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Abstract

Since 1782, when Euler addressed the question of existence of a pair of Orthogonal Latin 8u8)by stating his
famous conjecture ([8, 9, 13]), these structures have remained an active area of research due to their theoretical properties as
well as their applications in a variety of fields. In the current work we consider the polyhedral asp@tiS.bf particular
we establish the dimension of ti@L_Spolytope, describe all cliques of the underlying intersection graph and categorize
them into three classes. For two of these classes we show that the related inequalities have Chvatal rank two and both are
facet defining. For each such class, we give a separation algorithm of the lowest possible complexity, i.e. linear in the

number of variables.
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1 Introduction

A Latin squareL of ordern is an x n square matrix having? entries ofn different elements each occurring exactly once
in every row and column. W.l.o.g. we can assume thatitlilifferent elements are the integérsl, ...,n — 1. Two latin
squared, =|| a;; ||, L2 =|| b;; || onn symbols are calledrthogonalif every ordered pair of symbols occurs exactly once
amongn? pairs(a;; b;;)i, j = 0,1,...,n—1. An example of a pair of orthogonal latin squa(€d_S)of order4 is illustrated

in Table 1.
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An alternative definition ofOLS can be given with respect to disjoint sets and transversalgamsversalof a latin
square of ordern is a set ofn cells, no two of which are in the same row or the same column or contain the same symbol.
Consider three disjoint sefs J, K, | I |=| J |=| K |= n. LetI be the set of rows] the set of columns an#l the set of
symbols in the cells of a latin square. Then the latin square has an orthogonal mate if and onlyifdigjast transversals
([8, Theorem 5.1.1]). Each transversal hetsiplets, each representing a different row, column, and symbol. Therefore the
transversal partitions the union of thesets of rows, columns, and symbols. For example, the four transversals, numbered

from 0 to 3, of the first latin square illustrated in Table 1 are:

((0,0,0), (1,2,3), (2,3,1), (3,1,2))o
(( 71)a (17352)7 (2’2 0)7 (35073))1
(( ’2)5 (170’ 1)7 (2’ )7 (3’350))2
((0,3,3), (1,1,0), (2,0,2), (3,2,1))3

Let L, (| L |= n) denote the index-set of the transversals. The orthogonal mate can be constructed if we set at each cell,
defined by a row index and a column index, the value ofitmelex which indicates the transversal that this cell belongs
to. This definition reveals another property®@ES Latin squares.;, Lo of ordern are orthogonal if and only if for each
symbol the: cells that contain it inl,; correspond tan cells of a transversal i, and vice-versaThis implies that each
pair of symbolga;;,b;;) 7,7 = 0, ...,n — 1 appears exactly ongghe orthogonal property)
Now consider all possible triplets with one element from each of the three disjoint,sétd< and a weight associated
with each triplet. Thevlanar four-index assignmempiroblem(4P AP,,) refers to identifying a minimum weight collection
of n? triplets, which formn disjoint subsets (transversals)ofisjoint triplets. Each such subset forms a partition of the

union of the threa-sets. This is theveighted OL$roblem. It is analogous to th@anar three-index assignmeptoblem



(3PAP,) which asks for a minimum weight collection ef pairs which formn disjoint subsets ofi disjoint pairs. The
3PAP, is equivalent to the problem of finding a minimum weight latin square (see [14]), Wwhil&P, is equivalent to
identifying a minimum weight pair oDLS.

OLShave attracted substantial attention from very early on. As noted in [8, p. 156], Euler in 1779 had proposed the
36-officers problem which asked for a pair ©LS of order 6 (see also [13]). Having failed to find such a configuration
and probably misguided by the nonexistence of a pair of OLSifer 2, he conjectured that there exists no paiQifS
of ordern = 2(mod 4) ([8, 13]), i.e. odd multiple of two. At the beginning of the 20th century his conjecture was proven
for n = 6 ([18]). However, it took sixty more years to prove that his conjecturenfor 6 was wrong ([5]). Even today
OLSremain a very active area of research due to their theoretical properties and their applications in diverse fields. In terms
of theoretical interest, these structures are strongly related to the theory of affine and projective planes and to orthogonal
hypercubes andt, m, s)-nets. Their practical applications include the problem of multi-variate experimental design, the
problem of designing optimal error correcting codes and that of encryption. An extensive study of the thet&arfd
related structures as well as a variety of applications can be found in [8, 9, 13].

In spite of the early availability of a 0-1 integer programming formulation (due to D. Gale as noted i@[®@have not
been analyzed through mathematical programming. The current work is a step in that direction. In this paper we focus on
the OLSpolytope, study its intersection graph and obtain facets induced by clique constraints. In Section 2 we present the
mathematical formulation of the problem and discuss related problems. The associated intersection graph and its cliques
are described in Section 3. In Section 4 we prove the dimension of the underlying polytope and show that two of the three
classes of clique inequalities induce facets of this polytope. We also provide proofs that these inequalities are of Chvatal
rank 2. A separation algorithm for each of these two facet-defining clique classes is given in Section 5.

Throughout the rest of the paper we will assume 1 since forn = 1 OLSreduces to a trivial single-variable problem.



2 The OLS polytope and related structures

Appa ([1]) gives several different mathematical programming formulations foDttfgproblem and indicates that the one

attributed to D. Gale (in [7]) and reproduced below is the most suitable for theoretical and computational work:

d{wimiiceljeJy=1Vke K l€L (2.1)
A :je ke Ky =1Viel,lcL (2.2)
d{zijmiic Lke K}=1VjeJlcl (2.3)
> {wiu ke KleLy=1Viel,jeJ (2.4)
d{wijmiicele Ly =1Yje ke K (2.5)
d{zijmijeJlel=1ViceLLkec K (2.6)
zijp €{0,1}Viel,je JJke K,l€ L 2.7

wherel, J, K, L are disjoint sets with I |=| J |=| K |=| L |= n.

Given real weights;; ;1; for every(i, j, k,1,) € I x J x K x L the problem of minimizing (maximizing) the function
Y Acijrzij 1 € 1,j € J k € K,l € L} over the polytope described by constraints (2.1),..., (2.7) igthéP,. This
formulation requires* binary variables anén? equality constraints.

Let A denote the coefficient matrix of constraints (2.1),..., (2.6). Then we define the polops P, = {z €
R" Az = e,z > 0} wheree = {1,1,...,1}7. The convex hull of integer points o, is defined as?; = conv{z €
{0, 1}”4A:U = e}. This is theOLS polytope since every integer point € P is anOLS Py, is also called thdinear
relaxationof P;. Clearly Py C Pr. We will sometimes refer td’; as P* so as to include the concept of order in the
notation. ThusP? = () is another way of stating Euler’s conjecture foe= 6.

Substituting(=) by (<) in constraints (2.1),..., (2.6) yields the polytope = confz € {0, 1}”4 : Az < e}. The
polytopesP;, Py are related sinc®; c P;. Let D denote a matrix of zeros and ones. THenis a special case of the
set partitioning polytopePspp = {z € {0,1}¢ : Dz = e} whereasP; is a special case of the set packing polytope
Psp ={x € {0,1}7: Dz < e} (see [2, 15] for details).

There are two problems, each involving three disjaint sets, that are highly related to td.Sproblem: (3PAP,,)
and theaxial three-index assignment probldBU AP, ). We have referred to the former in the previous section. The latter
is defined with respect to three disjoint— sets, namely, J, K, and a weight coefficient;;;, for each triplet(é, j, k) €

I x J x K.3AAP, is the problem of finding: disjoint triplets of minimum weight, i.e. finding a single transversal of



minimum weight. The constraints 8A AP, are

S{wipriel,jeJt=1,Yke K
SHagr:jeJkeKy=1Viel
Z{xijkiiel,kEK}zl,weJ

ik €{0,1},Viel,je JJke K

Remark 2.1.Constraints (2.1), (2.2), (2.3), for a given value of thedex, are equivalent to the constraintadgfAAP,,.

The above remark will be very useful for establishing the dimensioR;0ind P;. Research work oBAAP, and

3P AP, polytopes can be found in [3, 4, 11, 17] and [10].

3 The intersection graph and its cliques

Let R andC denote the index sets of rows and columns respectively of thelGviatrix. We refer to a column of thd
matrix asa® for ¢ € C. TheintersectiongraphG 4 (V, E') has a node for every columru® of A and an edgéc;, ¢;) if and
only if a® - a > 1, i.e., both columnsg, andc; of A have a+1 entry in at least one common row.

Let G4(C, Ec) denote the intersection graph OLS whereC' = I x J x K x L. It is convenient to label the*
columns of theOLS A matrix, not from1 to n*, but with four indicesi, j, k and/ ranging from1 to n. This leads to an

equivalent definition o7 4 (C, E¢) wherec, represents the index set of column

Definition 3.1. The intersection graph @LSG 4(C, E¢) has a node, for everyc € C, and an edgéc;, ¢;) for every

pair of nodes:, ¢; € C such that ¢; N ¢, |= 2 or3.

Note that an edgéc;,c;) € Ec corresponds to columns™, at with a® - a® = 1 or 3. The row set of théOLS A
matrix is defined a®t = (K x L)U(I x L)U(J x L)U(I x J)U(J x K)U (I x K). Since| I |=| J |=| K |=| L |=n,
| C |=n*and| R |= 6n2.

Proposition 3.2. The graphG 4 (C, E¢) is regular of degre€(3n — 1)(n — 1).

Proof. Consider any: € C. There arén — 1)* elements of”, which have no index in common with For each of the four
indices ofc there ardn — 1) elements of”, which share the same value for this index but have different values for the other
three. Therefore, there atén — 1) elements of” which have exactly one index in common withBy definition 3.1 is
connected only to nodes that have two or three indices in common with it, so it is connected tqal-but* + 4(n — 1)3

nodes. Therefore the degree of eachC'isn* — 1 — ((n — 1)* +4(n — 1)3) =6n? —8n +2=2(3n — 1)(n — 1).



Corollary 3.3. | E¢ |=n*(3n —1)(n — 1).

Proof. Since the number of edges of a graph equals the sum of the degrees of its nodes dividedethave| E¢ |=
0.5xn*x2Bn—1)(n—1)=n*3n—1)(n—1).
O

A maximal completsubgraph of a grapty(V, E) is called aclique ([3, 10, 15]). Let@ C V denote the node set of
a cliqgue. Thecardinality of a clique is the cardinality of its node s@t denoted @ |. Cliques of the intersection graph
G (V, E) define inequalities of the form_{x, : ¢ € @} < 1, which are highly relevant to the description of the set
packing polytope. Next we will examine the cliques@f (C, E¢).

Let a¢ denote the entry of thd matrix at rowr and columrc. Then we define the sét(r) = {c € C : a¢ = 1}. So

R(r) denotes the set of columns with a non-zero entry inrow

Proposition 3.4. For eachr € R, the node seR(r) induces a clique irG 4(C, E¢) of cardinalityn?. There are6n?

cligues of this type.

Proof. The subgraph induced by the node Bét) is complete since all its elements have two indices in common. To prove
that it is also maximal w.l.o.g. assume that= (i1,j1) € I x J and considery = (i, jo, ko,l0) € C \ R(r) where

ip # iy andjy # j1. SinceR(r) contains alln? elements of” whose first two indices arg andj, it contains an element

c1 = (41,71, k1,01) with | ¢g N eq |= 0. Next considery = (i1, jo, ko, lo) € C'\ R(r). But then there exists, € C (for
examplec; = (i1, j1, k1,11)) so that] ¢o N ¢ |= 1. The same happensd§ = (i, j1, ko, lo). Therefore there is n@y such

that the subgraph induced B(r) U {c,} is complete. Consequently, the subgraph havig) as its node set is maximal.
There are as many cliques of this type as the number of rows of thatrix, i.e.6n2.

O

Proposition 3.5. For eachc € C the setQ(c) = {c} U {s € C :| ¢ns |= 3} induces a clique of cardinalityn — 3 in

G A(C,E¢c). There aren* cliques of this type.

Proof. W.l.0.g. consider = ¢q = (ig, jo, ko, lo) € C andey, ca € Q(cp) With ¢ # ¢o # ¢o # ¢1. Sincecy, co have three
indices in common withy, at least two of their indices coincide. Therefdrg, cs) € E¢ for anycy,co € Q(co), thus
Q(co) is complete. To show that the subgraph is also maximal, consjder(is, js, k3,13) € C\Q(co) and(co, c3) € Ec.
Thencs has exactly two indices in common with, by definition. If| ¢o N c3 |= 2, w.l.0.g. consideky = i3, jo = j; and
ko # ks, ly # l5. By definition,Q(cy) contains two elements, namely = (is, jo, ko, lo) andec: = (io, jz, ko, lo) such that
ip # is andjo # j:. Butthen| c3 Nes |=| c3 N e |= 1, thus the graph with node sék(cy) U {c3} is not complete. So
Q(cop) is maximal.

The setQ(cy) includes nodey = (i, jo, ko, lo) @and all nodes with exactly one index different fram So| Q(c) |=

4n—1)4+1=4n—3.



There aren? elements belonging to the s€t each of which can play the role ef. Therefore, there are’ cliques of
this type.
O

Proposition 3.6. Lete, s € C such that ¢ Ns |= 1. Then the sef)(c,s) = {c} U{t € C :|ent |=2,] sNt |= 3}

induces a 4-clique it7 4 (C, E¢).

Proof. W.l.o.g. letc = ¢ = (io,j0,k0,l0) ands = (io,J1,k1,l1). We can uniquely define three elemenis =
(0, Jo, k1,11), ta = (0,71, k0,01), ts = (40,71, k1,00), satisfying| cNt; |= 2and| snt; |=3fori = 1,2,3. It
is obvious that the node sét, ¢, ¢, t3} induces a complete subgraph@f (C, E). To show that it is also maximal,
considercy = {iz,j2,ka,l2} € C\ Q(c,s). If ia # iy then for an edgéc, c2) to exist inG4(C, Ec) we must have
| ¢cN e |> 2, which implies that co N¢; |< 1 fori = 1,2,3. ThereforeQ)(c, s) cannot be extended to include, since
the resulting graph is not complete.i¥f = i eitherc, has another element common witland the remaining two with,
in which case it coincides with one of thgs, or it has three elements in common withnd one withs. In the latter case,
w.l.o.g. letjo = jo andks = k1. Then we have c; Nty |= 1. Hence, in this case as well(c, s) cannot be extended.
Therefore the subgraph induced §Yyc, s) is complete and maximal.

O

Concerning the cardinality of the set of cliques of this type, every orderedqairsuch thai ¢ N s |= 1 can be used
to create a clique of this type. Considering thét |= n* and that for each € C there aret(n — 1) possibles such that
| cN s |= 1, the number of such ordered pairstis* (n — 1)3. Note, however, that thé-clique Q(c, s) = (¢, t1,ta,13) iS
also generated a3(c;, s;) fori = 1,2, 3 where

c1 = t1 = (io, jo, k1,11) andsy = (do, j1, ko, lo),

ca = ta = (o, j1, ko, 11) @andsy = (o, jo, k1, lo),

cg = t3 = (io, j1,k1,lo) andss = (io, jo, ko, l1).-
Proposition 3.7. Q(c¢, s) = Q(c¢i, 84), i = 1,2,3

It is also obvious that thé-cliqueQ(c, s) = (¢, t1, t2, t3) cannot arise from any other choice«éinds.
Corollary 3.8. The number of distinct 4-cliquesig (n — 1)3.

Proof. Each 4-clique arises from four different ordered pair§’aind there existn*(n — 1)3 such pairs.

O

Cliques described in Propositions 3.4, 3.5 and 3.6 will be called cliques of type I, Il and Il respectively. Next we will

show that these are the only types of clique&in(C, E¢).



Theorem 3.9. The cliques of type I, Il and Il are the only cliques@ (C, E¢).

Proof. Let @ be the node set of a clique 4 (C, E¢). Lete = (io, jo, ko, lo) € Q. Every otherg € @ must have at least
two indices in common witla. So there has to be@ € Q such that ¢cN ¢, |= 2. W.l.o.g. letqs = (4o, jo, k1,11). If every
other element of) has the same valuég, j, for the first two indices the® is a node set of a clique of type I. If not, then

there exists &; = (it, jt, kt, l¢) € @ which must satisfy the following relationships:

(i) Eitheri; =g orj; = jo. If bothi, # ig andj; # jo thenk; = ko andl, = [, in order forg, to be connected te.

