1
2`(` + 1), with `

non-zero parts given by σi = πi + `− i (1 ≤ i ≤ `). Let

xi =
σi!

∏

j>i(σi − σj)
, gπ = x1x2 . . . x`.

It is a standard result [12] that gπ is a divisor of `!, the quotient being the number of standard
tableaux associated with π, which is also the degree nπ of the irreducible representation Rπ.

Theorem 2 If π ` `, the global multiplicity mπ(k) is given by the formula

mπ(k) = g−1
π (k − σ1)(k − σ2) · · · (k − σ`).

Proof According to the theory described in Section 2, the global multiplicity mπ(k) is the
number of standard tableaux associated with the augmented partition πk of k, which has parts
k− ` ≥ π1 ≥ π2 ≥ · · · ≥ π`. For this partition, denote by σ∗ the associated strictly decreasing
partition of 1

2k(k + 1) with k parts, and let

yi =
σ∗i !

∏

j>i(σ
∗
i − σ∗j )

, gσ∗ = y1y2 . . . yk,

so that the required number is k!/gσ∗ . It is easy to check by elementary algebra that

y1 =
k!

(k − σ1)(k − σ2) · · · (k − σ`)
;

yi = xi−1 (2 ≤ i ≤ ` + 1); yi = 1 (` + 2 ≤ i ≤ k).
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Thus

k!
gσ∗

=
k!

y1y2 . . . yk
=

(k − σ1)(k − σ2) · · · (k − σ`)
x1x2 · · ·x`

=
1
gπ

(k − σ1)(k − σ2) · · · (k − σ`).

For the partitions [`] and [1`], associated with the principal and alternating representations of
Sym`, the formula gives

mpri(k) = m[`](k) =
(

k
`

)

−
(

k
`− 1

)

, malt(k) = m[1`](k) =
(

k − 1
`

)

.

4. The sieve principle

The practical problem of finding the constituent matrices Nπ
L can be solved by a method based

on the sieve principle. This enables us to define a set of operators SM(k), such that each TL(k)
can be expressed as a linear combination of the SM(k). These operators are related to a method
based on coherent algebras [13], and there are also links with the theory of Temperley-Lieb
algebras.
Our method involves a new basis for Vk, defined in the following way. Let P be a subset of V
and let θ be a k-colouring of the subgraph of Kb induced by P . For any α ∈ Γk(b), denote by
αP the restriction of α to P . We define [P |θ] to be the element of Vk given by

[P |θ] =
∑

αP =θ

[α].

In other words, [P |θ] is the function that takes the value 1 on the colourings that agree with
θ on P , and 0 otherwise. The weight of [P |θ] is defined to be |θ(P )| (trivially this is equal to
|P | when the base graph is complete).
Let M ⊆ V ×V be a matching: equivalently, M is a triple (M1,M2, µ) with M1 ⊆ V , M2 ⊆ V
and µ : M1 → M2 a bijection. Define SM(k) : Vk → Vk by the rule

SM(k)[α] = [M2|αµ−1].

Given any linking set L ⊆ V × V , consider the bipartite graph formed by two copies of V ,
with edges defined by L, and let M(L) denote the set of matchings in this graph. In other
words, the matching M is in M(L) if M is a subset of L.
The following theorem is a generalization of the result proved in [4] and used in [6].

Theorem 3 Suppose that b, k, and L are given, and let TL(k) be the associated compatibility
operator. Then

TL(k) =
∑

M∈M(L)

(−1)|M |SM(k).

Proof For any α, β ∈ Γk(b) we shall show that

TL(k)[α](β) =
∑

M∈M(L)

(−1)|M |SM(k)[α](β).

4



By definition [M2|αµ−1](β) = 1, if and only if αµ−1 = βM2 for any M ∈M(L). Let

W (β) = {w ∈ V | β(w) = α(v) for some v such that (v, w) ∈ L}.

