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Abstract

This article is mainly concerned with the rendezvous problem on the n-
dimensional integer lattice. Two blind players are initially placed at nodes
whose di¤erence vector has length 2 and is parallel to some coordinate axis.
In each period they must move to an adjacent node. They have no com-
mon notion of locations or directions. The least expected rendezvous times
Ra (using distinct strategies) and Rs (using the same mixed strategy) are
shown to satisfy limRa (n)=n · 8=3 and limRs (n) =n · 56=9: This work
extends the work of the author and S. Gal (Ra (1) = 13=4) and that of V.
Baston (Rs (1) · 4:5), and the related 2-dimensional analysis of Anderson
and Fekete. We also consider a rendezvous problem on the line where one
player can see the other.

Keywords: rendezvous, search game



1 Introduction
The basic form of the rendezvous search problem [1] asks how two players,
who are randomly placed in a known search space Q; can move so as to
minimize the expected time taken to meet. When the players are allowed to
meet beforehand and discuss which role each will take (for example one stays
still while the other searches), the least expected meeting time is called the
asymmetric rendezvous value Ra (Q) :When they cannot use distinct strate-
gies, the common strategies they may have to use will in general be mixed,
and in this case the (generally larger) least expected meeting time is called
the symmetric rendezvous value Rs (Q) : The players are assumed to have no
common labelling of points or directions in Q; to have a maximum speed of 1;
and of course not to know the location of the other. Much of the literature in
this area is concerned with the case where Q is the line, although Anderson
and Fekete [8] and Thomas and Hulme [13] have considered rendezvous on
the plane. A general survey of the rendezvous problem can be found in [3].

The main objective of this article is to extend the work done for ren-
dezvous on the line to the n-dimensional case. For purely spatial applica-
tions, we would of course need to assume that n · 3: However the dimensions
(coordinates) of search need not all be spatial. For example if two people
wish to …nd each other on walkie-talkies, they would need to be close in two
spatial dimensions, close in a radio frequency dimension, and close in the
language or code convention used.

We follow the route of Anderson and Fekete (for n = 2) by taking
the search space Q to be the integer lattice (network) with nodes z =
(z1; : : : ; zn) 2 Zn and an edge between two nodes if they have all but one
coordinate identical and the remaining coordinate di¤ers by 1: In two di-
mensions this is just the familiar lattice of graph paper. The most general
formulation of the problem is to place the players at time t = 0, according
to some distribution, on even nodes. (A node z 2 Zn is called even if the
sum of its coordinates is even; otherwise is called odd.) In each time period
each player must move to an adjacent node - staying still is not allowed (but
may be approximated by an oscillation between adjacent nodes). This type
of placement (originating for the interval network in Howard [12]) ensures
that the two players will always have the same parity, and cannot pass each
other on an edge without meeting at a node.

We will be primarily concerned with a particular initial placement which
is a natural generalization of the ‘atomic distribution’ (where the initial dis-
tance between the players is common knowledge) that has been widely stud-
ied on the line (n = 1) in both the asymmetric and symmetric rendezvous
scenarios. To match the previous analysis for n = 1 with our lattice analysis
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Figure 1: Starting positions of 16 agents of II.

for general n; it is best to take this known initial distance between the play-
ers as 2: If we take a coordinate system with its origin at Player I’s initial
location, then Player II will be initially placed at one of the 2n locations
§2ei (where ei are the n unit vectors) and will be initially faced in one of
the 2n directions which are parallel to the coordinate axes. Thus there are
(2n)2 = 4n2 ways to start the game, and the expected values for the meet-
ing times will be averaged over these initial events. We shall denote this
n-dimensional rendezvous problem by ¡ (n) : Note that in the case of the
line this means there are four cases to consider, corresponding to Player II
starting at 2 or ¡2 and calling either right or left his ‘forward’ direction.

The initial placements for n = 2 are shown in Figure 1. Player I starts at
the origin, labelled 0: Player II starts at one of the four (= 2n) lattice points
(0; 2) ; (2; 0) ; (¡2; 0) ; (0;¡2) and initially faces in one of the four (= 2n)
directions. Hence there are 16 = 4n2 initial con…gurations, or equivalently,
16 agents of Player II. The expected meeting time of the two players is the
same as the expected time for Player I to meet the 16 agents of Player II.

The asymmetric rendezvous problem on the line, where the players are
allowed to use distinct strategies, was …rst considered by the author and Gal
[5]. That paper gave the solution for a …xed initial distance of 2 as follows:
one player moves two unit steps in his ‘forward’ direction and then four
unit steps in the opposite ‘backwards’ direction (F,F,B,B,B,B); the other
player moves (F,B,F,F,B,B). The players meet equiprobably at the times
t = 1; 2; 4; or 6: Assuming that Players I’s initial forward direction is taken
as right, these meeting times correspond respectively to the initial events in
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which Player II has initial position and forward direction given by (+1,left),
(+1,right), (-1,right), (-1, left). This strategy pair is optimal, in that it min-
imizes the expected meeting time. Consequently the asymmetric rendezvous
value Ra (n = 1) for this problem is given by Ra (1) = 13=4 = 3: 25: In fact it
is shown in [5] that this strategy pair is uniformly optimal, in the sense that
for every value of t it maximizes the probability that a meeting has occurred
by time t: Our extension of this result to n-dimensions is summarized in the
following result, proved in Section 2.