But then| ¢; N ¢; |= 0, which means thaf) does not induce a clique.

(i) Either k; = ko andl; = [ or k; = k; andl; = [, then, together with (i)} ¢ N ¢; |= 1 while if k&, = ko andl; = Iy

then| ¢s N ¢; |= 1. In both case®) does not induce a clique.

W.L.o.g. assume that = (ig, j1, ko, 11). If (40, J1, k1,l0) € Q then@ = Q(c, (i0, j1, k1,11)), iIn which cas&) is a node
set of a clique of type Ill. If{io, j1, k1,0l0) ¢ Q then thereis &, € Q such thaf ¢. N (ig, 71, k1,00) |[< 1, | ¢ N |> 2,
| ¢- Ngs |> 2and| ¢- Ng: |> 2. Then one can check by enumeration of case that everyguthust have at least three

indices in common wittig, jo, ko, 11), in which case) = Q(io, jo, ko, 1) i.e. Q induces a clique of type II.

Corollary 3.10. The total number of cliques i 4 (C, Ec) isn*((n — 1)% + 1) + 6n2.

Proof. As shown above, there aé@?, n*, andn*(n — 1)? cliques of type I, Il and 11l respectively.

4 Facets induced by clique inequalities

We briefly summarize some basic concepts and definitions of polyhedral theory (for a short but succinct presentation of this
theory see [12, 16]). Aolyhedronis the intersection of a finite set of half spacesp@dytopeis a bounded polyhedron. A
polytopeP is of dimensiom, denoted as difP) = n, if it containsn + 1 affinely independent points. By convention, if
P=0thendin(P)=—-1.fP={xe€R":B 2=0b ,B a<b }thendin(P) =n—rankKB ). Here B and

B~ denote the matrix of co-efficients of equality and less than or equal to type inequality constraints respectively, while
b~ andb~ denote the corresponding right-hand side vectors for the linear system definiAg inequalityax < aq is
calledvalid for P if it is satisfied by allx € P. Itis calledsupportingif it is valid and there exist some € P satisfying

ai = ag. The set of points which satisfyz < a¢ as equality ¥ = {z € P : ax = ao}) is called afaceof P. A face

F of a polytopeP is said to beémproperif ax = ag for all z € P. A proper, non-empty facé of P is called afacetif

dim(F) = dim(P) — 1. Facets are important since they provide a minimal inequality representation of a polyhedron. Our



main interest here is in the facets of the convex liylbf integer points inP., defined in Section 2. Conditior{s) and(d)

of the following theorem usually provide the two basic tools for proving that a given inequality a¢ induces a facet.

Theorem 4.1. (see [16, Theorem 3.16], [12, Theorem1])
Let P C R™ be a polyhedron and assume thatis a real valuedm x n matrix andb € R™ such thatP = {z €
R':B z=0b ,B z<b }whereB= (B ,B )T andb= (b ,b )T. LetF be a non-empty face @, then the

following statements are equivalent:
(a) Fis afacet ofP.
(b) Fis a maximal proper face af.
(c) dim(F) = dim(P) — 1.
(d) There exists an inequalityr < ag valid with respect taP? with the following three properties:

() F={z € P:ax=ap}.
(i) There existst € P with aZ < ay, i.e. the inequality is proper

(iii) If any other inequalitydz < dy, valid with respect taP satisfiesF' = {x € P : dx = dy}, then(d, dy) can be

expressed as a linear (affine) combination{Bf ,b ) and(a, a).

In this paper, we will uséd) to prove that cliques of type Il and Il induce facetsif. The dimension of?; will also
be established through the same approach. The same technique has been used for proving facet-defining inequalities and
the dimension of th8 AAP,, and3P AP, polytopes in [3] and [10] respectively.
First, we discuss some propertiesf. In [15] it is shown that for the general packing polytof@®; ) the cliques of
the underlying intersection graph induce facet-defining inequalities. However, no similar result has been prBygp for
Since theDLSpacking polytopeP; is a special case dPsp, the inequalitie$_{z, : ¢ € @} < 1, where( is the node set

of a clique ofG 4 (C, E¢), define facets of the polytop;. Other properties oP; arising from its relation tdPs p are:

(i) Py is full-dimensional, i.e.dim(P;) = n. Then + 1 independent points aP; are the zero vector and all the

unit vectors.
(i) P; is down monotone, i.er € P; = y € P; for all y such thad < y < .
(iif) The non-negativity constraints;;;; > 0 define facets of’;.

Although we know quite a few things about the facial structur@gfthe same cannot be said with respecPfo Since
P; is a face ofP; we know thatlim(P;) < dim(PI). However, the structure @?; presents irregularities that do not appear

in P;. For example, we know thdt; = () for n = 2 andn = 6. P? = ) can be easily verified since there are only two latin



squares fon = 2. As stated previously?? = () was proven in [18]. Fortunately?” = () for n # 2,6 as shown in [6] (see

also [13, Theorem 2.9]). Before establishing the dimengipwe prove the dimension d?;.
Theorem 4.2. The rank of the systemiz = e is 6n% — 8n + 3

Proof. Order then' columns of the A matrix, denoted by, so that indices:, j,  and! vary in that order. Fon = 2,
the order of the column indices is:
(1,1,1,1),(1,1,2,1),(1,2,1,1),(1,2,2,1),(2,1,1,1),(2,1,2,1),(2,2,1,1), (2,2, 2,1),
(1,1,1,2),(1,1,2,2),(1,2,1,2), (1,2,2,2),(2,1,1,2),(2,1,2,2),(2,2,1,2), (2,2, 2, 2)
As to the6n? rows, we divide them into six sets of rows each, as defined by equalities (2.1)..(2.6).

Figure 1 illustrates the matrix for = 2 (each constraint set is separated from the next by a horizontal line).

Figure 1:0LS A matrix forn = 2

To find the rank of thed matrix, we follow five steps, the last four of which identify3al A P,, substructure, exactly as
at Remark 2.1.
Step I: Itis obvious that the sum of all the rows of each set is the saméJ{e:;jx : i € 1,5 € J,k € K,l € L} = n.
Therefore, any one constraint can be removed from any of the six sets as being linearly dependent. We choose to keep the

row set (2.1) intact and remove the first row of all the remaining sets. Table 2 shows the outcome.

10



Table 2:Linearly dependent rows removed at Step |
| Row set| Rows removed Rows removed for n=2

2.1 — —
(2.2 n®+1 5
2.3 2n% +1 9
(2.9 3n? +1 13
(2.5 4n? +1 17
(2.6 5n? +1 21

Step Il: Consider row sets (2.1), (2.2) and (2.3). Observe that, as noted at Remark 2.1, theyifidependen3 AAP,,
problems one for each value of the indéx Forl = ,, the correspondingA AP, involves then? variablesz;;x,, for
i,j,k =1,...,n,and the3nrows (lp — 1) -n+t,n?>+ (lo — 1) -n+1t,2n%> + (lp — 1) -n + ¢, fort = 1,...,n. Balas
and Saltzman show in [3] that the rank of8a x n? 3AAP, matrix is3n — 2. So, we can remove up t rows from
each of thex 3AAP, problems. Note that, having removed rows-+ 1, 2n? + 1 at Step |, forly = 1, the corresponding
3AAP, includes no linearly dependent rows. For the remaining 1 independen8 AAP,, problems, we can remove the
two linearly dependent rows. We choose to remove rows numberedt — 1) -n+1,2n?+(t—1)-n+1,fort =2,...,n,

a total of2(n — 1) rows. Table 3 gives a complete list of rows removed so far.

Table 3:Linearly dependent rows removed at Steps | & Il

| Row set] Rows removed | Rows removed for n=2
2.0 = -
2.2 >+t -1)-n+1,t=1.n} 5,7
23 |[{2n®+(t—-1)-n+1,t=1.n} 9,11
(2.9 3n? +1 13
(2.5 4n? +1 17
(2.6 5n? + 1 21

Step Ill: Consider row sets (2.1), (2.5) and (2.6). Observe that they foindependen8AAP,, problems, one for
each value of the indek. Fork = ko, the correspondingAAP, involves variables:;;x,;, for ¢, 7,0 = 1...n, and rows
ko+ (t—1)-n,4n? +ko+ (t —1)-n,5n? + ko + (t — 1) - n, fort = 1,...,n. Again, fork, = 1, the corresponding
3AAP, includes no linearly dependent rows, since raws + 1, 5n% + 1 have already been removed. All the rows of the
remainingn — 1 independen8 AAP,, problems are present. We choose to remove two linearly dependent rows from each
problem, namely rowsn? + ¢, 5n? + ¢, fort = 2,....n,i.e. 2(n — 1) rows in total. Table 4 gives a complete list of rows
removed so far.

Step IV: Consider row sets (2.3), (2.4) and (2.5). Observe that they foindependen8 AAP,, problems, one for
each value of the index Forj = jo, the correspondingAAP, involves variables:;j, ., for i,k,1 = 1,...,n and rows
20?2+ jo+(t—1)-n,3n2+jo+ (t—1)-n,4n%+ (jo — 1) -n+t,fort = 1,...,n. For j, = 1, the correspondinAAP,

includes no linearly dependent rows, since r@ws$ + 1, 4n? +t, 5n? +t, fort = 1,...,n, have already been removed. The
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Table 4:Linearly dependent rows removed at Steps | - 11|

| Row set] Rows removed | Rows removed for n=2
(2.3 — —
(2.2 ?>+t—-1)-n+1,t=1.n} 5,7
23 [ {2n®+(t—-1)-n+1,t=1.n} 9,11
(2.9 3n? +1 13
(2.5 4n? +1,{4n® +t,t = 1.n} 17,18
(2.6 5n? +1,{sn% +t,t = 1.n} 21,22

remainingn — 1 independen8 AAP,, problems have been left intact. We choose to remove two linearly dependent rows
from each problem, namely row®? + ¢, 4n% + (t — 1) - n, fort = 2...n, i.e. 2(n — 1) rows. Table 5 gives a complete list

of rows removed so far.

Table 5:Linearly dependent rows removed at Steps | - IV

| Row set] Rows removed | Rows removed for n=2
(2.3 — —
(2.2 m?>+{t—-1)-n+1,t=1.n} 5,7
2.3 {202+ (t—-1)-n+1,t=1.n} 9,11
(2.9 3n? +1,{3n% +t,t =2..n} 13,14
25 [ {4n?®+(t—-1)-n+1,t=1.n},{4n?>+t,t=2.n} 17,18,19
(2.6 5n? +1,{5n% +t,t = 2.n} 21,22

Step V: Consider row sets (2.2), (2.4) and (2.6). Observe that they forimdependenBAAP, problems one for
each value of the indek Fori = iy, the correspondingAAP,, involves variables:; ;;, for j, k,l = 1,...,n, and rows
n?+io+(t—1)-n,3n%+(io—1)-n+t,5n?+ (io—1)-n+t, fort = 1,...,n. Again foriy = 1, the correspondingA AP,
includes no linearly dependent rows, since rowst (t — 1) -n + 1, 3n? + ¢, fort = 1,...,n and5n? + 1 have already
been removed. All the rows of the remaining- 1 independen8 AAP,, problems are present. We choose to remove two
linearly dependent rows from each problem, namely rdws+ (t — 1) - n, 5n? + (t — 1) -n, fort = 2,...,ni.e.2(n — 1)

rows. Table 6 gives a complete list of rows removed so far.

Table 6:Linearly dependent rows removed at Steps | - V

| Row set] Rows removed | Rows removed for n=2
(2.3 — —
(2.2 2+ @t—-1)-n+1,t=1.n} 5,7
2.3 {20+ (t—-1)-n+1,t=1.n} 9,11
24 [ {3n°+(t—1)-n+1,t=1.n},{3n*+t,t=2.n} 13,14,15
25 [ {4n?+(t—1)-n+1,t=1.n},{4n?+t,t=2.n} 17,18,19
26 | {pn®+(t—1)-n+1,t=1.n},{mM>+t,t=2.n} 21,22, 23

Intotal,4 -2 (n — 1) +5 = 8n — 3 rows have been removed. Theref&se? — 8n + 3 is an upper bound on the rank

of A. We will complete the proof by exhibitingn? — 8n + 3 affinely independent columns.

Consider the columns:
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(1,1,1,1),....,(1,L,n,1),...,(1,1,1,n),.....,(1,1,n,n) (n%columns)
(2,1,1,1),...,(n,1,1,1),...,(2,1,1,n),...., (n, 1,1, n) (n(n — 1) columns)
(1,2,1,1),....,(1,n,1,1),...,(1,2,1,n),....,(1,n,1,n) (n(n — 1) columns)
(2,2,1,1),...,(n,m, 1,1),...,(2,2,1,n — 1), ..., (n,n, 1,n — 1) ((n — 1)? columns)
(1,2,2,1),...,(1,n,n,1),...,(1,2,2,n — 1), ..., (1,n,n,n — 1) ((n — 1)? columns)
( )

2,1,2,1),...,(n,1,n,1),...,(2,1,2,n — 1),...., (n,1,n,n — 1) ((n — 1)? columns)
The matrix formed by these columns and € — 8n + 3 remaining rows ofA is upper triangular, with each diagonal

element equal to one.

Corollary 4.3. dim(Pr) = n* — 6n® + 8n — 3.

We now describe the tools needed to obtain the dimension and the clique faégts of

Unless otherwise stated, we will illustrate a pail@fSas points ofP; expressed in terms of four sets of indices, \iz.
for the row set,J for the column set, anl” and L for the set of elements of the first and the second latin square respectively.
The elements of all four sets are the integers fioimn. We will further usek(4, j) (respectivelyi(z, j)) to denote the value
of the cell in row:, columnj of the first (second) latin square. Thk§, j) € K andi(i,j) € L. The following remark

reveals a very useful property of the pointsigfcorresponding to a pair @LS

Remark 4.4.Given anOLSstructure andn;, ms € M, whereM can be any one of the disjoint— sets/, J, K, L then
(inter)changing alin; values toms and allms values tom; yields anothe©LSstructure. These two structures are called

equivalent([8, p. 168]).

If the interchange is carried out for elements of 6éte. M = I) we will call it a firstindex interchange, for elements of
setJ a second index interchange, etc. To facilitate a study of interchanges, we defimtettigangeoperator« ). Thus, by
settingz™ = z(i; < i2); we imply that at point: € P; we apply a first index interchange between réws, € I deriving
pointxz* € P;. Note that brackets must also have an index for denoting the set of the indices that are interchanged. Notation
without this subscript in cases liké < n) becomes ambiguous. It is easy to see tHat; «— mso): = z(m2 < mq);
andx = z(my < ma):(m1 < ma);. A series of interchanges at a pointc P is expressed by using the operates)
as many times as the number of interchanges with priority from left to right. For examipie,x(iy — i2)1(1 < n)s is
taken to mean that at poimtwe apply a first index interchange betwegni, € I and then at the derived point we apply a
third index interchange betweénn € K, thus yielding point:*.

We additionally define &onditionalinterchange as the interchange to be performed only when a certain condition is
met. The condition refers to a logical expression consisting of values of an index set, at a given pioihis expression
evaluategrue then the interchange will be applied to pointSince we are going to use only conditional interchanges for

which both the logical expression and the interchange refer to elements of the same set we will use a common subscript
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for both. Thus to denote this type of interchange at poinie will use the expressian(condition?interchange),, where

the subscript refers to the index set. For example= x1(i1 = n?1 < 4;); implies that ifi; = n at pointz; then we

derive pointz, by applying at point:; the first index interchange betweén, . If i; # n thenzy = z1. As in the previous

case we can have more than one conditional interchange in the same expression. Again priority is considered from left to
right. As we will see shortly, the interchanges will be used extensively for proving the dimensinaoid facet defining
inequalities.