Then, M2 6⊆ W (β) implies [M2|αµ−1](β) = 0. On the other hand, suppose that M2 ⊆ W (β).
Then the condition αµ−1 = βM2 implies that there exists a unique M ∈ M(L) such that
[M2|αµ−1](β) = 1. Let

Mβ(L) = {M ∈M(L) | [M2|αµ−1](β) = 1};

then for every M2 ⊆ W (β) there exists exactly one M = (M1,M2, µ) ∈Mβ(L) and
∑

M∈M(L)

(−1)|M |SM(k)[α](β) =
∑

M∈Mβ(L)

(−1)|M |.

If (α, β) is compatible with L, W (β) is empty. So Mβ(L) has just one term, corresponding
to M2 = ∅, and the result is 1. On the other hand, if (α, β) is not compatible with L, W (β)
is not empty and Σ(β) = (1 + (−1))|W (β)| = 0. The result follows.

5. The constituent matrices

Theorem 3 says that the effect of TL on a typical element [P |θ] is given by

TL[P |θ] =
∑

M∈M(L)

(−1)|M |SM [P |θ].

Further analysis (similar to that used in [6]) leads the following results.

Theorem 4 For any matching M , SM [P |θ] can be written as a linear combination of terms
[Q|φ] with φ(Q) ⊆ θ(P ). Consequently, if we fix a set of colours C, the set of all [P |θ] with
θ(P ) ⊆ C spans a subspace U(C) of Vk that is invariant under every SM , and thus invariant
under TL.

Theorem 5 Suppose that φ(Q) ⊆ θ(P ). Then the coefficient of [Q|φ] in SM [P |θ] is non-zero
provided that:

(i) µ(P ∩M1) ⊆ Q ⊆ M2, and

(ii) θ(v) = φ(w) whenever (v, w) ∈ (P ×Q) ∩M .

When these conditions hold the coefficient is

(−1)|Q|−|P∩M1|f|P∪M1|(b, k) where fs(b, k) = (k − s)b−s.

We proceed to examine the implications of these results. There is no loss of generality in
taking C = {1, 2, . . . , `}. Then we can represent the action of SM on U(C) by a matrix ŜM ,
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where the entry

(ŜM)[P |θ],[Q|φ]

is the coefficient of [Q|φ] in SM [P |θ]. By listing the terms [P |θ] in order of their weight |θ(P )|,
the matrix ŜM is partitioned into submatrices UM,r,s defined by the intersection of the rows
of weight r with columns of weight s, and these submatrices are zero when s > r. We shall
focus on the submatrix UM,`,`, since the eigenvalues of this matrix are also eigenvalues of ŜM

and SM . For the time being ` will be fixed and we shall write UM = UM,`,`.
Given any two `-subsets of V , say P and Q, the rows [P |θ] and the columns [Q|φ] of UM define
a submatrix UPQ

M , of size `! × `!. A simple change of notation leads to an explicit formula
for UPQ

M . Since P is a subset of V = {1, 2, . . . , b} we can write P = {p1, p2, . . . , p`}, where
p1 < p2 < · · · < p`, and given the injection θ : P → C, we can define a permutation σ in Sym`

by

σ(r) = θ(pr) (r = 1, 2, . . . , `).

Clearly the correspondence between θ and σ is a bijection, so we can denote [P |θ] by [P, σ],
and [Q|φ] by [Q, τ ], for suitable σ, τ ∈ Sym`. Furthermore, we can consider UPQ

M as a matrix
whose rows and columns correspond to the members of Sym`, the entries being

(UPQ
M )στ = (UM)[P,σ] [Q,τ ].

If M does not satisfy condition (i) of Theorem 5, UPQ
M is the zero matrix. On the other hand,

suppose that condition (i) is satisfied; in particular this means that |P ∩M1| = |(P ×Q)∩M |.
Then, translating condition (ii) into a condition on σ and τ we obtain

(UPQ
M )στ =

{

(−1)`−|P∩M1|f|P∪M1|(b, k) if σ(a) = τ(b) whenever (pa, qb) ∈ (P ×Q) ∩M ;
0 otherwise.