Theorem 1 Suppose that two players are initially placed on the n-dimensional
integer lattice so that their di¤erence vector is two units long and parallel to
one of the coordinate axes. Assume that the players have no common notion
of location and no common labelling of the coordinates axes. The asymmetric
rendezvous value Ra (n) for this problem satis…es the inequality

Ra (n) · 32n3 + 12n2 ¡ 2n¡ 3
12n2

: (1)

Consequently, we have the asymptotic result

lim
n!1

Ra (n) =n · 8
3
:

It is worth noting that the upper bound on the asymmetric rendezvous
value given in (1) is the exact value found in [5] of 39=12 = 13=4 for n =
1: The analysis of asymmetric rendezvous in this context is carried out in
Section 2.

The symmetric version (where both players must use the same mixed
strategy) of the rendezvous problem on the line was …rst introduced by the
author in the original article [1], where it was conjectured that the so called
‘1F2B’ strategy, of repeatedly (with independent randomization) going 1 unit
in a random forward direction, followed by 2 units in the opposite backwards
direction, was optimal. However the expected meeting time for 1F2B of 5
was subsequently improved by a strategy of Anderson and Essegaier [7] to
about4:56; and later by a strategy of Baston [9] to about 4: 418: Consequently
the best estimate for Rs (n = 1) = Rs (1) is given by Rs (1) · 4: 418: The
exact value of Rs (1) is not known and its determination seems to be a very
di¢cult problem. While we are able to obtain some upper bounds in terms of
the dimension n for Rs (n) ; these are not very good, and our main result for
symmetric n-dimension rendezvous with a …xed initial distance is restricted
to the following asymptotic result, proved in Section 3.
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Theorem 2 For the symmetric rendezvous problem on the n-lattice, with an
initial placement two units apart in a direction parallel to a random coordinate
axis, we have

lim
n!1

Rs (n) =n · 56
9
:= 6: 2222:

After carrying out the general n-dimensional analysis, we attempt to get
more exact results for the planar case n = 2 in Section 4. In our main
initial setup, where the initial di¤erence between the players is parallel to a
random coordinate axis, we obtain only a partial optimality result for our
suggested strategy. We show (Theorem 3) that it maximizes the probability
of a meeting by time t for t · 7:

In Section 5 we then consider another initial setup suggested earlier by
Anderson and Fekete [8], where the initial di¤erence vector is equiprobably
one of the four vectors (§1;§1) : For this scenario they suggested a strategy,
which we call the A-F strategy, and showed that it was optimal. We extend
some of their ideas and prove (Theorem 7) that the A-F strategy is uniformly
optimal and determine the set of all optimal strategies.

As the title of this article suggests, we also have some new ideas for
one-dimensional rendezvous, in continuous time and space. These ideas are
presented in Section 6, where we adopt an asymmetric information version
of rendezvous originally suggest by Anderson and Fekete [8] for the plane.
They assume that one of the players (say II) knows the initial position of the
other (I), and that both know the initial distance. On the line we assume
that Player I is initially at the origin, while the initial position of II is given
by a known distribution F on the line. We show that this problem can be
transformed into a pure search problem studied by the author and Howard [6],
where two searchers located at the origins of distinct lines move alternately to
…nd a stationary object hidden in the positive direction along one of the lines.
For symmetric distributions F; we establish (Theorem 12) that a necessary
and su¢cient condition for staying still to be uniquely optimal for Player I
is that the distribution of the initial distance between the players is strictly
concave.

2 Asymmetric n-Dimensional Rendezvous
In order to analyze the asymmetric version (with distinct strategies) of the
rendezvous problem ¡(n) described in the Introduction, we will need to
consider two subsidiary problems ¡1 (m) and ¡2 (m) ; for m = 1; : : : ; 2n:
Both of these problems begin at time t = 0 with the placement of Players
I and II respectively at a pair of nodes A and B which are two units apart
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Figure 2: Start position in ¡1 (3)

along a line parallel to some coordinate axis. Then Player I is displaced to
a node A0 along a similar two unit line which is not the one leading to B:
Player I is told the node A: In the problem ¡1 (m) ; Player I is told m ¡ 1
directions which are certain to include the direction to B; and Player II is
told m such directions. In problem ¡1 (m) ; both players are told m such
directions. Special cases of these problems, for n = 2; are drawn in Figures
2 and 3.

In order to estimate the rendezvous value Ra (n) of the original problem
¡ (n) ; we must obtain estimates on the respective asymmetric rendezvous
values w1 (m) and w2 (m) of ¡1 (m) and ¡2 (m) for various m (corresponding
to the dimension n; which is implicit in our notation).