An additional complication for proving the dimension Bf comes from the fact that it is not easy to exhibit a pair of
OLSfor every value ofn, i.e. for everyn it is difficult to demonstrate a 0-1 vector feasible w.r.t. constraints (2.1),...,(2.6)
that will have specific variables set to one. In contrast, bott8foA P, and3P AP, such “trivial” points exist. For the
3AAP, the trivial point hast;;, = 1fori = j = k andx;;, = 0fori # j # k # 4. For the3P AP, the trivial solution
is defined w.rt.k = i + j — 1 mod n, i.e. the trivial point hasr;;;, = 1for ko > 0, 25, = 1 for ko = 0 and all other
variables set to zero. To overcome this difficulty, in the following lemma we establish, fod andn +# 6, the existence

of anOLSstructure with four specific variables set to one.

Lemma 4.5. Forn > 4andn # 6 letio € I\ {1}, jo € J\ {1}, ko, k1, k2 € K\ {1} with ks # ko, k1, lo, 11 € L\ {1}.

Then there exists a point, € P; with four particular variables taking value one as illustrated in Table 7.

Table 7: Pointzg

L Tt ] fjof-] L [t Tjgol -]
11 k1 11 b
o || ko ko io || o 1

Proof. Consider an arbitrary point € P; as illustrated in Table 8.

Table 8: An arbitrary point € P; (Lemma 4.5)

L [t T[do[-] L[] [do[-]
1 kp ke 1| b I
10 || kq ke i || la le

whereky, ke, kq, ke € K, lp, e, 1q,le € L. Forz to be a validOLS structure we must havie, # k., kq; ke # ke, ka;

Iy #le,lg; le # e, 1lq. We consider two cases:
case l:k, # k.

14



Leta* = x(ky # 171 < kp)s(lp # 171 < 1)4. If [c = 1 then we are done, i.e:* is xg if we denotek, asky, k.
asky, l. asl; andly asly. If I # 1 then leti; (i1 # 1) be the row for whicH(iq, jo) = 1 at pointz*. By labeling
k(iy,1) asko, k(i1, jo) asks, k. aski, l(i1, 1) asly andi. asly thenzy = x*(ip < 41)1.

case 2.k, = k.

In this casd, # I. (orthogonal property). Again we set = xz(k, # 171 < ky)3(lp # 171 < 1p)4. At pointx™* if

we denotéeky asko, k. asky, Iy asly, l. asly andl. asls and exchange the roles of sétsand L. we have point.

O

There might be more than one pointsigfwith these four variables set to one. However, one point suffices to carry out
the proofs that follow.

SinceP; C Pr, dim(Pr) < dim(Py). Moreover, diniP;) < dim(Py) if and only if there exists an equatian: = ag
satisfied by allke € P; such that it is not implied by (i.e. cannot be expressed as a linear combination of) the equations

Az = e. We now show that no such equation exists.

Theorem 4.6. Letn > 4 andn # 6, and suppose every € Py satisfiesaz = a for somea € R™, g € R. Then there

exist scalars\t,, A%, A3, A},

DAL AL AL A e j e ke K, e L, satisfying

a = Y AN keKieL}+Y {Niellel}
+ Y jedlely+ Y N\ ielje ) 4.2)

+ D AN e L ke K} +) {\y il ke K}

Proof. Define
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1
)‘kl = Q11kl
2
Ajl = @it — a1u
3
>\jl = 1511 — G111l
A4—a —a; —aii11 +a
ij — Gigll 1111 1511 1111
Ao = aqs .
jk = O01jk1 — Q1511 — Q11k1 + A1111

6
Aik = Qi1k1 — Q4111 — G11k1 + G1111

Note that thesén? scalars are defined in such a way so that exattly- 3 of them, corresponding to the dependent

rows of theA matrix, equal zero.

By substituting the\s in equation (4.1) we get:

Qijkl = Q11K T @111 + Q15110 + Qij11 + Q1K1 + i1k

—2ai111 — 2a1511 — 2a1151 — 2a1111 + 3a1111 4.3)

Substitution alone is enough to show that (4.3) is trueafgii; and for all cases where at least two of the indices are

equal to one. For all cases where only one of the indices equals one, equation (4.3) becomes

Qijk1 = @11 T Gi1k1 + Q161 — Q4111 — A1511 — G11k1 + G1111 (4.4)
Q3511 = Q4511 + G110 + Q1510 — G4111 — Q1511 — G111 T G1111 (4.5)
i1kl = Qi1k1l + Q111 + Q11K — Q4111 — G11k1 — G1111 + G1111 (4.6)
G1jk1 = A1jk1 + Q1511 + G116 — Q1511 — G11k1 — G1111 + G1111 4.7)

Before proving that (4.3) to (4.7) hold, we prove the following proposition.
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Proposition 4.7. For n > 3 andn # 6, it can be shown that

@iy jrk(in 1)l ,g1) T Qirgak(in,g2)l(in,g2) T Qinjik(in,j1)l(in,g1) T Qinjok(iz,jz)l(iz.j2)
+ai1j17€(i27j2)l(i27j2) + iy jok(iz,j1)1(32,51) + iy jrk(i1,42)1(i1,52) + Qinjok(i,g1)l(i1,51)
= @iy i k(in,j)Uia,g1) T Qingak(in,ga)l(ia,ga) T Ginjik(in,gi)i(in.g1) T Cinjak(in,ga)l(ir,52)

@iy gy k(i) (i1,G2) T Bingak(in1)i(in 1) T igjrkin,go)l(inrgz2) T Qinjok(in,g1)l(in.d1) (4.8)

foriy,ip € 1,41 # ip @andjy, jo € J, j1 # jo.

Proof. Letb,c,d,e € K andp, q,r, s € L and an arbitrary point € P; as illustrated in Table 9.

Table 9: Pointz (Proposition 4.7)

zl b c i.1 D q
i d e 19 T s

Leta’ = x(iy < i2); (Table 10).

Table 10: Point:’ (Proposition 4.7)

i1 d e 1 r s
1o b c 12 p q

Letz = x(j; < jo2)2 (Table 11).

Letz' = z(i; < i2)1 (Table 12).

Letk*(is, j:) (1% (is, j:)) denote the value of the(l) index fori = i, j = j; atpointz. k% (is, ji), k* (is, ji), k% (is, ji)
andl® (i, ji), 1% (is, j¢), I* (is, j;) are defined accordingly for poinig, z andz’.

Sincez,z’ € P; we havear = az’. By observing that alk;;; terms for everyi € I\ {i;,i2} are canceled out,
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Table 11: Pointz(Proposition 4.7)

L [ [al-ldpl ] L [ [anl-Tdp] ]
21 c b Z'.1 q P
1o e d i s r

Table 12: Pointt’ (Proposition 4.7)

T T Tal Tl ] T il Tl ]
i1 e d i s r
22 c b 22 q P

ax = ax’ becomes

iy jibp T Qiyjocg T D AWk (iy gy (in,) 2 J € J \ {d1,J2}}
+ Gigjidr T Gigjoes T D AGigjke (in,g)i% (i2,g) * J € I\ {J1,J2}}
= Qiyidr + Qiyjes + 2 {0, oo )y ) 1 € I\ U1 g2t}

T Qigjibp  Qisjaca + 24y 1 (1 15 (10.g) T € I\ {1,521} (4.9)

We observe thak? (i, j) = k% (i1,5), k%(i1,5) = k% (i2,j) andi®(ip, j) = 1*'(i1,5), *(i1,j) = 1% (ia, ) for

j € J\ {J1,J2}. Writing (4.9) in terms of point:, we derive

Qiyjibp + irjocq + D Ay jhe iy jyi=(in,g) 2 3 € J\{d1,J2}}
+ Qiggidr + Qigjres T D AQigjke (9,507 (ia,5) *J € I\ {1,421}
= Qiyjrdr + Qijoes 2 Aiy ke (i0. )17 (i0,5) T € T\ {1,421}

+ @igjibp t Qigjreq T DA Qigjke iy )iz gy 1 €\ {d1sJ2}} (4.10)

Similarly, sincez, z’ € P; we haveaZ = aZ’. Termsa;;x;, for everyi € I\ {i1,i2}, are canceled out, set = a7’

becomes
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Wiy jreg + @iyjabp + DA Giy ke (i )= (i) 1 J € I\ {1, J2}}
+ igjies T Qigjadr + DAy (in,g)i7 (in.5) © J € T\ {d1, 23}
= Qijres T Qirgodr + 2405, oo iy e (0,5 1 € I\, J2}}

+ Qigjreq T Qisgabp + D 4@y 1’ (1 515 (i) * F € J \ 1. 423} (4.11)

We observe that®(ig, j) = k¥ (i1, j), k*(i1,§) = k% (i, ) and ¥ (iz, j) = 1% (i1, 5), 1%(i1,j) = I* (ig,j) for

j € J\{j1,72}. Writing (4.11) in terms of poing, we derive

Qirjreq T @iy jobp + D @iy ke iy jyiz(iy,g) 2 3 € I\ {1, J2}}
+ Qigjies T Qiggodr T D {Qiyjka (in )17 (12,5) + T € I\ {1, J21}
= Qi jres T Giqjodr T+ Z{ailjkf(ig,j)lf(ig,j) cjeJ\A{j,j2}t}

+ Qigjieq T Qisgabp T D2 A@injke iy gyiz(in.g) 1 J € I\ {1, J2}} (4.12)

Subtracting (4.10) from (4.12) and observing thatifer {i,,i2} andj € J \ {j1, j2} we havek”(i,j) = k*(i,j) and

1*(i,7) = 1*(4,7), we obtain

@iy jrbp T Qiyjocqg T Qigjrdr T Gigjoes — (ai1j10q + @iy jabp T Qigjres T aizjsz)

= iy jrdr + Qiyjses + Qigjibp t Qisjocqg — (Girjies + Qiyjodr + Qizjieq + Qingabp)

If we eliminate the negative sign by moving terms in brackets to the other side of the equation and write the elements of
setsK and[ using the notatiork(4, j) andi(i, j) respectively, we obtain equation (4.8).

O

In Proposition 4.7, the role of the sefs J for the row and column set, respectively, is purely conventional. Any
pair of sets from/, J, K, L. can be used for the role of row/column set. Hence, for the rest of the paper, the notation
z((m1,m2)y; (n1,n2):,) implies equation (4.8), derived by applying Proposition 4.7 at psjnfor rows my,ms and
columnsny, ns. In this expression, the first pair denotes the rows whereas the second denotes the columns. The subscripts
t1,to declare the sets that index the rows and the columns, respectively. Following the same convention as for the inter-

changes] is used to denote séf 2 is used to denote sef, etc. For exampleg((1,41)1;(1,7n)2) denotes equation (4.8)
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written for rows1, 4, and columnd , n at pointz, where elements of the first pair belong to setnd of the second pair to

setJ.
(Back to the proof of Theorem 4.6). We will show (4.3),...,(4.7)fet ig, j = jo, k = ko, | = lp.

At point xy of Lemma 4.5 we distinguish two cases, Vig.= k1, ko # k1.

case 1:kg = ky

Let z7 = z( (see Table 13). In this cade # [; (orthogonal property). For > 4 there exists (anothe®), <

Table 13: Point:(Theorem 4.6, case 1)

L el Tal -] [ TrT - Tho ][]
1 1 ko 1 1 Iy
ilo ko ko o || lo 1

K\ {1, ko, ka}. Letay = 25 (ko < k1)3 (See Table 14).

Table 14: Point:; (Theorem 4.6, case 1)

L [ [do[-] L [tl-[jo[-]
1 1 k1 1 1 Iy
ilo kq ko o || lo 1

x1((1,40)1; (1, J0)2)=

1111 + Q1jokily T Qiglkilo T Qigjokel T A11ke1 T+ Aljokilo T Giglkily T Gigjoll

= Q11k 1o T Qljoko1 + @ig111 + Qigjokily T G11k,1; + Q15011 + Giglka1 T Qigjokilo

Letzs = z1(1 < ko)s (see Table 15).

Table 15: Point:; (Theorem 4.6, case 1)

L Tr[--Tdol-] N
1| ko k1 11 Iy
o k2 o [ 7o ]
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x2((1,40)1; (1, J0)2)=

11kol T Aljokily T Qiglhilo T Qigjokel T A11ke1 + Oljokily T Qiglkily + Qigjokol

= Q11kilo T Qljokal + Qiglkol + Qigjokily T O11kqly T Oljokol T Qiglhal + Gigjokylo

z2((1,40)1; (1, jo)2)-z1((1,40)1; (1, jo)2) yields (4.4).
This completes the proof of case 1 for (4.4). Before proceeding to case 2, we derive a further relationship for case 1

which will be used later on, for proving (4.3).

Letzs = z1(1 < ly)4 andzy = z3(1 < ko)s. Pointszs andz4 are illustrated in Tables 16, 17 respectively.

Table 16: Point:s (Theorem 4.6, case 1)

I BN [ Til-—Thl-]
1 ko kq 1l Iy
o || k1 ko io || 1 lo
Table 17: Point:4 (Theorem 4.6, case 1)
IR I EREE
11 k1 1|l h
ilo ky ko i‘o 1 lo

x3((1,40)1; (1, jo)2)=

A11koly T Oljokily T Qiglk1 T Gigjokalo T Allkaly + Aljoki1 T Giglkyly T Gigjokolo

= Q11k1 T Oljokale + Qiglkolo t Qigjokily T Cllkely T Qljgkoly T Qiglkale T Gigjoksl

x4((1,40)1; (1, 50)2)=

1111y T Aljokily T Giglki1 T Qigjokalo T Allkoly + Cljok1 + Qiglkyly + Gigjolle

= Q11k11 F Oljokaly T Qig11le + Qigjoksly T A11kyly T Q1jo1ly T Qiglhale T Qigjoks1
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23((1,70)1; (1, Jo)2)-24((1,40)1; (1, jo)2)=

aigj(]k}olo - (aiojollg + aiolk)olo + aljokglo) - aiolllo - aljoll(} - allk}olo + allllo (4'13)

(4.13) will be used later for proving (4.3).

case 2:kg # k1

Letz; = . Thus pointz; is pointxy of Lemma 4.5, exactly as illustrated in Table 7.

z1((1,40)15 (1, jo)2)=

01111 + Qljokil; T Qiglkely T Gigjokal T G11kal T Oljokole T Qiglkily + Qigjoll

= Q11koly T Q1joko1 + @ig111 + Qigjokily T G11k11; + G15011 + Giglka1 T Qigjokolo

Letzs = z1(1 < ko)s (see Table 18).

Table 18: Point:; (Theorem 4.6, case 2)

L Tt fho[-] L [t Tjo[-]
1| ko k1 11 Iy
Zo 1 ko Zo lo 1

72((1,40)15 (1, Jo)2)=

11kl T Aljokily T Giglkolo T Figjokal T G11ka1 T Gljokoly + Qiglkyly + Qigjgkol

= 1111y T Oljokal t Qiglkol T Gigjokil; + Q11kel; T Qljokol T Giglkol T Qigjglly

21((1,40)1; (1, 40)2)-22((1,90)1; (1, jo)2)=

1111 + Aokl + Giglkol + Gigjo11 — (@igjoko1 + Gig111 + @011 + Glke1)

= Qigjokolo T Qigllly T Aljolly T Gllkoly — (aiojollo + Qig1koly T Q1jokolo T+ allllo) (414)

We refer to equation (4.14) as (4.14)o distinguish it from (4.14) witti; in the place of, denoted as (4.14) We

observe that we can derive (4.14by applying Proposition 4.7 at points = x;1(l1 < lo)4 andis = z3(l; < lp)a4.
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This is also true for the case wheid, jo) = Iy (i.e. I = ly) at pointszg, x1 andzsy since forn > 3 there exists

(another); € L\ {1,1y} such that we can deriv , z5. In both cases, (4.14)(4.14), =

2(a1111 + A1joko1 + Gig1ko1 + Gigjo11 — (Gigjoke1 T Qig111 + Q111 + G11ko1))

= D AGigjokol + Gig111 + Q111 + A11ket — (Gigjo1l T Qigikel + G1joket + a1111) 1 1 € {lo, l1}} (4.15)

At point 25 we distinguish two cases Viz(1, jo) = lo, I(1,jo) =11 # lo

case 2.1:(1, jo) = lo.
Forn > 3 we have already establish the existencé,0E L \ {1,lp}. Letzs = z2(1 < lo)a(l < l1)a

(Table 19) and:4 = z5(1 < k)3 (Table 20).