Let X(ρ) be the permutation matrix representing ρ in the regular representation of Sym` on
itself; that is, Xστ (ρ) is 1 if σ = τρ and 0 otherwise. Define

F PQ
M = {ρ ∈ Sym` | (pa, qb) ∈ (P ×Q) ∩M =⇒ ρ(a) = b}.

Since F PQ
M is a coset of the pointwise stabiliser of a set of size |P ∩ M1|, it follows that

|F PQ
M | = (`−|P ∩M1|)!. The formula for UPQ

M when condition (i) holds can now be written as

UPQ
M = (−1)`−|P∩M1|f|P∪M1|(b, k)

∑

ρ∈F PQ
M

X(ρ).

Denote by Uπ
M the matrix obtained from UM when X(ρ) is replaced by Rπ(ρ). Thus Uπ

M is
partitioned into blocks (Uπ

M)PQ, of size nπ × nπ, defined by

(Uπ
M)PQ =

{

(−1)`−|P∩M1|f|P∪M1|(b, k)
∑

ρ∈F PQ
M

Rπ(ρ) if µ(P ∩M1) ⊆ Q ⊆ M2;

O otherwise.

It can be shown that every eigenvector of Uπ
M with eigenvalue λ can be lifted to nπ linearly

independent eigenvectors of UM with the same eigenvalue. (See [6, Theorem 3].) A simple
counting argument now shows that every eigenvalue of UM is an eigenvalue of some Uπ

M .
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The constituents of the compatibility matrix TL can now be defined by the analogue of the
formula obtained in Theorem 3:

Nπ
L =

∑

M∈M(L)

(−1)|M | Uπ
M .

It will be seen that, for a given b and L, and a given level `, the procedure requires a non-
trivial amount of calculation. Fortunately, in some cases explicit formulae can be obtained,
and examples are given in the following section. For the sake of orientation, we can deal
with the case ` = 0 directly. In this case U(∅) is the one-dimensional space spanned by the
element u that takes the value 1 on every colouring. Simple direct arguments show that
SM(u) = κM(k)u, where κM(k) is the number of β ∈ Γk(b) such that α(v) = β(w) whenever
(v, w) ∈ M . In fact

κM(k) = (k − |M |)b−|M | = f|M |(b, k),

which agrees with the general formula given above. Similarly

TL(u) =
∑

M∈M(L)

(−1)|M |SM(k)(u) = λL(k)u,

where λL(k) =
∑

(−1)|M |f|M |(b, k) is the number of β such that α and β are compatible with
L. Clearly λL(k) is the unique eigenvalue at level 0.

6. The case b=3 with arbitrary links

When b = 3 there are 1, 9, 18, 6 matchings M with |M | = 0, 1, 2, 3 respectively. In this Section
we shall determine the matrices UM = UM,`,` for all these matchings and all ` ≤ 3. The results
are sufficient to give the constituents Nπ

L of TL, for any linking set L. Two typical examples
will be given.
At level `, the matrix UM,`,` is a (3)` × (3)` matrix whose blocks UPQ

M are of size `!× `!. Note
that if |M | < ` the condition Q ⊆ M2 cannot hold, and all the blocks are zero.

Level 0 As explained at the end of Section 5, when |M | = 0, 1, 2, 3 respectively UM is the
1× 1 matrix

k(k − 1)(k − 2), (k − 1)(k − 2), (k − 2), 1.

There is only the principal representation and hence Upri
M = UM .

Level 1 Here U∅ is zero. When |M | ≥ 1, UM is the 3×3 matrix with entries (UM)pq = UPQ
M ,

P = {p}, Q = {q}. Condition (i) of Theorem 5 becomes

q ∈ M2 and p ∈ M1 =⇒ (p, q) ∈ M.