Suppose that in the problem ¡1 (m), the …rst two moves of the players
are as follows: Player I goes to the node A (which he knows) while Player II
goes 2 steps randomly in one of them indicated directions. With probability
1=m, II will pick the direction to A; and the meeting time will be T = 2:
Otherwise the two players will be in the initial position of the other problem
¡2 (m¡ 1) ; with the roles (of I and II) reversed. Hence we have

w1 (m) · 1
m

(2) +
m¡ 1
m

(2 + w2 (m¡ 1)) : (2)

Similarly, in the initial position of ¡2 (m) ; the same type of strategy for the
…rst two moves gives

w2 (m) · 1
m

(2) +
m¡ 1
m

(2 + w1 (m)) : (3)
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Figure 3: Start position in ¡2 (3) :

A' A B

Figure 4: Start position in ¡2 (1) :

From these two inequalities we obtain upper bounds wi (m) · ¹wi (m) by
solving the associated equalities. This gives us the solutions

¹w1 (m) = 4m+ 1
3
; (4)

¹w2 (m) =
¡1 + 3m+ 4m2

3m
: (5)

This is consistent with the trivial base case ¡2 (1) ; where I and II start 4
units apart with knowledge of the other’s direction, with rendezvous value
w2 (1) = 2 corresponding to a meeting at A: This case is illustrated in Figure
4.

We now consider the original game ¡ (n) : Suppose that in their …rst
two moves one player (I) goes two units in his forward direction, while the
other (II) goes in some direction and the back to his start. With probability
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1= (2n)2 the two players will go towards each other and meet at time T = 1:
If Player I goes in the direction of II (probability 1=2n) and II does not go
in the direction of I (probability (2n¡ 1) = (2n)) then the two will meet at
time T = 2 at II’s initial location. In the remaining case, I will …nd himself
displaced two units from his start and know of one direction from his start
which does not lead to II’s starting location. Meanwhile, II will be at his start
and not know of any of the 2n directions which are not correct. Consequently
the situation at time t = 2 will be identical to that of the problem ¡1 (2n) :
Therefore we have the estimate

Ra (n) ·
µ

1
(2n)2

¶
1 +

µ
1
2n

¶µ
2n¡ 1
2n

¶
2 +

µ
2n¡ 1
2n

¶
(2 + w1 (2n)) :

Estimating w1 by the formula (5) for ¹w1; and simplifying, we get

Ra (n) · 32n3 +12n2 ¡ 2n¡ 3
12n2

; and hence

lim
n!1

Ra (n) =n · 8
3
; which gives Theorem 1.

We note again that the value of the right hand side of the top inequality is
13=4 for n = 1; which is the exact asymmetric rendezvous value for the line as
derived in [5] for known initial distanceD = 2. The strategy pair which gives
this expected meeting time is the one which converts ¡(n) into ¡1 (2n) and
thereafter converts each problem ¡1 (m) into ¡2 (m¡ 1) and each problem
¡2 (m) into ¡1 (m) ; m = 2n; 2n¡ 1; : : : ; 1 (assuming the players don’t meet
earlier). It may be described in the following way as an ‘alternating wait for
mommy’ (AWFM) strategy.

De…nition (AWFM Strategy): One player (say I) arrives at 2n¡ 1 of
the other’s starting points at the times ti = 2+ 4i; i = 0; : : : ; 2n¡ 1; while
returning to his initial position at times qi+1; where qi = 4i; i = 1; : : : ; 2n¡1:
The other player (say II) returns to his initial position at times ti (to be there
when I searches) while searching out player I’s initial positions at time qi:
Note that they will certainly meet before II tries to search out the last possible
initial position of I. Thus the two players alternate the roles of searcher and
waiter. Player I has to meet (2n)2 = 4n2 agents of Player II. With this
strategy pair, he meets one agent at time t = 1; and 2n¡ 1 agents at time
t = t0 = 2 (all those at this initial position of II except for the one who
headed towards I earlier). Thereafter, he meets exactly 2n¡ i agents at time
ti and at time qi: The maximum meeting time for this strategy is given by
t2n¡1 = 8n¡ 2:
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By time ti = 2+ 4i the number of meetings is given by N (i) ; where

N (i) = 2n + 2
iX

j=1

(2n¡ j) = (2i +1) (2n) ¡ i (i +1) : (6)

We see that
N (2n¡ 1) = 4n2;

which is the total number of agents of Player II.

2.1 Symmetric n-Dimensional Rendezvous
We now consider the symmetric version of the rendezvous problem ¡(n),
where both players are constrained to use the same strategy. Observe that
pure strategies are no longer su¢cient, since if both use the same pure strat-
egy and are initially facing in the same direction then they will always be
the same distance apart and will never meet. So in this version we are forced
to consider mixed strategies. Recall that even for the case n = 1 this is an
open problem, so we will be content with getting upper bounds which will
subsequently be improved. The strategies we will analyze will be of the fol-
lowing type. In each period of length ¿ ; players will choose (independently of
previous choices) among pure strategies which return them to their starting
points. In each of these periods the probability of a meeting will be de-
noted by p: Given that a meeting occurs, the expected time of this meeting
(counting from the beginning of the period) will be denoted by L: For such
strategies the expected meeting time E satis…es the following equation

E = pL+ (1¡ p) (¿ + E) ;with solution (7)

E = pL+ (1¡ p)¿
p

: (8)

The most obvious symmetric strategy is the simple random strategy, in
which each player moves one step in a random direction before returning back
to his start. Here the period is ¿ = 2; the meeting probability is p = 1=4n2
and the meeting time is L = 1: Hence by (8) we have