Table 19: Point:3 (Theorem 4.6, case 2.1)

L [ 1] Td[-] L [ 1[-Jjo[-]
1 [ ko k1 1| b Iy
10 1 ko io || 1 lo
Table 20: Point:, (Theorem 4.6, case 2.1)
L [ [do[-] L [l [do[]
11 ky 1|l L
io || ko ko io || 11 lo

x3((1,40)1; (1, 70)2)=>

A11koly T Oljokily T Qigllly T Gigjokalo T Al1kale + A1jo1l; + Qiglkil; T Qigjokolo

= G1111;, T Q1jokale T Giglkoly T Gigjokrly + 11kl T Qljokole T Giglkalo T Figjolls

x4((1,40)15 (1, 70)2)=>

allllo + aljoklll + aiolkoll + aiojokzlo + allkzlo + alj[]k?oll + aiolklll + a’iDjUIlO

= G11koly T Oljokoly 1 Qigllly + Gigjokely + Q11kyl, T Qljg1ly T Qiglkaly T Qigjokols
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24((1,90)1; (1, Jo)2)-23((1,40)1; (1, Jo)2)=
Z{aiojokol + Gig111 + @1jo11 + @11kl — (Qigjo11 + Qigikol + Q1jokot + a1111) 1 L € {lo,l1}} =0 (4.16)

case 2.2:(1,jo) =l # lo.

Letzs = x2(1 < lp)a(1l < 11)4 (Table 21) andcy = z3(1 < ko) (Table 22).

Table 21: Point:3 (Theorem 4.6, case 2.2)

L [t fjo[-] L 1l Tjo[-]
1 ko k1 1 lo 1
io || 1 ko io || I lo
Table 22: Pointr, (Theorem 4.6, case 2.2)
L [t fdo[-] L [l [jo[-]
1 1 kq 1 lo 1
io || ko ko io || I1 lo

x3((1,40)1; (1, 70)2)=

A11koly T Aljoki1 T Gigl1ly, T Qigjokalo T G11kalo T Oljolly + Giglki1 T Gigjokolo

=ai, + Aljokaly T Giglkoly T Qigjoki1 + Q11ky1 + Qljokely T Giglkalg + QAigjolly

24((1,40)15 (1, J0)2)=>

111l T Oljoki1 T Qiglkoly T Qigjokalo T A11kaly + Qljokols T Giglhi1 + Qigjolle

= Q11koly T Oljokaly + Qiglily T Gigjokil T G111 T G1jo1ly T Giglkalo T Gigjokols

24((1,40)1; (1, jo)2)-23((1,40)1; (1, jo)2) yields (4.16).

Hence (4.16) is valid for case 2 (both for case 2.1 and 2.2). Substituting the right-hand side of equation (4.15) from
(4.16) yields (4.4).
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Our proof with respect to (4.4) is now complete. Equations (4.5),(4.6) and (4.7) follow by symmetry. To show (4.3) we
consider (4.13). This equation is valid for case 2 as well; the right-hand side of equation (4.14) is éqliz 0 equation
(4.4) thus yielding (4.13). Therefore, if we substitute in equation (4.13) terms in brackets from (4.5), (4.6) and (4.7) we get
(4.3).

Finally, (4.2) is true since for > 3 and different thats, P;* # () (see [13, Theorem 2.9]). This implies that there exists
at least one 0-1 vectar for which (2.1),...,(2.6) are satisfied, thus by multiplying these equations with the corresponding

scalars and summing over all rows we get:

ar = S {AhckeKleLy+Y {M:iellel}
+ S jedtely+ Y (N rielje )

+ Y N jedke K+ (M, rie ke K}

This completes the proof for general The theorem holds fat > 4 andn # 6 since the proof requires four distinct
values for one of the indices (indé). In particular, we have used valuds4,) for indexi, (1, jo) for indexy, (1, kg, k1, k2)

forindexk , (1,1, 1) for index! . Hence, the result holds far > 4 andn # 6.

Corollary 4.8. Forn > 4 andn # 6, dim(P;) = n* — 6n? + 8n — 3.
Next we will examine which of the constraints definiig are facet defining foP;.

Proposition 4.9. For n > 4 andn # 6 every inequality of the type. > 0 for ¢ € C defines a facet af;.

Proof. For anyc € C consider the polytop®; = {z € P; : z. = 0}. We need to show that dif¥;) = dim(P;) — 1.

Evidently, din{Pf) < n* — 1 —rank(A¢) whereA¢ is the matrix obtained froml if we remove columme. It is not hard to

see that the rank ol¢ is equal to the rank ofi. This is immediate, if the columa® is not among the columns of the upper
triangular matrix described in Theorem 4.2, otherwise it follows by symmetry. ThereforéPgjne n* — 6n? + 8n — 4.

To prove that this bound is attained, we use the same approach as in the proof of Theorem 4.6, i.e. show that any equation
ax = ao (different thanz. = 0) satisfied for every: € Py is a linear combination ofis = e. The proof goes through

essentially unchanged.

Proposition 4.10. For n > 3 andn # 6 every inequalityr. < 1 for ¢ € C does not define a facet &f

Proof. For anyc € C consider the polytop@s = {z € P : . = 1}. We will show that dinjPy) < dim(P;) — 1.

We know that dinjPy) < dim(P5) where P5 is the linear relaxation oPy. Settingz. to one is equivalent to setting
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the variables belonging to the common constraints wijtho zero. The number of these variable2{8n — 1)(n — 1)
(Proposition 3.2). Thus, dif®¢) = n* — 2(3n — 1)(n — 1) — rank(A%) where AS is the matrix obtained fromd by
removing the columns corresponding to the variables set to zero. Obviouslidrank) < rank(A¢) whereA,,_; is the

constraint matrix of th©LSof ordern — 1. By Theorem 4.2 rankd,,_1) = 6(n — 1) — 8(n — 1) + 3 s0

dim(Pf) <dim(Pf) < n*—2Bn—-1)(n—1)—(6(n—1)2—-8(n—1)+3)

= n*—12n% +28n — 19

which is less than difP;) — 1 = n* — 6n2 + 8n — 4 for n > 3.

O

It is easy to see that cliques of type | do not induce facetB;ofFor each of these cliques the coefficient vector of the
corresponding inequality is identical to a row of tAematrix. Thus, each of this inequalities is satisfied as equality by all
x € Pr and therefore defines an improper face?pf

Next we consider the inequalities induced by cliques of type II.

Theorem 4.11. Let Q(c) denote the node set of a clique of type Il. Thenfor 5 andn # 6 the inequality

Z{xq 1qeQ(e)} <1 (4.17)

defines a facet aP; for everyc € C.

Proof. As usual, we will assume that# 2, 6. Let P?) = {z € P; : S {z, : ¢ € Q(c)} = 1}. We will show thatP?(
is a facet ofP;.

First we note that (4.17) is a valid inequality for alle P; because)(c) is the node set of a clique in the intersection
graphG4(C, E¢).

W.Lo.g. letc = (n,n,n,n). Then

Q(n7n7n7n) = {(n7n7n7n)’ (17n7n7n)7"'7 (n717n’n7n)7 (n717n7n)7"'7 (n’ni]‘?n?n)?

(n,n,1,n),...,(n,n,n—1,n),(n,n,n,1),...,(n,n,n,n—1)}

It is easy to show that the fadé,Q(”’"’"’”) is not empty. Clearly for any point € P; there existi, € I andjy, € J
such thatr;, jonn = 1. Letz* = z(ig # n?i < n)1(jo # n?jo < n)2. Pointz* belongs toPI("?("’"’”’") since it has

Now consider an arbitrary point € PI("Q("’"’"’”). We will show that there exists at least one poinfin\ PIQ(""”’"’").
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W.L.o.g. suppose that at pointwe havez,;,, = 1, j # n. Then we apply a first index interchange betweeand
i foranyi € I\ {n}. The resulting point belongs t&; but not toPIQ(”’”’"’"). Similarly at pointz z;,,, = 1 and
1 # norXppen = 1 andk # n or x,,,,; = 1 andl # n then a corresponding one index interchange will give a point in
Py \PIQ(”’"’””‘). Finally, if at pointz we haver,,,,,,, = 1 then we apply a firstindex interchange betweendi € I\ {n}
and then a second index interchange betweand; € .J \ {n}. The resulting point belongs t; but not toP ™™™
ThusPIQ("’”’”’") is a proper face of;.

To show thatPIQ("’”’"’”) is a facet ofP; we will use the same approach as in Theorem 4.6. Thus we will exiBit
scalars\j;, A%, A%, AL, A%, Aj fori e I,j € J, k € K, 1 € L and an additional scalar for the clique inequality, such

that if ax = ao forall z € PIQ("’”’"’") , then

My A5+ 03+ 0L 02+ X8 (4,4, k ) eC n,n,n,n
Qg = Kl 1 o’ j ik k (4,7 ) \ Q( ) (4.18)

A F AL+ X+ A0+ MG+ 7, (4,9, k. 1) € Q(n,n,m,n)

and

ao = Z{Aiz:kGK,leLHZ{/\fl;iel,zGL}

+ > {Njedlely+) {Xjielje ) (4.19)
+ > (NpijedkeKb+Y (MyrieLke K} +x
Again we define
A = @11k

>‘7?l = G111 — G1111

)‘?l = aijiu — a1

A;,Lj = @511 — @4111 — G1511 + Q1111
)‘?k = A1jk1 — 01511 — A11k1 + Q1111

6
Aik = Gilk1 — G111 — G11k1 + Q1111

Thus for (s, j, k,1) € C'\ Q(n,n,n,n) we have to show

Qijkl = Q11kl T @311 + @151 + Q4511 + Q1K1 + Gtk

—2a;111 — 201511 — 2a1181 — 201111 + 3a1111 (4.20)
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This is clearly true for;11; and for all cases where at least two of the indices equal one. When one of the indices equals

one, we denote equation (4.20) as (4,20) wherem is any ofi, j, k, . For example equation (4.20) is:

Qijkl = Q3511 T Gi1k1 T G161 — Q3111 — G111 — G11k1 + Q1111

For each of the cases to be examined next, when at most one of the indices is equal to one, the proof of (4.20) will be
carried out in a manner analogous to that of Theorem 4.6 except that this time we will exclusively use points belonging

to PIQ(""”’”’"). For any pointz € P; we denote asX the collection of point§z, 2/, 7, z') (notation and derivation of

(n,n,n,n) (n,n,n,n

points fromz as introduced in Proposition 4.7X € PIQ implies thatz, 2/, Z, 7’ € PIQ ). Thus for all of
the following cases, equation (4.20) is derived explicitly by the application of Proposition 4.7 to points= X; where
X, € PIQ("’"’"’”) fort =1,...,4. Equations (4.2Q).1, (4.20)—1, (4.20),—; follow by symmetry. On the other hand, when
none of the indices is equal to one, (4.20) is shown by substituting these equations to an equation, corresponding to (4.13)
of Theorem 4.6, which is derived in the course of proving (4.20)
The indices, 7, &, of a;;; give rise to the cases where none, one or two of them are equalriceach of these cases

we make use of the poiat, which is established in Lemma 4.12.

Lemma4.12.Forn > 5andn # 6 letiy € I\ {1,n}, j; € J\{1l,n}, kg, k1, k2 € K\ {1,n} with ky # ki, kg,

lg,lh € L\ {1,n} with{; # [,. Then there exists the poin € P; as illustrated in Table 23.

Table 23: Point, (Lemma 4.12)

L [T [ Tdg[-] [ T2 Tdgal ]
1] 1 k1 1|1 i
ig || kg ko ig || g n

Proof. Consider théDLSthat has in natural order the elements of the a) first row of the two latin squares and b) the elements
of the first column of one of the two squares . A paiifSwith this property is said to bestandardizedet. If P; # () then

there always exists dBLSstructure of this type ([8, p. 159]). W.l.0.g. assume the elements of the first column of the second
latin square (latin square consisting of the values of.3¢b be in natural order. At this point we hakén, 1) = k, # n. Let

Js € J\ {1} be such thak(n, js) = 1. Forn > 5 there exist, € L\ {1,n} andl; € L\ {1,[,,n} suchthai(1,j;) = lg,

I(1,72) =y andl(n, j2) = lg wherej, jo € L\ {1,n} with ji # js, j2 # js. We denote:(1, j2) ask; andk(n, jo) asks.

Note that sincék, k- lie in the same column we havg # ks. Combining this withk(1,1) = 1, k(1,n) = n, we obtain

thatk, € K \ {1, ks,n}. In a similar manner, becauéé¢n, 1) = kg, k(n,j3) = 1 andjs # jo, k1 # ko we derive that

ko € K\ {1, k1, k,}. We apply a fourth index interchange betwégandn. The resulting point namely; is illustrated in
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Table 24. Ifk(n, j2) = n then forn > 5 there existsi, € K \ {1, k1, kg, n}. Letz;* = x7(k(n, j2) = n?ky < n)3. If at

Table 24: Point;(Lemma 4.12)

L [ t[--Tal-—fdh]l-[n] L il Jal - [h][-[n]
1 1 k1 n 1 1 n l1 lq
n || kg n ||l n

pointz; k(n,j2) # n then we denoté(n, j2) ask,. In any case at point;* we havek(n, j2) = ko € K\ {1, k1, kg, n}.

Leti, € I'\ {1,n} andj, € J\ {1,n}. Thenz, = 27" (i < n)1(jq # j2?jq < j2)o2-

O
(Back to the proof of Theorem 4.11). Now we are ready to examine each case separately.
case 1: None of the indices is equalto
W.lo.g. leti =iy #n,j = jq #n k = kg #n,l =1, # n. Thus we must prove
Qigjokgly = Mikgl, + Gig11l, T Q15 11, + Qigj11 + Qlj,k,1 T Giglkg1
—2a;,111 — 2a15,11 — 2a118,1 — 201111, + 3a1111 (4.21)

At point z, of Lemma 4.12 we distinguish two cases, iz.= k1, kq # k1.

case 1.1:k, = k.
Letx; = x,(k, < n)3 (Table 25). At pointey, sincek(1, j,) = n andk(iy, 1) = n there exist; € I\ {1,i,}
andj; € J\ {1,j,} such thatz; j ., = 1. Letxy = x;(i1 # n?i1 < n)i(j1 # n?j1 < n)2. Then
Xy € PR (g = 1), Letay = 21 (1 < ky)s (Table 26). AgainX, € P (g, = 1),

Table 25: Point;(Theorem 4.11, case 1.1)

L 1 [jg [ ] L D1 [dg[ ]
1 1 n 1 1 I
iq || 1 ko iq || lg n
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Table 26: Point:,. (Theorem 4.11, case 1.1)

L D1l [jg[---]n] L [t[-Tjg[---[n]
1 || kg n 11 I
iq || n ko iq || lg n

21((1,4g)1; (1, 4g)2)=

a1111 + Q1j,nly + Giginly, + Qigjokon T Qllkon + C1j,nl, + Giginly + Qigj,11

= Qlinl, T Q1 kon T Qig111 + Qigjonly T Q1inl, + 015,11 + Qiglkon + Gigjonl,
‘rQ((lviq)l; (1ajq)2):>

O11k,1 T Qljgnly T Qiginl, + Gigjokon + Olikyn + Q1 nl, T Qiginly + Gigjak,1

= Qlinl, T Qljgkon T Qiglk 1 T Qigjonly + Alinly + Q1jk,1 T Qiglkon + Qigjoni,

x1((1,49)15 (1, Jg)2)-22((1,4g)15 (1, jg)2) yields (4.21) —;. To show (4.21) consider the pointg = x5(1 «
lg)aandzy = (1 < lg)a. X3, X4 € PIQ(”’"’"’") (Znnnn = 1). Pointszs, =4 are illustrated in Table 27 and

28 respectively.