Condition (ii) is automatically satisfied, so F pq
M = Sym1 = {id}. Thus the matrix UM is given

by

(UM)pq =











(k − |M |)3−|M | if q ∈ M2, and (p, q) ∈ M ;
−(k − |M | − 1)2−|M | if q ∈ M2, and p /∈ M1;
0 if q /∈ M2 or p ∈ M1 and (p, q) 6∈ M.

As in the previous case we have only the principal representation and hence Upri
M = UM . For

example

Upri
11 =





(k − 1)(k − 2) 0 0
−(k − 2) 0 0
−(k − 2) 0 0



 , Upri
11,22 =





k − 2 0 0
0 k − 2 0
−1 −1 0



 , Upri
11,22,33 =





1 0 0
0 1 0
0 0 1



 .
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Level 2 Here UM is a 6 × 6 matrix partitioned into blocks UPQ
M of size 2 × 2. Each block

is the all-zero matrix O, is a multiple of the identity matrix I or J − I, where J is the all-one
matrix. All blocks are O if |M | < 2. Assume P = {p1, p2} with p1 < p2 and Q = {q1, q2} with
q1 < q2. For |M | ≥ 2 let

FM(P, Q) =

{

I if (p1, q1) ∈ M or (p2, q2) ∈ M ;
J − I if (p1, q2) ∈ M or (p2, q1) ∈ M,

Then the entries of UM are given by

UPQ
M =











(k − |M |)3−|M | FM(P, Q) if Q ⊆ M2 and P ⊆ M1 and µ(P ) = Q;
−FM(P, Q) if Q ⊆ M2 and P 6⊆ M1;

O if Q 6⊆ M2 or P ⊆ M1 and µ(P ) 6= Q.

For example

U11,22 =





(k − 2)I O O
−I O O

−(J − I) O O



 , U11,33 =





O −I O
O (k − 2)I O
O −I O



 , U11,22,33 =





I O O
O I O
O O I



 .

Here we have the principal and alternating representation of Sym2 and the matrices Upri
M and

Ualt
M are obtained as follows. For Upri

M we replace in UM the matrices I, J − I and O by 1, 1
and 0. For Ualt

M we replace in UM the matrices I, J − I and o by 1, −1 and 0.

Level 3 The only non-zero cases are when |M | = 3. In these cases UM is a 6×6 matrix with
a single block UPQ

M , corresponding to P = Q = {123}. Condition (i) is automatically satisfied,
and it is easy to show that FPQ

M = {µ}, so UM = X(µ). Thus Uπ
M = Rπ(µ). Here, apart from

the principal and alternating representations we have the representation corresponding to the
partition [21]. Hence, Upri

M = 1, Ualt
M = sign(µ) and U [21]

M is a 2× 2 matrix.

Example 1 The graphs Bn(b) are obtained when the linking set is B = {11, 22, . . . , bb}.
The chromatic polynomial of Bn(3) was first calculated in 1999 [8], and many terms for Bn(b)
in general are now known [6]. The basic equation is

TB = S∅ − (S11 + S22 + S33) + (S11,22 + S11,33 + S22,33)− S11,22,33

from which it follows that

Nπ
B = Uπ

∅ − (Uπ
11 + Uπ

22 + Uπ
33) + (Uπ

11,22 + Uπ
11,33 + Uπ

22,33)− Uπ
11,22,33.

At level 0 we get the 1× 1 matrix

Npri
B = k(k − 1)(k − 2)− 3(k − 1)(k − 2) + 3(k − 2)− 1,

and thus the eigenvalue k3 − 6k2 + 14k − 13. At level 1 we get the 3× 3 matrix

Npri
B =





−k2 + 5k − 7 k − 3 k − 3
k − 3 −k2 + 5k − 7 k − 3
k − 3 k − 3 −k2 + 5k − 7




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with eigenvalues −k2 + 7k− 13 and −k2 + 4k− 4 (twice). At level 2 we get the 3× 3 matrices

Npri
B =





k − 3 −1 −1
−1 k − 3 −1
−1 −1 k − 3



 and Nalt
B =





k − 3 −1 1
−1 k − 3 −1
1 −1 k − 3





with respective eigenvalues k−5 and k−2 (twice), and k−1 and k−4 (twice). At level 3 we have
F PQ

M = {id} and hence the eigenvalue −1 with local multiplicity 1, 1 and 2 corresponmding
to the three representations.