Rs (n) · (1=4n2) 1 + (1¡ 1=4n2) 2
1=4n2

= 8n2 ¡ 1:

A better symmetric strategy is for the players to each follow one of the two
pure strategies in the asymmetric AWFM strategy described above, choosing
equiprobably between the two, and extending them to time ¿ = q2n = 8n
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by returning to or waiting at the starting point in the last two time units.
Neglecting the possibility that the players meet when choosing the same
pure strategies (this probability goes to zero with n), we have p = 1=2 (the
probability of choosing di¤erent strategies) and L = 32n3+12n2¡2n¡3

12n2 by (??).
Since p = 1¡ p = 1=2; the formula (8) gives us the estimate

Rs (n) · L + ¿ = 32n3 + 12n2 ¡ 2n¡ 3
12n2

+ 8n

=
128n3 +12n2 ¡ 2n¡ 3

12n2
:

The corresponding asymptotic estimate is

lim
n!1

Rs (n)
n

· 32
3

= 10: 666 : : : :

However can get a better asymptotic estimate by having the players random-
ize between taking roles I or II more often. Assume that k is large and n=k is
a large integer. Suppose that we take ¿ = 8n+2k and divide this period into
k equal subperiods. At the beginning of each period the players choose the
order in which they will visit the 2n possible starting points of the other one.
In each subperiod they visit the next 2n=k locations, choosing equiprobably
to visit them using the role of I or II, and returning to their start at the end
of each subperiod. If k is large then in each period they will be choosing
distinct strategies (one with role I and the other with role II) in very close to
half the subperiods. So the probability of meeting in each period will be close
to the probability of meeting by time tn

:= ¿ =2 in the asymmetric version.
Using the formula (6) for N (i) ; this probability is given by

p = N (n) =4n2 = (2n +1) (2n) ¡ n (n+ 1)
4n2

= 3n + 1
4n

! 3
4
: (9)

We now seek to compute the value of L; the expected meeting time given
that they meet in a given period. This will be the same as computing, in the
asymmetric problem, the expected meeting time given that they meet by time
tn (after checking half the possible locations). However this time will have to
be doubled, because it now takes time 2ti to check i possible initial locations
of the other player (and meet 2ni possible agents of the other player), since
half the time is wasted due to the players adopting the same role (both I or
both II).

We observed earlier that when they adopt opposite roles (as in the asym-
metric problem) I will meet 2n¡ i agents at times ti and at times qi. So now
that they are half as e¢cient we can estimate the expected meeting time by
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assuming that I meets 2n¡i agents at time 2ti and at time 2qi. Equivalently
(for expected time estimates) we may assume he meets 2 (2n¡ i) agents at
the averaged time ti + qi = 8i + 2: In the full period ¿ = 8n (for asymptotic
estimates we will ignore the 2k term) we saw above that he will meet 3=4
of the 4n2 agents, or 3n2 agents. Consequently, given that a meeting takes
place, the expected meeting time is given by

L =
1

3n2

nX

i=1

2 (2n¡ i) (8i +2)

=
2

3n2

µ
16
3
n3 +8n2 ¡ 10

3
n
¶
: (10)

If we look for the meeting time in terms of the length of the period, we get

L
¿

=
L
8n

=
2

24n3

µ
16
3
n3 + 8n2 ¡ 10

3
n
¶

! 4
9 as n! 1: (11)

Consequently, by substituting the values (11) and (9) into (8), we get an
expected meeting time of

E =
pL+ (1 ¡ p)¿

p

=
3
4

¡4¿
9

¢
+ 1

4¿
3
4

=
7
9
¿ =

56
9
n:

This establishes the asymptotic estimate for symmetric n-dimensional ren-
dezvous stated as Theorem 2 in the Introduction.

By way of comparison, we note that Baston’s strategy for symmetric
rendezvous on the line (n = 2) when the initial distance is 2 gives an expected
meeting time of about 4:4:

3 Asymmetric Rendezvous in the Plane
We have already observed that the AWFM strategy given in Section 2 is
uniformly optimal in the case n = 1: We now establish that it also has
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certain optimality properties in the case n = 2: In particular, we will show
that for all i up to 7; this strategy maximizes the probability that meeting has
occurred by time i: For a general strategy, we will let xi denote the number
of agents of Player II that Player I meets (for the …rst time) at time t = i;
and yi the number he has met by time i:

Recall from our general analysis in the previous section that the AWFM
strategy has x̂1 = 1; Note that any …rst move of Player I (remember that
staying still is not allowed) will meet exactly one agent of Player II.x̂2 =
2n¡ 1 = 3; and then x̂4i = x̂4i+2 = 2n¡ i = 4¡ i; with x̂i = 0 for odd i > 1:
The table below lists the sequence of x̂i together with their cumulative sum
ŷi =

Pi
j=1 x̂j. The total number of agents of II is 4n2 = 16:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x̂i 1 3 0 3 0 3 0 2 0 2 0 1 0 1
ŷi 1 4 4 7 7 10 10 12 12 14 14 15 15 16

Theorem 3 No strategy for the asymmetric rendezvous problem ¡(2) on the
2-dimensional lattice results in more than ŷj agents of Player II being met
by time j; j = 1; : : : ; 7: In other words, the AWFM strategy outlined in the
previous sections maximizes the probability of meeting by such times j:

Proof. First observe that x1 = 1 = y1 for any strategy (recall that staying
still is not allowed). Next suppose that I meets xi ¸ 2 agents of II at some
time i and node A; where A is not a starting point of either player. Then A
must be equally distant (in the Manhattan, or graph metric) from xi distinct
starting points of Player II, since agents of Player II from the same starting
point have distinct locations. However the only point equidistant from xi ¸ 3
of II’s starting points is the origin. Since we have excluded this possibility
it follows that xi = 2 and that A is on one of the two main diagonals. This
implies that i is even. If A is allowed to be a starting point (which we may
assume to be of II) then we also have that i is even. Furthermore in this case
we have xi · 3 (since I would have met one of the agents starting at A by
time i¡ 1) and xi+1 = 0; since the distance between starting points of II is
at least 4: In any case we have shown that for any integer j; x2j + x2j+1 · 3:
The three observations x1 = 1; xi · 3; and x2j + x2j+1 · 3 su¢ce to show
that yi · ŷi up to i = 7:

4 Diagonal Start on the 2-Lattice
This technique used to establish partial optimality properties for the AWFM
strategy in the previous theorem could be pushed a bit further. However
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Figure 5: 16 starting types for II

to establish full uniform optimality of a strategy on the 2¡lattice, we must
move to a scenario suggested by Anderson and Fekete [8]. We will call their
problem the diagonal start on the 2-lattice, because Player I is initially placed
at the origin and Player II is initially placed equiprobably at one of the four
nodes (§1;§1) : So the two players are separated by one horizontal and one
vertical edge of the lattice. These nodes are at distance 2 from the origin
(starting point of Player I), however they are closer to each other, so that
a traveling salesman tour for I of II’s starting points is shorter than in the
case of the coordinate direction start considered in most of this article. The
information available to both players is that the other player is one horizontal
plus one vertical step away. The 16 possible initial placements of Player II
(or the 16 agents) are shown in Figure 5.

Anderson and Fekete [8] analyzed a strategy pair which we call the A-F
strategy, given by ¹f = [N;W; S; S;E;E;N;N ], ¹g = [N;S;N;S;N; S;N; S ] :
We may consider that there are 16 equiprobable agents of Player II, and
I wishes to minimize the expected time required to meet an agent. The
following table indicates the meeting times corresponding to

¡ ¹f; ¹g
¢

depending
on the initial direction which II calls North (labelled in terms of what I calls
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it) and the initial location of Player II.

Player II Starting Point
initial direction (1; 1) (¡1; 1) (¡1;¡1) (1;¡1)

N 8 2 3 6
W 1 2 4 5
S 7 2 4 6
E 8 1 4 6

For each time t = 1; : : : ; 8; the number of entries of the 4 £ 4 matrix of
meeting times which are equal to t is denoted by ¹xt and the number which
are less than or equal to t is denoted by ¹yt: Thus in the A-F strategy Player
I meets ¹xt of the 16 Player II agents at time t and ¹yt of these agents by time
t: For a general strategy we will let xt and yt denote these numbers. For the
A-F strategy we have

t 1 2 3 4 5 6 7 8
¹xt 2 3 1 3 1 3 1 2
¹yt 2 5 6 9 10 13 14 16

(12)

The expected meeting time for this strategy is

1
16

(1 ² 2 + 2 ² 3 + 3 ² 1 + 4 ² 3 + 5 ² 1 + 6 ² 3 + 7 ² 1 + 8 ² 2) =
69
16
:

Anderson and Fekete established that their (A-F) strategy is optimal - no
strategy gives a lower expected meeting time. We will prove a stronger result,
namely that it is uniformly optimal (in the sense de…ned in the Introduction).
To do this we will need to use part of their original proof, which we give below.

Lemma 4 For any strategy pair, we have

xi · 3; and furthermore (13)
xi = 3 implies xi+1 · 1:

Proof. Suppose that xi ¸ 3; which means that Player I meets at least
three agents of II at time i at some location A: We …rst show that at time i
one of the players must be back at his start. Suppose not. Then agents of
Player II starting at a common node must be at distinct locations. Hence all
the agents that I meets at time i must come from di¤erent starting points.
Since all Player II agents are equally distant from their respective starting
positions, the node A must be equally distant (in the Manhattan or graph
distance) from at least three of the start points of II. The only such location
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is the origin, that is, Player I’s initial location. So the meeting must be,
as claimed, at a starting point. (Note that this implies that i is even.) By
symmetry of the players, we will assume that A is one of the starting points
of II. At time i¡ 1 both Player I and one of the agents of II who started at
A must be at the same location. Hence xi · 3 as claimed. Since all agents
of II must be at their starting points at time i; and I is at one of these, he
can meet at most one agent of II at time i + 1:

We will establish an extension of the class of optimal strategies. To do
this, we de…ne a mixed rendezvous strategy (f¤; g¤) as follows. The strat-
egy f¤ sends Player I cyclically around the square with corners (§1;§1) ;
equiprobably in one of the 8 possible ways. These ways are determined by
the …rst two moves (e.g. N,W for the A-F pure strategy), with the second
direction resulting from a left or right turn. The strategy g¤ places Player
II back at his starting point at all even integer times, moves in a random
direction (independently of previous choices) at all odd times, except that
the last odd move is the same direction as the …rst odd move.