Table 27: Pointzs. (Theorem 4.11, case 1.1)

L 1 [-[jg[--[n] L T1[-Jd [ [n]
1| & n Ll L
iq n ko iq 1 n

23((1,4)1; (1, Jg)2)=

Q11kgly T Qljnly T Giginl + Qigjkon + Qlikyn + Q1jyn1 + Giginty + Qigjgk,l,

= Qinl T Q1 kon T Qiglkyl, T Qigjonty + 1inly, + G1j,k,1, + Giglkon + Gigjonl
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Table 28: Point:,. (Theorem 4.11, case 1.1)

L [t Jd [ [n] Lt fd [ [n]
111 n 1|1 Iy
iq || n ko ig || 1 n

24((1,dg) 15 (1,4g)2)=

a1111, + A1jonly + Giginl + Qigjokon T Aikon + A1j,m1 + Qiginl, + Gigj,11,

= Q1inl T Qi kon + Qig11l, + Qigjonly T Glinly + 15,11, + Giglkon T Qigjonl

23((1,iq)1; (1, Jg)2)-24((1, iq)1; (1, Jg)2)=
Qijakgly = Q1111 — Qllkyl, — G511, — @ig11l, + (Qigj 11, + Qiglkgl, + G15,k,1,) (4.22)

(4.22) will be used to derive (4.21).

case 1.2:k, # k.
Letz; = z4(ky < n)3(l1 < n)s. At pointz;becausé iy, 1) = n andi(1, j,) = n there existy € I'\ {1,i,}
andj1 e J \ {].,jq} such thatfbiljlnn = 1. Letz; = IZ(Zl 7& nliy < n)l(jl # ’ﬂ?jl — n)g. Let

T2 =21(1 & ky)3. X1, X2 € PIQ(”’"’”’”) (Znnnn = 1). The pointsey, zo are illustrated in Table 29 and 30

respectively.
Table 29: Pointr;. (Theorem 4.11, case 1.2)
L [ Jd [ [n] Lt fd [ [n]
1|1 k1 11 n
iq n k’g Z'q lq ll
n n n n

21((1,4g)15 (1, 4g)2)=

01111 + C1jkin + Qiginl, T Qigjakaly + O11kgly + G1jgnl, + Giglkin + Gigj 11

= Qllkyn T Quj 11 + Qi lkoly + Qigjonl, + Clinl, + Qlj kol + Gig111 + Qigjkin
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Table 30: Point:,. (Theorem 4.11, case 1.2)

L [t [ Tdg[---]n] L [l Jdg [ [n]
L Ky 2 11 n
iq || n ko iq || lg Iy

.132((1,7:(1)1; (1’jq)2):>

011k, 1 + Qi kyn + Qiginl, + Qigjakoly T Qllkaly T Qjgnl, + Qiglkin + Gigjak,1

= Qlikyn T 01j,k,1 + Qiglkyly + Qigjonl, T 0linl, + Clj kol + Qiglk,1 + Gigjokin

z1((1,4¢)13 (1, Jg)2)-z2((1,4g) 15 (1, 4q)2) yields (4.21) ;.
Letzs = z2(1 < ly)s andzy = z1(1 < 1,)4 (see Table 31 and 32 respectively)s, X4 € Pf’g("’”’"’")

(xnnnn = 1) .

Table 31: Pointrz. (Theorem 4.11, case 1.2)

L [t [-Jjg[---[n] [ T1]- gl [n]
T Tl T n
iq || n ko ig || 1 L

Table 32: Pointz4. (Theorem 4.11, case 1.2)

L T1T-Tdg [ [n] [ Tt Tig[ - [n]
1 1 kq 1 lq n
iq || n ko 1q || 1 I

x3((1,4g)1; (1,4q)2)=

O11kyl, T Oljgkan T Giginl + Qigjokoly T Qlikoly + Q1jgnl + Giglkan T Qigjokgl,

= Qikyn T 01kl + Qiglkaly + @igjon1 + Qlinl + Qlj koly + Qiglkgl, + Gigjokin
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$4((1,iq)1; (1’]q)2):>

G111, T Q1jokyn T Qiginl + Qigjokaly + O11kyly + Gl nl + Qiglkyn + Gigj1i,

= Qlkin T 015,11, + Qiglkyly + Gigjonl + Q1101 + Q15 ka0, + Gig111, + Qigjokin

23((1,44)1; (1, 4g)2)-24((1,44)1; (1, 44)2) yields equation (4.22).

For all cases examined we have derived (4,2%)explicitly, as well as equation (4.22). Itis easy to see that equations
(4.21), -1, (4.21) -1, (4.21).,—: follow by symmetry for all these cases. Substituting in equation (4.22) terms in
brackets from (4.21)—_1, (4.21), -1, (4.21),,—1 Yields equation (4.21).

case 2. One of the indices is equalto

W.l.o.g. assume = i, # n, j = j, #n, k =n,l =1, # n. Equation (4.20) becomes

Qigjonly = Qlinl, + i 111, T 15,11, + Qigj,11 + G1j,n1 + Qigind

—2a;,111 — 2a15,11 — 201101 — 201111, + 31111 (4.23)

As in the previous case, first we show explicitly (4.23). At point z, of Lemma 4.12 we apply a third index
interchange betweét), andn. At the derived point, namety?l (Table 33), we distinguish two cases, vi€1, j,) = n,

k(1,j,) = k1 # n. The first case can occurff, = k; at pointz, of Lemma 4.12.

Table 33: Point:? (Theorem 4.11, case 2)

L L[] gy |- L It fda] ]
11 k(1,7,) 1] 1 L
ig || n ko iq || g n

case 2.1:k(1, j,) = n.
Point:pg is the pointz; of case 1.1. Therefore we can derive poiptas in case 1.1. This implies that we have
the sameX; collection and the same, (1, i,; 1, j,) equation both for this case and case 1.1.
Letz = z1(1 < n)s . At this point becausé(1,1) = n andi(i,, j,) = n there exist, € I\ {1,4,} and
71 € \{1,j,} such thatz;, j,nn = 1. Letze = x5(i1 # n?%1 < n)1(j1 # n?ji < n)2 (Table 34). Then

X € P]Q(mn’n’n) (xnnnn = 1)
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Table 34: Point:; (Theorem 4.11, case 2.1)

L [t Jd [ [n] Lt fd [ [n]
1 n 1 1 1 l1
ig || 1 ko ig || lg n

x2((1,dg)1; (1, g)2)=

a11n1 + Q15,11 + Gig111, + Qigjokon T Qikon + G1j,11, + Gig111y + Qigjont

= Q111lg T Qlj kon T Giginl + Gigj,10, + G111y + Q1jon1 + Qiglkon + Qigj,1l,
z1((1,dg)1; (1, Jg)2)-w2((1,dg)1; (1, Jig)2) =

aiin + @i 11 + arjgnt + Gigin — (@igjon1 + @111 + a1j,11 + G1int)

= YA, j,n + a1+ aju+ aiin — (@, 4 e A avjg + aign) L€ {lg i} (4.24)

Forn > 5 there existdo € L\ {1,l1,l4,n} such that we can derive two additional equations of the type
(4.24); one by substituting,, I1) by (11, l2) and the other by substitutir(@,, 1) by (l2, ;) at pointszy, z2. By

summing these two equations and (4.24) we get

3la1111 + a4 5,11 + arjn1 + Giginy — (Qigjgn1 + @i 111 + a1j,11 + @11n1)]

= 2> H{ai j,n + a1+ aju + aiu — (@ig,100 + @+ ajn + @) 21 E {lg, 11, I} (4.25)

Letzs = 332(1 — 12)4 (Table 35) andy = $1(1 — l2)4 (Table 36).X3,X4 S P[Q(n,n,n,n) (xnnnn = 1).

Table 35: Pointcs (Theorem 4.11, case 2.1)

L [i[ T4 [ -[n] L [1[ - Tjg[ - [n]
1[n 1 Ll L
ig || 1 ko iq || g n

x3((1,dg)1; (1, 4q)2)-24((1,4q)1; (1, 4q)2) Yields the right-hand side of (4.25) to zero proving thus (4,23)
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Table 36: Point:, (Theorem 4.11, case 2.1)

L l1[-ld |- [n] L Dt[-Tjg[--]n]
11 n 1] I b
iq || n ko ig || lg n

Now consider the equation (4.24) derived {ér, l,) instead of(l,, {;). Multiply by 2 and subtract from (4.25).

The left-hand side of the derived equation is equal to zero (due to {4.2Byielding
Qijonty, = (Qigj11, + Q1 nl, + Giginl,) + 1111, — Q11nl, — G1j,11, — G 111, (4.26)

We will show that equation (4.26) is valid for all sub-cases of case 2.2, as well.

case 2.2:k(1, jo) = k1 # n.

We investigate the location of pajn,n) € K x L at pointz?. That is, we examine variable, j, ., = 1 for

all feasible values ofs, jo. Clearlyis € I\ {i,} sincek(i, 1) = n andi(i,, 1) = I, # n (by definition).

For the same reasoi # 1. Additionally jo # j, sincel(iq,j,) = n andk(iq, j,) = k2 # n. Therefore

J2 € J\ {1, jq}. We distinguish two cases w.r.t. indéxof z;, j,nn = 1 Viz. i # 1, iy = 1.

case 2.2.1i, # 1.

Letz; = xg(ig #nlipg o n)1(j2 £ nljzs o n)y. X1 € PIQ(n’n’"’n) (@nnnn = 1). Letzd = 21(1 < n)s.
At this point sincek(1,1) = n andl(iq, j;) = n there exist; € I\ {1,4i,} andj; € J\ {1,4,} such
that 2, j,mm = 1. Letzy = a3(iy # n?iy < n)1(j1 # n?ji < n), (Table 37). X, € pemm™™

Table 37: Points,. (Theorem 4.11, case 2.2.1)

L D1 [-Td|-—[n] L [[t[-Tjg[---[n]
1 n k1 1 1 Iy
ig || 1 ko ig || lg n

35



xl((Liq)l; (17jq)2):>

01111 + O1j kil T Qiginl, + Gigjokon + Qlikon T Qlj nl, T Qiglkil; T Qigj,11

= Akl T 015,11 + Qiglkyn + Qigjonl, T Q11nl, T 01 kon T Gig111 + Qigj kel

22((1,9g)1; (1, jg)2)=

11nl + Qljokily T Qiglil, + Gigjokon + Qlikon T Q15,10 T Qiglkily T Qigjanl

= Akl T AQ1jgn1 + Qiglkyn + Qigj 1, T 1111, T Qlj kon + Giginl + Gigj kels

z1((1,ig)15 (1, Jg)2)-22((1,ig)1; (1, Jg)2)=

arnnn + @11+ iginn + arjont — (Gigjun1 + @ig111 + @1j,11 + i)

Qi jonl, T Q11nl, + @i111, + @i, — a111, — (Gigj,10, + Giginl, + G1j,nl,) (4.27)

We derive pointsi; = x1(l, « l1)s andiy = ol < )i X1, X € PIQ(”’”’"’”) (@nnnn = 1).
21((1,4g)1; (1, 4q)2)-E2((1, 4¢)1; (1, jq)2) Yields equation (4.27) withy in the place of,. By adding this

equation to (4.27) we get

2[ar111 + Gigj,11 + Gigin1 + @101 — (Qigjen1 + @i 111 + G1j,11 + Q1int)]

= > Hai,jnt + a11n + ai1u + e — e — (@i, Qi+ ajn) L€ {lg, i)} (4.28)

Letazs = 29(1 & l1)s andzy = 21(1 « {1)4. X3, X4 € PfQ(n’nm’n) (Tnnnn = 1). 23((1,44)1; (1, 4¢)2)-
x4((1,4q)1; (1, J4)2) yields the right-hand side of (4.28) to zero thus implying (4,23). Substituting term
a;,j,n1 from (4.23) —; to (4.27) yields equation (4.26).

case 2.2.215 = 1.
Letzy = x2(jo # n?j2 < n)a. X1 € PIQ(”’"’"’”) (Z1nnn = 1). Pointz, is derived from pointz,
exactly as in case 2.2.1X, € PIQ("’"’"’") (Zrnnn = 1). The rest of the points are derived fram
andzs exactly as in the previous case. The only difference is that collections derivedrfrdralong to
PIQ(”’"’”’”) because they have ,,,,,, = 1 for all of their points. The equations of the previous case apply

throughout this case as well.

Thus, for case 2 we have shown (4.23) and (4.26). Cases (4.23)1 and (4.23), —; follow by symmetry. Substi-
tuting in (4.26) terms in brackets from (4.23):, (4.23);,—1 and (4.21) —, yields equation (4.23).
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By reversing the roles of the sets, w.r.t. the row set, the column set and the set of the elements of the first and the

second latin square of @LSstructure, we can show equation (4.20) with any other index being egual to
case 3. Two of the indices are equalto

W.l.o.g. assumeé =i, # n, j =n, k =n,l =, # n. Equation (4.20) becomes

Gignnly, = 1inl, T Qig11l, + Ginll, + Qignil + Ginnl + Giginl

—2a;,111 — 2a1511 — 201101 — 2a1111, + 301111 (4.29)

As in the previous case, first we show explicitly (4.29) . At pointx?I of the previous case we apply a second index

interchange betweeij andn. At the derived point, namelyg (Table 38), we distinguish two cases, Vi1, n) = n,

k(1,n) = k1 # n.
Table 38: Pointzsg (Theorem 4.11, case 3)
L [1]-—[ » | L [[t]-[n]
11 k(1,n) 11 I
iq || n ko iq || lg n

case 3.1:k(1,n) = n.

Atpointz3 there exist; € I\{1,i,} andj, € J\{1,n} suchthaty; j, ., = 1. Letz; = 23(i1 # n?i; < n);.
Clearly X; € PR™™m™) (g . =1). Leta} = 21(1 < n)3. At pointz} there existi, € I\ {1,4,} and
j2 € J\ {1,n} such thatz;, ;,n, = 1. Therefore letry = x3(ia # n?is < n)y. Clearly X, € PIQ("’"’""")

(njonn = 1). Pointz, is illustrated at Table 39. Note that # j.

Table 39: Pointz, (Theorem 4.11, case 3.1)

L Di[---Tj[ - [n] L Ji[-Tje[-]n]
1 n 1 11 Iy
zq 1 ko iq || Iq n

The rest of the points are derived fram andzs exactly as in case 2.1 (same interchanges). The points and the

relatedX collections derived from; belong toPI("?("’"’"’”) since they have,;, ., = 1 whereas those derived
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from x5 belong toPIQ("’"’”’") since they have,,;,,, = 1. All equations of case 2.1, with in the place ofj,,
are derived in a similar manner for this case as well. Therefore, we prove,(4.29hich is (4.23), -, with n

replaced byj, and derive the equation corresponding to (4.26):

@iynnt, = (@ignil, + Ginnt, + ig1nl,) + @111, = G11nl, — G1nil, — Gi,111, (4.30)

We will show that (4.30) is valid for the following sub-cases.

case 3.2:k(1,n) = ki # n.

Let z7 = a}(k1 < n)s(li < lg)s (Table 40). At this point sincé(1,n) = n, I(1,n) = l; # n and
Table 40: Point:; (Theorem 4.11, case 3.2)
L [1]---]n] [ [t[]n]
1)1 n 1]t l
iq /451 k‘g iq ll n

k(ig,n) = kg # n, l(ig,n) = nthere existy, € I\ {1,i,} andj; € J\ {n} such thatr; ;, ., = 1. Let
r1 = 23(1 < i1)1. X1 € PIQ("’"’”’") because ifi, # 1 thenz,,;,,, = 1 for all points of X;, else ifj; =1
thenz,1,, = 1 at pointszy, ) andx,,,, = 1 at pointsz,, 7j. Letzd = z1(1 < n);. At z} since
k(1,1) = n,[(1,1) = 1 andk(ig, n) = ko # n, l(ig,n) = nthere existy € I\ {1,i,} andj, € J\ {1,n}

such thatr;, j,,, = 1. Note thatj; # jo. Letas = z5(ia < n); (Table 41).X, € PIQ("’"’"’”) (Tnjonn = 1).