The global multiplicities mπ(k) are:

π ` = 0 ` = 1 ` = 2 ` = 3
[`] 1 k − 1 k(k − 3)/2 k(k − 1)(k − 5)/6
[1`] - - (k − 1)(k − 2)/2 (k − 1)(k − 2)(k − 3)/6
[21] - - - k(k − 2)(k − 4)/3

Example 2 When the linking set is H = {12, 13, 21, 23, 31, 32}, the resulting graph Hn(3)
is a cyclic octahedron. The name is suggested by the fact that in the case n = 2 the graph
reduces to the regular octahedron, K2,2,2. The calculations for Hn(3) were done by ad hoc
methods in [3], and here we shall describe how the results fit into our general framework.
There are 1, 6, 9, 2 matchings M ∈ M(H) with |M | = 0, 1, 2, 3 respectively. Taking the
appropriate alternating sum at level 0 we get the 1× 1 matrix

Npri
H = k(k − 1)(k − 2)− 6(k − 1)(k − 2) + 9(k − 2)− 2,

and thus the eigenvalue k3 − 9k2 + 29k − 32. At level 1 we get the 3 × 3 matrix Npri
H with

entries 2k − 6 on the diagonal and −k2 + 7k − 13 elsewhere. The eigenvalues are −2(k − 4)2

and k2 − 5k + 7 (twice). At level 2 we get the 3× 3 matrices

Npri
H =





k − 4 k − 5 k − 5
k − 5 k − 4 k − 5
k − 5 k − 5 k − 4



 and Nalt
H =





k − 4 −(k − 3) k − 3
−(k − 3) k − 4 −(k − 3)

k − 3 −(k − 3) k − 4





with repective eigenvalues 3k − 14 and 1 (twice), and k − 2 and −2k − 7 (twice). At level 3,
we get the 6 × 6 matrix −(X(123) + X(132)), and collapsed matrices Npri

H , Nalt
H and N [21]

H ,
of size 1 × 1, 1 × 1 and 2 × 2 respectively. The first two matrices are just (−2), so −2 is an
eigenvalue with local multiplicity 1 in each case. The matrix N [21]

H is the identity matrix of
size 2, so it has eigenvalue 1 (twice). The respective global multiplicities do not depend on
L and hence equal to the ones given in the previous example. These results imply that the

9



chromatic polynomial of Hn(3) is

P (Hn(3); k) = (k3 − 9k2 + 29k − 32)n

+ (k − 1)
(

(−2(k − 4)2)n + 2(k2 − 5k + 7)n
)

+ (1/2)k(k − 3)
(

3k − 14)n + 2
)

+ (1/2)(k − 1)(k − 2)
(

(k − 2)n + 2(−2k + 7)n
)

+ (1/6)k(k − 1)(k − 5)(−2)n

+ (1/6)(k − 1)(k − 2)(k − 3)(−2)n

+ (1/3)k(k − 2)(k − 4)(2).

7. Location of chromatic zeros

Because P (G; k) is a polynomial function of k, it is usual to consider it as a function of a
complex variable. This is particularly appropriate in statistical mechanics, where the focus is
on the thermodynamic limit limn→∞ P (Gn; z)1/vn , vn being the number of vertices of Gn. The
thermodynamic limit is generally not analytic in the entire complex plane, and its singularities
depend on the limiting behavior of the zeros of P (Gn; z) as n →∞. The framework described
in this paper is well-adapted for investigating this behaviour.
An elementary result about the location of the zeros is Rouché’s theorem. For example,
consider the roots of P (Hn(3); z) = 0. There are 3n roots and their sum is 9n, so the centroid
is at the point 3 and it is convenient to put w = z − 3. The chromatic polynomial reduces to