To evaluate the expected meeting time for the mixed rendezvous strategy
(f ¤; g¤) we can assume without loss of generality that Player I follows the
pure strategy ¹f determined by the …rst two choices N,E. The following table
gives the location of Player I at times t and the probability pt that the …rst
meeting time is at time t:

t 1 2 3 4 5 6 7 8
¹f (t) (0; 1) (1; 1) (1; 0) (1;¡1) (0;¡1) (¡1;¡1) (¡1; 0) (¡1; 1)
pt 1

4
1
4 +

1
4
1
4

1
4
3
4

1
4
1
4

1
4
3
4

1
4
1
4

1
4
3
4

1
4
3
4
1
3

1
4
3
4
2
3

This table is explained as follows. The probability p1 arises from the
possibility that II starts at (¡1; 1) and moves E (in I’s notation) or starts
at (1; 1) and moves W: For t = 3; 5 the probability pt is the probability that
Player II starts at ¹f (t+ 1) (just ahead of I’s current position) and is lucky
enough to move towards the oncoming Player I. If he was unlucky this gives
the probability p2; p4 or p6: The probability p7 is the probability that II
started at (¡1; 1), did not initially go E and went S at move 7. The later
probability is 1/3 for our strategy, as going E is excluded. (Note that if we
used an entirely random strategy for the second player, this probability would
have been 3/64 rather than 4=64:) It follows that the expected meeting time
§tt ² pt = 69=16: Since this is the rendezvous value established by Anderson
and Fekete, we obtain the following.

Theorem 5 The mixed strategy (f¤; g¤) has one player (say I) choose one
of the eight cyclic search patterns equiprobably, while the other player (say
II) chooses a strategy which is back at his start at all even times, and picks
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a random direction at times 1; 3; 5 (independently of previous choices), and
moves in the same direction at time 7 at that chosen at time 1: This strategy
is optimal, giving an expected meeting time of 69=16; equal to the rendezvous
value.

Note that if a mixed strategy is optimal for the asymmetric rendezvous
problem, it follows that every pair of pure strategies (f; g) which occurs with
a positive probability must be an optimal pair. Consequently we have the
following.

Corollary 6 A pure strategy pair (f; g) is optimal if one of the players goes
around the square (§1;§1) in a cyclic fashion while the other moves in any
direction at times 1,3,5, moves in the opposite direction from the previous at
times 2,4,6, and moves in the same two directions at moves 7 and 8 as at
moves 1 and 2. Such a strategy will be called a generalized A-F strategy.

In fact we shall establish the stronger result that these strategies con-
stitute all the optimal strategies, and that moreover they are all uniformly
optimal. (Of course if one strategy is uniformly optimal, then all optimal
strategies must be uniformly optimal.) To do this we will need the condition
on the xi established in Lemma 4. It follows from that condition that for
any i and j; we have

xi + xi+1 + ¢ ¢ ¢ + xi+j · 2 + 2 + : : : 2 + 3:

In particular, we have that

xi + xi+1 · ¹5; (14)
xi + xi+1+ xi+2 · ¹7;

xi + xi+1+ xi+2+ xi+3 · ¹9; and
xi + xi+1+ xi+2+ xi+3+ xi+4 · 11:

The bars over the numbers at the right will just be used to identify where
these come from in the analysis below.

Theorem 7 A pure strategy pair (f; g) is optimal if and only if it is a gen-
eralized A-F strategy. Furthermore each of these strategies is uniformly op-
timal.

Proof. Let (f; g) be any strategy pair for which either yt > ¹yt for some
t or yt ¸ ¹yt for all t: (Recall ¹y = (2; 5; 6; 9; 10; 13; 14; 16)). Under this as-
sumption we will show that it must satisfy yt = ¹yt for all t and must be a
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generalized A-F strategy, establishing both claims of the theorem. Without
loss of generality we will assume that I starts by going N to (0; 1) : Regardless
of g; I will meet two agents of II at (0; 1) ; so that x1 = y1 = ¹y1 = 2: This
argument relies on our requirement that players cannot stay still.

Unless I turns (E or W) and II returns to his start, the largest x2 can
be is 1 (corresponding to I continuing N and meeting an agent starting at
(¡1; 1) or (1; 1) at location (0; 2)): In this case y2 = 3 and by (14) we have

y · (2; 3; 3 + ¹3; 3 + ¹5; 3 + ¹7; 3 + ¹9; 3 + 1¹1; 16) ;

which violates our initial assumption. So we may assume without loss of
generality that at time 2 Player I is at (1; 1) and Player II is back at his
start. (A symmetric case arises if I chooses NW and is at (¡1; 1)).

If I does not go to (1;¡1) in the next two steps, with II returning to
his start at time 4; the largest values for x3 and x4 are respectively 1 and 2
(obtained by I going to (¡1; 1)). However any strategy using these two steps
is strictly dominated by the symmetric strategy going to (1;¡1) : Any other
strategy gives at most x3 = 1 and x4 = 1; hence at most y3 · 6 and y4 · 7:
Consequently it has a cumulative distribution y satisfying

y · (2; 3; 6; 7; 7 + ¹3; 7 + ¹5; 7 + ¹7; 16) ;

which again violates our assumption. So the strategy (f; g) must be as
claimed (and in particular a generalized A-F strategy) up to time 4.