Table 41: Point:; (Theorem 4.11, case 3.2)

L T1[-[dhl[n] L Jt[-TJj[--]n]
1 n 1 L1 I,
i.q k1 ko iq || L n

xl((Liq)l; (1an)2):>

Q1111 + Ginnl, T Qiglk 1y T Qignkon + Clikyn + Qink 1y + Qiginl, + Gignil

Q1inl, T A1nil + Qiglkon T Gignkily T G11kyly + Glnkyn + Qi 111 + Qignnl,
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22((1,4g)1; (1,m)2)=

G11n1 + G1nll, + Qiglksly T Qignkon + Qlikyn + Qinkil; + Qig111, + Gignnl

= a111, T Qinnl T Qiglkon + Gignkily; + @11k, 1, + Ginkyn + Qiginl + Qignil,

21((1,4¢)1; (1,m)2)-22((1,4g)15 (1,m)2) =

a1111 + Gigni1 + @i int + Ginnt — (@Gignn1 + @i 111 + Q111 + A11n1)

= i, T G1n1t, + @ig111, + Gignnt, — (Gignit, + Qinnt, + Giginl, T 01111,) (4.31)

By interchangingd,, /; in pointsz; andz,, we derive equation (4.31) with in the place of,. By adding this

equation to (4.31) we get

2[a1111 + @ign11 + Giyin1 + Ginnt — (Gignn1 + @i 111 + G1p11 + G1101)]

= A1t F arnu + i 11+ Gignnt — (Gign1t + Ginng + i1 +a111) L€ {lg, 1}y (4.32)

Letzs = 25(1 < ;)4 andzy = z1(1 < [1)4. Pointszs andz, are illustrated in Table 42 and 43

Table 42: Pointc3 (Theorem 4.11, case 3.2)

L [ t[---[sf[[n] L [t]--[p[ -]n]
1 n 1 1 Iy lq
iq || k1 ko ig || 1 n

Table 43: Pointz4 (Theorem 4.11, case 3.2)

L 1] Jaf[[n] L 1l [al--[n]
1] 1 n 1]l h ly
iq || k1 ko iq 1 n

respectively (note that we can hajye= 1). X5 € PIQ(""”’”’") andX, € P;?("’”’"’")due to the same reasoning

that X, € PIQ("’”’”’”) andX; € PIQ("’""”’") respectively.
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23((1,4g)1; (1,m)2)=

G11nly; T A1nil, T Qiglki1 + Qignkon + Gllken + Gink1 + G111, + Gignnly

= a1, + Ginnly + Qiglkon + Qignki1 T @11k 1 + Ginkyn + Qiginl, + Gignil,

24((1,4g)1; (1,m)2)=

G111l + Qinnl, T Gig1kl + Gignkon + G11kyn + Qink1 + Qiginl, + Qignily

= Qlinl, T 0inlly + Giglkon + Qignki1 T @11k 1 + Glnkyn + Qig111, + Gignnl,

x3((1,4¢)1; (1,n)2)-24((1,44)1; (1,n)2) yields the right-hand side of equation (4.32) to zero, proving thus
(4.29) 1.

Substituting ternu; ,,,,1 in equation (4.31) from (4.29)_,, we derive equation (4.30).

Therefore, for case 3, we have derived (4;29) and (4.30). Equation (4.29)-, follows by symmetry. By replacing
to equation (4.30) terna;  ,,1;, from (4.20) withi = iy, j = n, k = 1,1 = I, (shown implicitly in case 2), termy,,.;,

from (4.29) —, and terma; 1,1, from (4.23), -, we derive equation (4.29).

Again, by reversing the roles of the sets we derive equation (4.20) with any other pair of indices being equal to

Our proof with respect t¢i, j, k,1) € C'\ Q(n,n,n,n) is now complete.

For (i, 4,k,1) € Q(n,n,n,n) we define
Tijht = Qijet — (Mg + A5+ A+ AL + A0+ A%)

To prove (4.18) fofz, j, k, 1) € Q(n,n,n,n) we must prove that aft;;; are equal. Note that fa, j, k,1) € Q(n,n,n,n)

we havein — 3 terms:
Tnnnn = Ttnnn = Tntnn = Tnntn — Tnnnt, vVt {1» ey — 1}

First we Showr,, k., = Tnnk,n fOr by, k, € K\ {n} andk, # k.

For ko, k1,kp,n € K andlo,ly,n € L consider the point;,, as illustrated in Table 44. At this point we have
kp # ko, k1,n andly # n, l1 # n. To show that fom > 4 andn # 6 such a point exists, consider the painillustrated
in Table 45. Letj, € J \ {1,n} be such thait(1, jo) = n. Denotel(n, jo) asly, k(1, jo) ask, andk(n, jo) aske. Then

.’Ekp = .’I}(l — jo)g.
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Table 44: Pointr;,, (Theorem 4.11)

L [t [n] L [t]---In]
1 & k1 1 n Iy
n || ko n n || lo n

Table 45: Point: (Theorem 4.11)

L [t[--]n] L [1]-[n]
1 ky k1 1| & Iy
n || ks n n || s n

Forn > 5 there isk, € K \ {ko,k1,kp,n}. Letxzy = wzp,(k, < k.)s. Note thatX; 6 X € P[Q(ﬂ,mn,n)_

zk, (Ln)1; (1,n)2) -2, ((1,7)1; (1, n)2)=

annkpn + allkpn + Anlk,n + Alnk,n — (anlkpn + alnkpn + A11k,n + annkrn) =0

By substituting each term from (4.18) we g8&t.x,n = Trnk,n-

Exchanging the roles of the sets we obtain the corresponding results fdr defs i.e.

Tipnnn = Ti.nnn, Vipa i, €1 \ {’I‘L}, Z‘p 7é p,
ﬂ-njpnn — 7Tnj7,nnn7 vjpmjr S J\ {n}7jp 7é jr»

7Tnnnlp = Tnnnl, le, lr eL \ {TL}, lp 7& lr

Now we will show thatr,,,kn = Tpnn fork € K\ {n},1 € L\ {n}.

We consider pointsy, z; illustrated in Table 46 and 47 respectively.

Table 46: Point:;, (Theorem 4.11)

L [ t]---[n] L [T [n]
1] & k1 1 n Iy
n || ko n n || lo n

Again note thatX,, X; ¢ PIQ("’”’”’"). 2p((1,n)1; (1,n)2)-2:((1,n)1; (1,n)2)=

A11kn + Annkn + Aninl + Alnnl — (anlkn + A1nkn + a11nl + annnl) =0
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Table 47: Point; (Theorem 4.11)

L 1] [n] L [J1[-[n]
11 n k1 1! ly
n || ko n n || lo n

Again substituting terms from (4.18) we obtaif,,x,, = Tnnni-

Thus by exchanging the roles of the sets and taking into account equations (4.33) we obtain
Tinnn = Tnjnn = Tnnkn = Tnnn = T, Vi € I\ {n},j € J\{n},k € K\ {n},l € L\ {n}
Consider again ((1,n)1; (1,n)2) =

A11kn + Alnkqly + Anlkolo + Gnnpn + Q11nn + Al1nkglo + Anlkqly + Gnnkn

= Qllkoly T Qinnn + Anikn + Annkyly T Q11K T Qlnkn + Cninn + Gnnklo
By substituting terms from (4.18) we get
Tnnnn T Tnnkn = Tinnn T Tnlnn
thus yieldingr,,,nn = 7.

Finally, using the same argument as in Theorem 4.6, (4.19) is trueBﬂfé # (forall c € C forn # 2,6.

Proposition 4.13. The inequalities (4.17) are of rank 2.

Proof. We will first derive a lower bound for the rank of (4.17) by showing that the inequality cannot be ofl ravile
will proceed by illustrating how the inequality can be derived within two steps of the Chvatal-Gomory procedure. This will
provide an upper bound @fon its rank.

W.lL.o.g. assume = (ig, jo, ko, lo)- Then the node set of the clique is
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Qc) = {(io, Jjo, ko, o),
(i0s Jo, ko, 1), .., (40, jo, ko, lo — 1), ..., (i0, Jo, ko, lo + 1), ..., (40, Jo, ko, 1),
(0, Jo,1,0), -, (d0, Jo, ko — 1,10), .., (i, jo, ko + 1,1o), .., (i0, jo, 7, lo),
(10,1, ko,10)s vy (F05 G0 — 1, k0, 10)s vy (F05 G0 + 1, K05 10)y ey (P05 7, Ko, L0)s

(17j07 kOa 10)7 ) (ZO - 1aj0a kOv l0)7 (3 (ZO + 17.j07 kOa lO)v ) (Tl,jo,’n,, lo)}

The induced inequality is:

Tigjokolo T Z{xijokolo el \ {ZO}} + Z{xiojknlo WS J\ {30}}
+ Z{xiojoklo tke K\ {kO}} + Z{xiojokol tle L\ {ZO}} <1 (4.34)

If the inequality (4.34) is of Chvétal rank 1, then there exists e < 1, such that

Tijokolo + Y ATijokoto 1 € T\ {io}} + > ATiojkoto 13 € T\ {o}}
+ D A%igjorty k€ K\ {ko}} + Y {igjonor : L€ L\ {lo}} <2—e¢ (4.35)

Any solutionz € Py, haVingxinOkolo =0 andxijokolo = Tigjkolo = Tigjoklo = Ligjokol = ﬁ, Vi € I\ {io},j S
J\{jo}, k € K\{ko},l € L\ {lp}, violates (4.35) since its left-hand side hHs — 1) variables equal tg(nlj, and

therefore adding t@. Such a solution exists, and its coordinates are:

® Tijkolo = Tijoklo = Tijokol = Tigjklo = Tigjkol = Tigjokl = 0,

_ _ _ _ _2n-—-3
® Tionjkl = Tijokl = LTijkol = LTijkly = I(n—1)3°

_ 92
® Tijkl = %

foralli e I\ {io},7 € J\{jo}. k€ K\ {ko},l € L\ {lo}.
To see that € P, assume row labele@n, ms) € M; x My, whereM;, M, can be any of, J, K, L with My # M.

Then recalling that = {ig, jo, ko, lo }:

case 1: Ifmy, m2 € ¢, the row ha2(n — 1) variables equal tg(nlj, and(n — 1)% + 1 variables equal t6.
case 2: Ifm; € ¢, ma ¢ corm, ¢ ¢, mo € c, the row has one variable equal;gnl_—l), (n — 1)? variables equal t%

and2(n — 1) variables equal t6.
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case 3: Ifm1,ms ¢ c, the row hag(n — 1) variables equal tg{*=7s, (n — 1) variables equal t Z:fgz and one variable

equal to0.

Therefore, inequality (4.34) is of Chvatal rank at least
We now show that the Chvatal rank is at m@sfTo this end, note that adding rows, lo), (jo, ), (ko, o), dividing

the resulting inequality bg and rounding down both sides gives
Tigjokoto + D A Tijokoto 1 € I\ {io}} + D {igjate 5 € I\ {jo}} + Y Aigjorto : k € K\ {ko}} <1 (4.36)
Adding rows(ig, ko), (jo, ko), (ko, lo), dividing the resulting inequality by and rounding down both sides gives
Tigjokols + O ATijokolo 11 € T\ {io}} + > {igjkoty : 5 € T\ {do}} + D AZijokot 11 € L\ {lo}} <1 (4.37)
Adding rows(ig, jo), (Jo, ko), (jo,lo), dividing the resulting inequality bg and rounding down both sides gives
Tigjokolo + O Aijokoto 1 € T\ {io}} + Y {iojorto  k € K\ {ko}} + > {@igjorot :1 € L\ {lo}} <1 (4.38)
Adding rows(ig, jo), (0, ko), (40, o), dividing the resulting inequality by and rounding down both sides gives
Tivjokols T 3 Aiojkote 15 € I\ {do}} + > A@igjorto  k € K\ {ko}} + > A@igjorot :1 € L\ {lo}} <1 (4.39)
Finally, adding (4.36)-(4.39) yields

4Iiojuk’olo + 3Z{Iijokolo S I\ {ZO}} + 3Z{xiojk’olo VS J\ {]0}}

+ 3 {@igjokto 1k € K\ {ko}} + 3> {migjoror : 1€ L\ {l}} <4 (4.40)

Dividing (4.40) by3 and rounding down both sides gives inequality (4.34). Therefore, inequality (4.34) is of rank at

most2 and the proof is complete.
Theorem 4.14. For n > 5 andn # 6 the inequality
Z{ch :Q(e,9)} <1 (4.41)

defines a facet aP; for everye, s € C suchthat cns |= 1.
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Proof. Let PP = {x € Py : Y {z,: q € Q(c,s)} = 1}. Forn > 5 andn # 6 we will show thatP®(“* is a facet of
Pr.

First, we note that (4.41) is a valid inequality for ale P; because&)(c, s) is a node set of a clique in the intersection
graphG4(C, E¢).

W.Lo.g. letc = (n,n,n,n). Thens can be any of the following four quadrupleg§z, j, k., 1), (i,n,k,1), (i, j,n,l),
(1,7, k,n)fori € I\{n},j € J\{n}, k € K\{n}andl € L\{n}. Since all cases are symmetrical we will analytically carry
out the proof only fos = (n, j, k, ). Thus by setting = jo, k = ko, l = lp with jo € J\ {1,n}, ko € K\ {1,n} andl, €
L\ {1,n} we deriveQ(c, s) = Q((n,n,n,n), (n, jo, ko, 1)) = {(n,n,n,n), (n,n,ko,l), (n, jo, ko, n), (n, jo,n, o)}

Itis easy to see tha?®(“*) = (. Clearly;;,, = 1 for everyxz € P;. If pair (i, §) for this variable has # n and/or
j # n we apply a first and/or second index interchange betweeérand/orn, j. The point derived satisfies, ., = 1,
therefore it belongs t&? (),

Next we will show that ifz € PIQ(C’S) there exists at least one point which belongg’0\ PIQ(C’S). For this purpose,
we will assume point: € PIQ(C’S) haviNg T, nkole = Tisjokon = Tisjonls = 1 fOr i1 # ia # iz # i1, all other cases
being easier to handle. Note that the constraints of the problem also impose the conditioiy € I\ {n}. Pointz is

illustrated in Table 48. For > 5 there existsy € I\ {i1,42,13,n} such thatz; ;,x,, = 1for ky # ko,n, li # lo,n

Table 48: A pointz € Pf’g(c’s) forc = (n,n,n,n), s = (n, jo, ko, lo)

[ [Tl Tn] [ [ Tjo[--[n]
i Fo is n
i n i3 lo

and ;g nk,i, = 1 for ko # ko,n, lo # lo,n. We apply a first index interchange between,. At the derived point
Tisjokon = Tisjonle = Tnnksls = 1 IMPWYING Tyjokon = Tnjonle = Tnnkoly = Tnnnn = 0. Thus the point belongs to
Pr\ PIQ(C’S). We observe that if pair§kg,n), (n,ly) € K x L lie at the same rowi, = i3) we need onlyn > 4. The
same is true for pair&k, o), (n,n) € K x L. The argument goes essentially unchangeg, jf,.;, = 1 or 2, xyn = 1 OF
Tnnkol, = 1 instead ofz,,,,, = 1 at pointz.

24

To show thatP?“*) is a facet ofP; we will exhibit scalars\!,, A2, A3 i

A A Ay, meRfori eI, jeJ, keK,
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I € L, such that ifux = a, for all z € PP then

M FALHA NG X+ (5, 1) € C\ Qe 5)

aijp = ‘ ) (4.42)
A+ A3+ Aj.l + A;‘j + A5+ M+, (4,4, k1) € Qc, 8)

and

a = Y {MikeKleLy+Y {Miellel}
+ S jedtely+ Y (M ielje )
+ Y N jedkeR+Y Ny ieLke K} +m (4.43)

As in Theorem 4.6 we define

1
)‘kl = A11kl
2
/\il = Q3111 — G111l
3 _
)\jl = aij1 — a1
A =g ) )
ij = Gijll — G111 — 1511 + a1
Aoy = ayj :
jk = O01jk1 — Q1511 — A11k1 T G1111

6
Aige = Gilk1 — Q4111 — G11k1 + G1111

By replacingAs from these equations to (4.42) far j, k,1) € @ \ Q(c, s) we end up with equation (4.20) which must
be proven for anyi, j, k,1) € Q \ Q(c, s). Itis easy to see that this equation is valid &gi;; and for all cases in which
at least two of the indices equal 1. For cases where at most one of the indices is equal to one, we will show (4.20) using
exclusively points fromP?'“*) for ¢ = (n, n,n,n) ands = (n, jo, ko, lo ).