(w3 + 2w + 1)n + Qn(w),

where Qn(w) is a polynomial of degree 2n + 1. The zeros of w3 + 2w + 1 are (approximately)

−0.4534, 0.2267 + 1.4677i, 0.2267− 1.4677i,

which lie in the disc |w| ≤ 1.4852. It follows from Rouché’s Theorem that all the zeros of
(w3 +2w+1)n +Qn(w) lie in the disc |w| ≤ R, provided that R > 1.4852 and |w3 +2w+1|n ≥
|Qn(w)| on the circle |w| = R. Since the degree of Qn(w) is 2n + 1, it is clear that a suitable
value of R can be found: for example R = 3 suffices. Thus all the roots lie in the disc |z| ≤ 6,
where the relevance of the number 6 is that it is the degree of Hn(3). The important general
result of Sokal [14] gives a weaker conclusion in this case.
More detailed information about the roots follows from the theorem of Beraha, Kahane and
Weiss [1]. Their result says that the limit points of the zeros of a sequence of polynomials of
the form

Pn(z) =
s

∑

i=1

mi(z)λi(z)n,

are the points ζ lying on the curves where two of the terms λi(ζ) are of equal modulus and
dominate the other terms (together with some isolated points, which need not concern us).
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In the case of the cyclic octahedra, the polynomials (expressed as functions of w = z − 3) are

λA = w3 + 2w + 1, λB = −2(w − 1)2, λC = w2 + w + 1,

λD = 3w − 5, λE = w + 1, λF = −2w + 1, λG = −2, λH = 1.

In fact, one of the three eigenvalues λA, λB, λD always dominates the other five. This means
that the limiting behaviour of the roots is determined by these three.
Denote by ΓAB the curve defined by the equation |λA| = |λB|, and so on. Then ΓAB and ΓBD

are simple closed curves intersecting in two points

t, t̄ = 0.9971..± 1.6284..i.

ΓAD is another simple closed curve, which necessarily contains t and t̄.
The portions of these curves that satisfy the domination condition are the arc of ΓAD that
joins t and t̄ and lies entirely in the half-plane Re w > 0, and the arcs of ΓAB and ΓBD that
join t and t̄ and do not lie entirely in the half-plane Re w > 0. Note that these arcs all lie in
the half-plane Re z > 0.
These arcs divide the complex plane into three regions: a crescent-shaped region containing
w = 0, in which λD dominates; another crescent-shaped region contiguous with the first, in
which λB dominates, and the remainder of the complex plane, in which λA dominates. Apart
from some isolated points, such as z = 0 (w = −3), the limit points of the chromatic roots of
the graphs Hn(3) lie on the parts of ΓAB, ΓAD, ΓBD that bound these regions.

Although all the discussion here has concerned the case when the base graph is complete,
similar results and methods hold more generally. For example, the proof of Theorem 3 remains
valid when the base graph G and the linking set L satisfy the following condition: for each
w ∈ V the set of v ∈ V such that (v, w) ∈ L is a complete subgraph of G. This observation
covers many of the results obtained by Shrock and his colleagues (see [11] and the references
given there). We end with one example.
This condition stated above holds for the family of generalised dodecahedra Dn. Here G is a
path with vertex-set V = {1, 2, 3, 4} (1 and 4 being the end-vertices), and L = {11, 32, 44}.
In this case the resulting graph is a cubic graph Dn with 4n vertices, and in particular D5 is
the graph of the regular dodecahedron. The chromatic polynomial P (Dn; k) was obtained in
full by Chang [10]. It can be written in the form

tr(T0(k))n + (k − 1) tr(T1(k))n + (k2 − 3k + 1) tr(T2(k))n

+ (k3 − 6k2 + 8k − 1),

where the square matrices T`(k) (` = 0, 1, 2) have size 3, 6, 4 respectively. Chang’s result can
also be obtained by the algebraic methods described here, and the zeros of P (Dn; k) can be
investigated by techniques based on the Beraha-Kahane-Weiss theorem [5].
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