If I does not move W to (0;¡1) at time 5, then x5 = 0 and y5 = 9: Hence

y · (2; 5; 6; 9; 9; 9 + ¹3; 9 + ¹5; 9 + ¹7) ;

which again violates our assumptions. Hence I must go W to (0;¡1) at time
5.

If at time 6 II is not back at his start, and I at (¡1;¡1) ; then x6 · 1
and hence y6 · 11: Consequently

y · (2; 3; 6; 9; 9; 9 + ¹3; 9 + ¹5; 9 + ¹7) ;

again violating our assumptions.
At time 6, I is at (¡1;¡1) and there are three agents of II remaining at

(¡1; 1) : The only way that to ensure a meeting at time 7 at (¡1; 0) (that is,
x7 = 1) is for I to go to (¡1; 0) while one of the agents of II at (¡1; 1) also
goes there. Player II must make sure that it is not the agent which I already
met at time 1 which he meets there (not for the …rst time). The only way to
ensure this is for II to go in the same direction at time 6 (move 7) as he went
at time 0 (…rst move). So we may assume this and consequently we have

y · ¹y;
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so we know that the …rst assumption on (f; g) is impossible. This proves
that any strategy with cumulative distribution function ¹y (and hence any
generalized A-F strategy) is uniformly optimal. Finally, to show that only
such strategies are optimal, we observe that the only way to get x8 = 2 and
y8 = 16 is for II to return to his start at time 8 while I continues to (¡1; 1) :

5 Asymmetric Information Rendezvous
In some real situations the two players may have di¤erent information about
the initial location of the other. For example if two parachutists drop at
di¤erent times, the location A of the …rst (to drop) may be known to the sec-
ond, but not the other way around. This type of problem was …rst considered
in the plane by Anderson and Fekete [8], who also assumed that the initial
distance between the players is known to both but allowed distinct speeds for
the two players. We assume only that the distribution of the initial distance
is known, but maintain our usual assumption of equal speeds. The analysis
given here for the line is new to the literature.

In the two dimensional setting, Anderson and Fekete show that for some
combinations of speeds and initial distance the optimal solution begins with
both players moving to a common circle centered on A: Thereafter, both
players keep a common decreasing distance to A; moving in on a spiral to
A: They raise the question of when it is optimal for the player starting at
A to remain there. In the 1-dimensional case it has been shown by Gal [11]
that when neither player can see the other it is never (for no distribution
of initial distance) optimal for a player to stay still. For the 1-dimensional
asymmetric information rendezvous problem, we will determine conditions
for staying still to be optimal.

We suppose that player I starts at a position A known to both, which
we take as the origin 0: Player II can be assumed to know the location 0
or simply to know the direction to I. In any case it is easy to see that the
following trajectory of II dominates any other motion:

g (t) =
½
g (0) ¡ t; if g (0) > 0;
g (0) + t; if g (0) < 0:

Assume that the distribution of Player II’s initial location g (0) has a
known cumulative probability distribution function F: This determines two
distribution functions F1 and F2 of the positive initial distance to Player II
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along the positive and negative numbers, respectively, by

F1 (x) = F (x)¡ F (0) = Pr(0 · g (0) · x) ; and (15)
F2 (x) = F (0)¡ F (¡x) = Pr (¡x · g (0) < 0) :

Since we can assume that g (0) is not 0; the two cumulative probability
distributions F1 and F2 satisfy

lim
x!1

(F1 (x) + F2 (x)) = 1: (16)

With this restriction on two distributions F1 and F2; we de…ne Ra (F1; F2)
to be the least expected time for the two players to meet. That is, Ra (F ) =
Ra (F1; F2) is the rendezvous value for the asymmetric information rendezvous
problem on the line.

Suppose that Player I follows a path f (t) ; with f (0) = 0 and maximum
speed 1: If g (0) > 0 then rendezvous will have occurred by time t if and only
if f (t) ¸ g (0) ¡ t; or equivalently if

0 · g (0) · f (t) + t:

Similarly if g (0) < 0 then the rendezvous time T satis…es T · t if and only
if

f (t) ¡ t · g (0) < 0:

Consequently the rendezvous probability is given by

Ff (t) ´ Pr (T · t) = F1 (f (t) + t) + F2 (¡f (t) + t) ; (17)

and the expected meeting time T̂f (F ) and rendezvous value Ra (F1; F2) are
given by

T̂f (F ) =
Z 1

0
t dFf (t) ;

= min
f
T̂f (F )