W.r.t. the indicedi, j, k,1) € Q\ Q(c, s) we distinguish four cases viz. none, one, two, three of the indices are equal to
n. For the first three cases we follow the same approach as in Theorem 4.11 i. e., we show explicitly(4Eap)ations
(4.20)=1, (4.20)—1, (4.20),—; follow by symmetry whereas (4.20), when none of the indices is equal to one, is shown by
substituting terms from these equations to an equation derived explicitly in the course of proving.(4.20) the last case

equation (4.42) will be shown explicitly.

case 1 None of the indices is equabto

W.lo.g. leti =iy #n,j = j, #n, k = kg # n, 1 =1, # n. The proof is exactly the same as in case 1 of

Theorem 4.11. We observe that all the points, on which we have applied Proposition 4.7, in case 1 of Theorem 4.11
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havez,,,, = 1. So these points belong not only IQQ(”’”’"’”) but to P;’?(C’s) as well. Hence, all the equations
derived for the case 1 of Theorem 4.11 are valid for this case as well. W.l.0.g. we cdasider , k; andly # [; at
all points used. Thus, for > 5 we could havet, = ky and/orj, = jo and/orl, = . This means that (4.20), when
none of the indices equals is valid when some (or none or all) of the corresponding indices are set to yalues

lo respectively.

case 2: One of the indices is equalto

W.l.o.g. assumeé = i, # n, j = j; # n, kK = n,l = l; # n. Equation (4.20) becomes equation (4.23). For all
cases except case 2.2.2, points used in the proof of case Zhaye= 1 which implies that they belong tBIQ(C’S)
as well. Thus, the proof followed in all sub-cases of case 2 of Theorem 4.11, but case 2.2.2, is valid for this case as

well. Next we will show (4.23) for case 2.2.2. using pointsR;%“”.

For case 2.2.2 at poimfl we haver; j,n, = 1 with jo # j, andkg # ki, ko, l1 # lo. Letz] = wg(ko = n)s3(ly #
10?7 < 1p)a(lo < 11)a (Table 49). At pointz} sincek(iq, 1) = ko, l(iq,1) = 1 # lo andk(1,j,) = ki # ko,

Table 49: Point:; (Theorem 4.11, case 2)

L [l T[] INENE AR
11 k1 11 lo
iq || ko ko iq || L n

1(1,74) = lo there existy € I\{1,i,}, j1 € J\{1, j,} suchthatr;, ; r., = 1. Letzy = 27 (i1 # n?i < n)1(j1 #

n?j; < n)a. Xy € PIQ(C’S) (Tnnkol, = 1). Letzy = x1(1 < n)s (Table 50).X5 € PIQ(C’S) (Tnnkot, = 1)

Table 50: Pointz; (Theorem 4.11, case 2)

[ TiT - Jigg [ [n] [ T[Tl [n]
1 n kq 1 1 lo
iq || ko ko iq || L n
n ko n lo

21((1,7g)1; (1, jg)2)=

Q1111 + Q1 kily T Qiglkoly T Qigjakan T Gllkon + Qi koly T Qiglkily + Gigj,11

= Qllkily T 015,11 T Qiglkon T Qigjkoly T Qllkely T Qljokon T Qigl11 + Qigj kgl
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xQ((17iq)1; (17jq)2):>

G11n1 + Q1 kilo T Qiglkoly T Qigjakan T Qllkon + @i koly T Qiglkily T Gigjonl

= Qllkyly T Oljgnl T Qiglkon T Qigjkoly T Qllkely T Qljokon + Qiginl + Qigj, k1o

21((1,dg)1; (1, 4g)2)-22((1,4¢)1; (1, 4q)2) Yields (4.23),—,. Equations (4.23)—1, (4.23);,—; follow by symmetry.

Letz; = x2(1 < n)s. Atpointz; sincek(1,1) = n, [(1,1) = 1 andk(iq, j,) = 1, l(iq,jq) = n there exist
11 € I\ {1, iq}, J1 € J\ {1,jq} such thatciljlm =1. Letzs = $§(21 75 n?iy < n)l(jl 75 ’n,?jl «— ’I’L)Q (Table 51)
Letzy = z3(1 < ly)s. X3, X4 € PP (@ppnn = 1).

Table 51: Pointzz (Theorem 4.11, case 2)

[ D10 Tdg [ [n] L D1l Jdl - [n]
1| n k1 1 1 I
ig || 1 ko ig || lg n

x3((1’iq>1; (17jq)2)$

G11n1 + Q1j kyly T Qig11l, + Gigjokon + Glikon + Q15,10, + Qiglkely + Qigjont

= Qlikly T Qjgnl + Qiglkon T Qigjail, + A1111, T Qg kon T Qiginl + Qigj kel
I4((1,iq)1; (17jq)2):>

Q1inl, T Qljokily T Gig111 + Qigjkon + Qlikyn + Q15,11 + Qigikqly + Qigjgnl,

= A1kl T Qjgnl, + Giglkon + Gigj,11 + Q1111 + Q1 kon + Qiginl, T Qigjakily
23((1,dg)1; (1, Jg)2)-xa((1,4g)1; (1, Jg)2)=

Qijonl, = (@igjon1 + iging, + G1j,nl, — Gigj,11,) + 015,11, + Gi 111, — G111, — Q11nl,

+a11n1 + Gigj,11 T Q1111 = Qiginl — Qljynl — Gig111 — 1,11 (4.44)

By replacing to equation (4.44) terms, ; .1, @i 1nl,, @1j,nl,> Gigj,11, rom (4.23) —1. (4.23),-1, (4.23) -1 and
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(4.21), - respectively we derive equation (4.23).

Our proof w.r.t. case 2 is now complete. We observe againjthandl, could be equal to valueg and/orly,

respectively, without affecting the proof. Thus, (4.23) is valid fet j, and/orl = I,.

By reversing the roles of the sets, we derive equation (4.20) with any other index being equal to
case 3: Two of the indices are equalto

We observe that not all cases(@f7, k,1) € Q \ Q(c, s) for which two of the indices are equal tg are symmetric.
Consider for exampléi,, n,n,l,) and(n, j;, n,1,). In the first case the only restriction w.r#, and!, is that they
must be different tham. In the second casg, andl, have the additional restriction that they cannot be equal to
Jjo andly respectively, simultaneously, because tlenj,, n,1,) = (n,jo,n,l) € Q(c,s). This is due to the fact
that (4.41) forc = (n,n,n,n) ands = (n, jo, ko, lp) iS not symmetric w.r.t. index and the rest of the indices.
Consequently, we consider two cases. The first (second) case refers to a pair of indices, each being.eqaal to

including (respectively including) indeix

case 3.1: W.l.o.g. assunie= i, # n, j = n, k = n, | = l; # n. Equation (4.20) becomes equation (4.29). At p@rgnt
we distinguish two cases, vig1,n) = n, k(1,n) = k; # n.
case 3.1.1k(1,n) = n.
Letz} = x3(ko < n)s. Atpointz} sincek(1,n) = ko, I(1,n) = I; # nandk(n,1) = ko, l(n,1) = I, #
n there EXiSﬁl S I\ {l,iq},jl cJ \ {1,11} such thatriljlkon =1. Letx; = Z‘T(Zl 75 n?i] < n)l(jl 75

Jo?d1 < jo)2. Letas = z1(1 <> n)3. X1, Xo € PIQ(C’S) (Tnjokon = 1). Pointsz; andz are illustrated in

Table 52 and 53 respectively.

Table 52: Point:; (Theorem 4.11, case 3.1.1)

[ Tr[--Ta[-[n] L [ Jd[-[n]
1 1 ko 1 1 Iy
in ko ko iq || b n
n ko n n

z1((1,ig)1; (1,n)2)=

01111 + Ginkely + Gigikely + Gignkan T Qllken + Ginkel, + Giglkely + Gignil

= Qllkgly T A1nil + Qiglkon + Gignkel, T Gl1kel, T Qlnkon T Qig111 + Qignkgls
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Table 53: Point:, (Theorem 4.11, case 3.1.1)

L [ t[--Tdo[---[m] L [t Jd[--[n]
1 n ko 1 1 Iy
i.q ko ko iq || Ig n
n ko n n

z2((1,i)15 (1, m)2)=

A11n1 + Qinkely + Giglkol, + Gignkon T Qlikon + Qinkel, + Giglkely + Gignnl

= Qllkoly T Qlnnl + Qiglkon + Gignkel, T Gl1kel, T Qlnken + Qiginl + Gignkgls

21((1,4q)1; (1,m)2)-22((1,ig)1; (1,n)2) Yields (4.29),—.
Letas = 25(1 < 1,)4 (Table 54) ands, = a1 (1 < I,)4 (Table 55).X3, X4 € P2 (20 k0m = 1).

Table 54: Pointc3 (Theorem 4.11, case 3.1.1)

L [ tf--Tdo[---[n] L [t Jd[--[n]
1 n ko 1|1, L
iq || ko ko ig || 1 n
n ko n n

Table 55: Pointc, (Theorem 4.11, case 3.1.1)

L [ tl-Td[---[n] L [ 1[-Tdl-—]n]
1] 1 ko Ll h
iq || ko ko ig || 1 n
n ko n n

xg((l,iq)l; (1,n)2):>

Q11nl, T Qinkely T Qiglkel T Qignkon + Qllkon + Qinkel + Qi lkel; T Gignni,

= Qllkgly T Annl, T Qiglkon + Qignkel + @11kl T Qinkon + Qi inl, T Qignkols
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24((1,4g)1; (1,m)2)=

G111, T Qinkoly T Qiglkel + Gignkyn T Qlikon + Clnkel T Qiglkoly T Qignil,

= Qllkel; T Ginll, T Qiglkon T Qignkel + Qllkel T Qinkyn + Qi 111, + Qignkoly

x3((1,4g)1; (1,m)2)-24((1,44)1; (1,n)2) yields equation (4.30). We will show that this equation is valid
for the next sub-case.

case 3.1.2k(1,n) = k.
Letz} = x2(ko < n)s(ly < n)s. Atpointz} sincek(iq, 1) = ko, l(iq, 1) = lq # nandk(1,n) = ki #
ko, I(1,n) = n there existiy € I\ {1,i4}, j1 € J\ {1,n} such thatz; ; x,» = 1. Letzy = zj(i1 #
n?i1 < n)1(j1 # Jo?j1 < jo)2. Letzes = 21(1 < n)s. X1, X € PIQ(C’S) (Znjokon = 1). Pointszy, z2

are illustrated in Table 56 and 57 respectively.

Table 56: Pointz; (Theorem 4.11, case 3.1.2)

L [ 1[-Td[-[n] L [ 1[-fd[]n]
1 1 k1 1 1 n
iq || ko ko iq || lg lh
n ko n n

Table 57: Point:; (Theorem 4.11, case 3.1.2)

L [ t[--Tdo[---[m] L [t Jd[--[n]
1 n kq 1 1 n
iq || ko ko iq || Ig I
n ko n n

z1((1,9g)15 (1, m)2)=

01111 + Ginkin T Qiglkoly, T Qignksly T Qllksly T Qlnkoly, T Giglkin + Gignil

= Qlkyn T G1n11 + Gigikyly + Gignkel, T G11kel, T Ginkyly T Gig111 + Gignkin
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22((1,4)1; (1,m)2)=

G11n1 + Ginkin T Qiglkoly, T Qignksly T Qllkyly T Qlnkol, T Qiglkin + Gignnl

= Qllkin T Qinnl + Qiglkoly + Qignkol, T Qlikel, T Qinksly + Qiginl + Qignkin

1’1((1, 7;(I)l; (17 n)2)-z2((1a iq)1§ (la n)Q) yleldS (4'29)(1:1'
Letzs = zo(1 < 1,)4 (Table 58) and:, = 21 (1 « I,)4 (Table 59). X5, X4 € PP (2, k0n = 1).

Table 58: Pointc3 (Theorem 4.11, case 3.1.2)

L [t ] Td[--]n] L [ 1[-Tdl-—]n]
1] n ky 1| 1,
in ko ko z'.q 1 I
n ko n n

Table 59: Pointz, (Theorem 4.11, case 3.1.2)

L [ t[-fjo[--[n] L [1[[o[--]n]
1 1 k1 1 I n
zq ko ko zq 1 h
n ko n n

z3((1,ig)15 (1, m)2)=

allnlq + Ainkin + aiqlkol + aianzll + A11koly + Ainkyl + aiqlkln + aiqnnlq

= Qllkyn T Qinnl, + Qi lksly + Gignkol T Qllkel T+ Qinkyly, + Qigint, + Qignkin
x4((17if1)1; (17n)2):>

G111, T Qinkin + Qiglkel T Qignksly T Qllkyly T Qlnkel + Qiglkin + Gignil,

= 11171 1Inl ilgl ino 1 0 1TL21 7 inln
G11kyn T Q1nlly, + Giglkaly + Gignkel T Ql1kel + Qinkyly + @ig11l, + Qignk

23((1,ig)1; (1,n)2)-24((1,74)1; (1,n)2) yields equation (4.30).

(C,S)

For case 3.1. we have shown (4.29) and (4.30) using points Q?IQ . (4.29) —, follows by symmetry.
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By substituting terms in brackets in (4.30) as in the case 3 of Theorem 4.11 we obtain (4.29). Néjasthat

allowed to take the valuk.

case 3.2: W.l.o.g. assume=n, j =n, k = k; # n,l = l; # n. Equation (4.20) becomes

Onnkgl, = Qllk,l, T Ani1l, T Qinll, + Gnnil + Gink,1 + Qnik,1

—2ap111 — 201011 — 20118,1 — 201111, + 3a1111 (4.45)

The proof of equation (4.45) will be carried out by adopting an alternative representation of poiRts of
Consider setg and K in reverse roles. That is, séf is the set of rows and sétis the set of elements of the
first square. Points’ andz’ of a collectionX are derived by exchanging the elements of two rows (0f0h&
structures representing pointsandz respectively) indexed by elements of gét We definei(k, j) to be the
element of the cell at roi and columny of the first latin square. Analogously we defiti&, ;) for the second

latin square. Thus, equation (4.8) of Proposition 4.7 is modified to

@iky,j1)jrkrl(ke,gi) T ik, jo)jakal(ky,g2) T Qi(ka,ji)jikal(kzg1) T Qi(k,j2)jzkel(ke.j2)
T Qilkaga)inkal(kagz) T Qi gi)jakal(ka,g1) F Qika,j2)jikal(k1,g2) T Gilkn,g1)jzkal (k1)
= Qi(ky,g1)jikil(ka,gi) T Gi(ka,ja)jokil(ke,iz) T Qilke,g)jrkal(ky,gi) T @ik ,ja)jzkel(k,j2)

1 Qi(kyga)jrkal(krg2) T Qi i) dzkal(ke,gn) T Gi(ka,ga)jrkel(ke,j2) T Qi(ka 1) g2kl (ka,1)

The above equation for a pair of rowk, , k2) and a pair of columngj,, j») at pointz, with k1, k; € K and

j1,72 € J,is denoted as((k1, k2)s; (j1,72)2)-

First we need to establish the existence of the pofRt,).

Lemma4.15. Forn > 5 andn # 6 leti,, i; € I\ {1,n} withi, # i1, io € I\ {iq,i1,n}, kg € K\ {1,n},

loe L\ {1,n},l; € L\ {1,lyp,n}. Then there exists the pointk,) € P; as illustrated in Table 60.

Table 60: Point:(k,) (Lemma 4.15)

L [1[---]n] L [1[ - [n]
1][1 i1 L1 lo
kg | g in kg || lo ly

Proof. ConsiderOLSstructures withi as the set of rows] the set of columng] the set of the elements of the
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first square and. the set of the elements of the second square. Consider agadi®eair with the elements
of the first row of both squares in natural order and the elements of the first column of the second square in
natural order. At this point we apply a fourth index interchange betviggandn thus deriving point:*. Point

x* is illustrated in Table 61. We observe thati, # n. Forn > 5 there exists, € I\ {1,41,42,n}. Let

Table 61: Point:* (Lemma 4.15)

L (1] [n] L (1] [n]
1 1 11 1 1 lo
n |l n io n || o Iy

x(kq) = x*(iqg < n)1(kg < n)s with kg € K\ {1,n}.

O

(Back to the proof of Theorem 4.14, case 3.2) We observeithatin be equal té,. At point z(k,) since
Tinlly = Ti,1k,l, = 1there existe; € K\ {1,k;}, j1 € J\ {1,n} such thatr,;,x,;,, = 1. Letz; =
.’ﬂ(kq)(jl # jo?jl — j())g(k‘l 7& n?ky « n)d X; € PIQ(QS) (xnjonlo = 1) POintiCl is illustrated in Table 62.