It turns out that the problem of minimizing the above expected time for f is
equivalent to the Alternating Search Problem formulated by the author and
Howard [6] and that the analysis of that problem can be e¤ectively applied
to solve the asymmetric information rendezvous problem considered in this
section. Note that this is a simpler and di¤erent reduction than that given
in the Double Linear Search Problem [4].
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5.1 The alternating search problem AS (F1; F2) :
We now give a brief summary of the Alternating Search Problem AS (F1; F2)
and some results on its solution given in [6]. In this search problem, there
are two disjoint lines (or rays) L1 and L2; and a single stationary object
is hidden in the positive direction along one of these lines. Its cumulative
distribution along Li is given by Fi; where the distributions Fi satisfy (16).
Two searchers, S1 and S2; start at time 0 at the origins of their respective
lines, and move with combined speed 2 in the positive directions along their
lines. They may alternate moving at speed 2 or move simultaneously so the
sum of their speeds is 2: Their joint motion is fully described by a single
function ® (t) ; where the respective positions of the two searchers at time t
are given by 2® (t) (on L1) and 2t¡ 2® (t) (on L2). The alternation rule ® is
nondecreasing and satis…es the Lipshitz condition ® (t) ¡ ® (u) · t¡ u; for
t > u: The probability that the object has been found by time t if the rule ®
is used is given by

F® (t) ´ F1 (2®t) + F2 (2t¡ 2®t) : (18)

The least expected time required to …nd the hidden object in this search
problem is given by

v (F1; F2) = min
®

Z 1

0
t dF® (t) ;

and a rule ® for which this minimum is achieved is called optimal.
The analysis given in [6] shows that if an optimal rule searches the two

rays alternately (each at full speed 2) in consecutive time intervals, then
the interval with the higher average density for the object is searched …rst.
Furthermore, we have the following deeper results from [6], which we quote
as Propositions.

Proposition 8 Suppose that the hidden object has a common distribution
F1 = F2 on the two rays. If this distribution is strictly concave, then the
unique optimal alternation rule is ® (t) = t; in which the two rays are searched
in parallel. (Each searcher is at location t on his line at time t:) Otherwise,
there are other optimal alternation rules.

Proposition 9 Suppose that F1 and F2 are convex on their supports. Then
there is an optimal alternation rule which searches one ray (the one with the
higher average density of the object) fully and then the other ray.
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5.2 Application to rendezvous
We now show how the asymmetric information rendezvous problem can be
reduced to the alternating search problem, and how the results obtained
there can be interpreted for rendezvous. The formula (17) shows that the
meeting probability in the rendezvous problem is the probability that a single
stationary object placed at g (0) according to F is found either by a searcher
going along the positive real axis with motion f (t) + t or by a searcher going
along the negative real axis with motion ¡f (t) + t (describing its distance
from the origin). If we write this in terms of the alternation rule ® (t) we
…nd that the change of variables given by

® (t) = f (t) + t
2

sets Ff (t) in the rendezvous problem (17) equal to F® (t) in the alternating
search problem (18). In this equivalence the positive real axis is identi…ed
with ray 1 and the negative real axis with ray 2. Consequently we have the
following.

Theorem 10 Consider the asymmetric information rendezvous problem on
the line, in which I is placed at 0 and II is placed with a cumulative probability
distribution F: Then the least rendezvous value Ra (F ) = Ra (F1; F2) is equal
to the value v (F1; F2) of the associated alternating search problem with the
distribution Fi; given by (15).

Note that the Player I strategy f (t) ´ 0 of staying still (Wait For
Mommy) in the rendezvous problem corresponds to the alternation rule
® (t) ´ 1=2 of simultaneous equal speed searching of the two rays in the
alternating search problem. The rendezvous strategy of …rst going right to
meet your partner and when this proves wrong going left (f 0 (t) = 1 …rst then
¡1) corresponds to the alternation rule of searching L1 and then L2:

The results from [6] cited in the previous subsection can be used to give
a qualitative description of the optimal Player I motion f (t) in certain cases
of the rendezvous problem. Proposition 9 gives the following condition for
staying still to be optimal for Player I.

Theorem 11 Suppose that Player II is symmetrically distributed in the asym-
metric information rendezvous problem on the line (F1 = F2). Then a suf-
…cient condition for ‘waiting’ (that is, f (t) identically 0) to be optimal for
Player I is that F1 is concave. A necessary and su¢cient condition for wait-
ing to be uniquely optimal is that F1 is strictly concave.
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In some cases it is optimal for Player I to …rst move in one direction
to meet on oncoming Player II until he realizes he has gone in the wrong
direction, and then to move in the other direction. The following is an
immediate consequence of Proposition 10.

Theorem 12 Suppose that both distributions F1 and F2 are convex on their
supporting intervals. Then there is an optimal solution of the asymmetric
information rendezvous problem on the line in which Player I goes in a single
direction until the …rst moment he is sure that II was in the other direction,
and then turns and goes in that direction until he meets him.

Situations in which F1 and F2 do not satisfy the conditions of the two
previous results can be solved by the algorithms given in [6] For example, if
the initial distance between the players is known to be 1; then Player I goes at
speed 1 a distance .5 in one direction and then a distance :5 in the other. He
meets Player II equally probably at times :5 and 1, so the rendezvous value
is .75. If the initial location of Player II is uniformly distributed on [¡1; 1]
(meeting the assumptions of both the previous theorems) then Player I can
either wait, with average waiting time :5; or he can follow the strategy of
Theorem 13, in which he meets in average time .25 if he guesses the direction
right and .75 if he guesses wrong, again with expected meeting time :5:
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