Letz3 = x1(1 < n)3. At point 25 we havex;, 1, = =4,1x,1, = 1 again. So there exish, € K \ {1,k,},

Table 62: Point:; (Theorem 4.14, case 3.2)

L [1[-Tg[[n] Tl Thl---Tn]
1 ]1 i1 11 lo
kg || dq io kg || bo h
n n n lo

Jj2 € J\ {1,n} such thatr,,;, 1,1, = 1. Note thatjs # j1. Letas = x5 (j2 # jo7j2 < jo)2(ke # n?ks < n)s.

X5 € PIQ(C’S) (Znjoni, = 1). Pointzs is illustrated in Table 63.

Table 63: Point:, (Theorem 4.14, case 3.2)

L Tt TJio[-[n] L il Tjol---[n]
1 n 11 1 1 lo
kg || 44 io kg || bo L
n n n lo

54



21((1, kq)s; (1,m)2)=

01111 + Giynlly T Qiglkgly T Qignkgly T Qisllly + Gignlly T Qiglkyly T Qlnk,l

Qiy11lp T Qinil + Qiglkyly + Qignkgly + Qigl1ly T Qignily + G11k,1 + Qiynk,l,
.1‘2((17 kq)S; (17 n)2)$

Gn111 + Qiynlly + Qiglkgly T Qignkgly + Qis11ly, + Qignlly + Qiy1kgly + Gnnk,l

= Qiy11lp + Onnll + Giylkyly + Gignkylo + Gigllly T+ Qignily + Gnik,1 + Giinkglo

21((1,kq)3; (1,n)2)-22((1, kg)3; (1,n)2) yields (4.45) ;. (4.45)., -, follows by symmetry.
To show (4.45) we considéy € L\ {1,1ly,{1,n}. Obviously forn > 5 such ani, exists. Letrs = z2(1 < ;)4
(Table 64) and:, = (1 < I,)4 (Table 65).X5, X4 € PP (@0 m, = 1).

Table 64: Pointr3 (Theorem 4.14, case 3.2)

L [ t][--Tjof[-[n] L [ t[-Jjo[--[n]
1 [ n i1 1| I, lo
kq || iq 19 kq || lo L
n n n lo

Table 65: Pointz, (Theorem 4.14, case 3.2)

L [ t]Jdl-[n] L el Jhf---]n]
1 1 11 1 lq lo
kg || ig i kg || lo l
n n n lo

23((1, kq)3; (1,n)2)=

An1ll, T Qiynlly + Qiglkyly + Qignkyly + Qis11ly, + Qignily + Qiy1k,ly + Onnk,l,

= Qi1 T Onnll, + Giglkgly + Gignkgle + Gig11ly T Qignlly + Gnik,l, + Gignk,lo
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24((1, kq)s; (1,m)2)=

G111, + Qiynily + Qiglkyly T Gignkgly T Gingllly T Qignlly + Giyik,le + Gink,l,

= Qiy11ly T Oinll, + Qiglkgly + Gignkglo + Qig11ly T Qignily + Q11k,l, + Giynk,lo

z3((1, kq)s; (L, n)2)-2a((1, kg)s; (1,m)2)=
Unnk,ly, = (Gnnil, + Gnik,l, + Gink,l,) + G111, — Gnlll, — Qinll, — Gllk,l, (4.46)

By substituting terms in brackets from (4.45)1, (4.20) with (i, j, k, 1) = (n, 1, kl,) and (4.20) with(s, j, k,1) =
(1,n, kqlq) (the two last equations were shown implicitly in case 2) we derive equation (4.45).
The proof of case 3 is now complete. Note that in case 3.2 whgeoan be equal téy, [, is restricted from taking

the valuely due tol(1, n) = ly, i(kq, 1) = I for all z1, z2, 3, 4.

Conclusively, by reversing the roles of the sets, we can show equation (4.20) with any other pair of indices being

equal to(n, n), including cases where= n.

case 4: Three of the indices are equahto
W.l.o.g. assumeé = n, j = n, k = k; # n, l = n. Unlike the previous cases, we will explicitly show equation
(4.42). Letz; = z3(1 < jo)2(iq < n)1(kq <= k2)s(ly # lo?lq < lo)s. We distinguish two cases, viz(1,n) = n,

k(1,n) = k1 # n.

case 4.1:k(1,n) = n.
W.lo.g. leti(1,j1) = n, andil(n, j2) = 1 with ji,jo € J\ {jo,n}. We note that we can hayg = j,. Let

x9 = x1(1 <> n)4. Pointszy, x2 are illustrated in Table 66 and 67 respectively.

Table 66: Point:; (Theorem 4.11, case 4.1)

T T (] sl Tdo]]n] C T ] Jd] Jdo] —]n]
1 1 n 1 n 1 l1
n n kq n 1 lo n

Sincexq, x5 € PIQ(C’S) (Znjont, = 1) we haveaz, = ax2. We will write this equation by adopting the following
notation. At pointz; let j(i,!) denotes the column that defines the cell, at ipwhich contains elemeritat

the second latin square . The corresponding element at the first latin square is defifed)asn this format
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Table 67: Point:; (Theorem 4.11, case 4.1)

Tial gl Jdl |n] T T Tal 1]l [n]
1 n 1 1 n l1
n kq n n lo 1

j(1,n) = j1 andj(n, 1) = jo. Thusaz; = ax,, after canceling out identical terms, becomes

dAaia ke 1 € IN{Ln}}  +aijo1n + Gnjn 1)k

+ Z{aij(i,n)k(i,n)n vel \ {L n}} +a1j(1,n)k(1,n)n + Annkgn

YA ken € IN{L Y} Fa1j01n + Gnjon,1)kn,)n

+ Y Aaiiemkimr 1€ IN{L Y +ariankmnt + Gnnk,1 (4.47)

Equation (4.47) includes only one term with three indices equal @,,.,») since both at points; andz;

we cannot have pain,n) € K x L at the rown or columnn (z,,,n1, = Z1nni, = 1 at both points). We also
observe that sincg(n, 1) = jo # n t€MMay;(m 1)k(n,1)n 7 Anjoken- Therefore, the set of indices of every term

of (4.47), excepti,,.i,», has been considered in one of the previous cases. That is, we have shown (4.42) for
every term of (4.47), except,,x,. Substituting only terms in summands ang ,,, 1)k (n,1)15 @15(1,n)k(1,n)ns

Anj(n,1)k(n,D)ns @15(1,n)k(1,n)1 frOM (4.42) in (4.47) and canceling out identical terms yields:

Z{)‘}c(i,ln + )\Ilf(i,n)n + )‘2(1‘,1)1 + A?(i,n)n viel}

()\127(1,1)1 + >\]1€(Tl7n)n + A?(1,1)1 + Af(n,n)n) + Agll + A%n +a1j011 + a'nnkqn

Z{)\llc(i,l)n + Allc(i,n)l + )\?(i,l)n + )\?(i,n)l i€ l}

()\llc(n,n)l + Allc(l,l)n + A?(nn)l + A?(l,l)n) + /\an + /\%1 +a1j01n + Annkgl (448)

(4.48) is derived by adding and subtracting to (4.47) terms in brackets, so that the index of summands runs for
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all values of the sef. It is easy to see that summands cancel out since

S hgan i€l = D {Muan:iell te{l,3} (4.49)
Z{A;(M)n ciel} = Z{A;(m)n cielbte{1,3} (4.50)
S Mg iell = > (Mg iel} te{l,3} (4.51)
Z{)\;(M)n ciel} = Z{Ag(m)n cielbte{1,3} (4.52)

This is because the-tuple (k(i,1)):cr ((5(¢,1)):cr) IS an array containing all elements f, ...,n} in some
order. The same is true fék(i,n));cr ((j(i,m)):cr)- If we consider the twar-tuples as unordered we have
(k(3,1))ier = (k(i,n))ier = (1,...,n) ((§(4,1))ier = (J(iyn))ier = (1,...,n)). Hence equations (4.49),...,
(4.52) are valid. Canceling out identical terms and droppingith€) andk (i, ) notation by substituting from

the “actual” elements of,, x5, (4.48) becomes

Onnkyn = Oljoln T Gnnk,1 — Q1511
ML Mg F AL+ A, AL, AT

By substituting terma j, 1, Gnnk, 1, a15,11 from (4.42) and canceling out identical terms (4.53) yielgs., . =
Abgn T A+ A0 + Anp + A0, + A%, whichis (4.42) for(i, j, k, 1) = (n, 1, kg, n).
case 4.2:k(1,n) = ki # n.

W.l.o.g. leti(1, j;) = n, andi(n, j2) = 11 with j1,j2 € J\ {jo,n}. We note that we can have = j,. Let

x9 = x1(l1 < n)4. Pointszy, x5 are illustrated in Table 68 and 69 respectively.

Table 68: Pointr; (Theorem 4.11, case 4.2)

’ “‘]1“]2“]0“"‘ ’ \\\]1\\]2\\]0\\”‘
1 1 k1 1 n 1 lh
n n kq n 1 lo n

As in the previous case sineg, z; € PIQ(C’S> (Znjoni, = 1) we haveaz; = ax,. By adopting the same
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Table 69: Point:; (Theorem 4.11, case 4.2)

T T a1l Tl ] T Ta] el Tal 1]
1 1 k1 1 I 1 n
n n k, n n lo L

notation as in case 4.1 and after canceling out identical terms= ax, becomes

YAaiiankin 1t € INA{L Y} Fa1nky F Gnjin,i) k()i

+ Z{aij(i,n)k(im)n crel \ {L Tl}} +aflj(1,n)k(1,n)n + Annkgn

> Aaiia0kGin 1€ INA{L N} Fainkin + Gnjen,i) k)0

+ D Haijtnkenn € IN{L Y} Faa k) + Gank,l (4.54)

We observe again that all terms of (4.54), exegptx,», can be substituted from (4.42). As in the previous case

this yields the desired result.

Note that in both sub-cases of caséAcan be equal té,. Reversing the roles of the sets and following the same
procedure we prove (4.42) for the remaining three cases; k,l) = (n,n,n,l,), (4,4, k,1) = (n,j4,n,n) and
(4,7, k,1) = (ig,m,m,n) wherei, € T\ {n}, j, € J\{n}, kg € K\ {n},{; € L\ {n}.

Our proof with respect tdi, j, k,1) € C \ Q(c, s) is now complete. We proceed by consideriiigj, k,1) € Q(c, s).
We define

Tijit = Gijit — (Ahy + Al + A% + A 4+ A0+ A%)

To prove (4.42) we have to show that all;;; are equal. Note that faf, j, k,1) € Q((n,n,n,n), (n, jo, ko, lo)) we
only have four terms, i.€Tnnnn, Thnkolys Trjonles Tnjokon. FTOM pointzy of Lemma 4.5 we derive point as follows:
xr = .’Ko(ig — 77,)1(]. — iO)l(jO — n)2(1 — jo)g(l — n)4(1 — ]C())g(]. — n)g. We consider two cases

case 5:kq # ky at pointz.

Then at pOintI? |etj1,j2 S J\ {jo, Tl} with J1 7£ J2 such thaﬂ{}(io,jl) = ko andk(io,jg) =n. Let alSOl(ig,jl) =1

andl(ig, j») = L,. Pointz is illustrated in Table 70. Let’ = z(iy < n); (see Table 71). Clearly € P°“* since
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Table 70: Point: (Theorem 4.14, case 5)

T Tdo ] [l ] 7] 1] ol ]l 7]
10 ko ko n k1 i0 n Iy ls Iy
n n ko n lo n

Table 71: Pointr’ (Theorem 4.14, case 5)

T g [al  [d] [n] [ Tl [l (0] [n]
ig n ko 10 lo n
n ko ko n kq n n It lg l1

Tnjoni, = 1 andz’ € PIQ(C’S) sincezyjokon = 1. Thusaz = az’ =

> A igjke (o)1= (io.) T Onjke ()i (ng) 5 € T}

=) {Gigjk (n )17 (ng) T Onjke o) i)  § € T} (4.55)

Letz = z(ko < n)3 (see Table 72). Let’ = Z(iy « n); (see Table 73). Note that poirt € PF(“’S) since

Table 72: Point: (Theorem 4.14, case 5)

T Thl 1ol 1&] [n] T Tl (il Tl 1]
i o n s 7 i n I, L I
n ko n n lo n

Tonnn = 1 andz’ € PIQ(C’S) sincex,jok,n = 1. Thereforenz = az’ =

D ik (o )2 Gi0.3) + Wngke gz )+ J € T}

=) {igjk# (n )17 (n.3) T Ongk® 0, 3)i5 io.g)  J € T} (4.56)

We observe that® (i, j) = k% (4, 7), 1*(i,7) = 1*(3,7) fori =i, j € J\ {j1,72} andi =n, j € J\ {jo,n}. Thus
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Table 73: Pointt’ (Theorem 4.14, case 5)

T Tdl Tal [i]  [n] T T ldo| ol ]l 7]
io ko n io lo n
n ko n ko kq n n It lg l1

(4.55)-(4.56)>

a’igjlk‘zlt + ai(]jz’nls + anj(]nl() + annkgn + ai(]jgk‘glo + aionnn + anjlnlt + anjgk‘gls

= Qigjinl, T Qigjakals T Onjokaly T Annnn T Qigjonly T Qignkon + Gigjrkal, T Cnjanl,

If we substitute in the equation above all terms from (4.42) we detjyg., = Tnjoni, = 7-

Then we write (4.55) as

> {iniie (o= o) 15 € TY+ D Aanjks iy 3 € T\ {do}} + anjonto

=D Atigskemgyrmg) 3 € TH+ D Aanjke oo 4 € T\ {io}} + anjokon

By substituting from (4.42) and canceling out terms we obtain

D o) T i) T Moktiou) + Mk 9 € I+ Tnjono

= Z{Azzol(n,j) + )‘il(io,j) + )‘?ok(n,j) + Aik(io,j) 17 € I} + Trjokon

Sinceiy, n indicate rows of a latin square, and considering each such row as an unordered n-tuple with respect
to the values of the cells of that row, then these unordered n-tuples are equivalerit;(ig.1), ..., k(ip,n)) =
(k(n,1),...,k(n,n)) and(l(ig, 1), ..., I(ip,n)) = (I(n, 1), ...,I(n,n)). Therefore, the above equation becomgs i, =
Tnjokon = T

)

Letz; = z(ly < n)s(ko < n)3 andze = 7' (ly <> n)4(ky < n)3. Clearlyxy,zy € PIQ(C’S since forz; we have

Znnkol, = 1 and forze we havez, ., = 1. Therefore, if we substitute iz, = ax, terms from (4.42) and take
into account the equivalent terms derived from the latin square property of the rows weg,ge} = mnjoni, = 7.
case 6:kg = k; at pointxy.

Letj; € J\ {jo,n} be such thak(ig, j1) = k2. We denoté(ig, j1) asl; and pointz is illustrated in Table 74. Let

' = z(ip < n); (see Table 75). Then,z’ € PIQ(C’S) since for pointz we havez,,;,.;, = 1 and for pointz’ we
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Table 74: Point: (Theorem 4.14, case 6)

’ H‘]O“Jl“n‘ ’ H‘]O“Jl“n‘
io ko ko n 10 n Iy Iy
n n ko n lo n

Table 75: Point’ (Theorem 4.14, case 6)

’ H‘JO“Jl“n‘ ’ H‘]O“Jl“n‘
10 n ko 10 ly n
n ko ko n n n Iy 1

havez, ,k,n = 1.

Letz = x(k2 < n)s andz’ = z(iyp < n);. Pointsz,z’ are illustrated in Table 76 and Table 77 respectively.

Table 76: Pointt (Theorem 4.14, case 6)

’ H\Jo\\h\\n‘ ’ H\]o\\]l\\n‘
io ko n ko io n ly L
n ko n n ly n

Clearlyz,z’ € PIQ(C’S) since for pointz we havex,,,,, = 1 and for pointz’ we havez, ,x,» = 1. Therefore

ar — aZ = ax’ — aT’ =

igj1kals + Aionnly + Anjonlg + Annkon + Aigjokalo + Aignnn + Anjinly + Annkqly

= aiojlnlt + aionkzll + anjokzlo + annnn + aiojonlo + aignk}Q’ﬂ + a’ﬂjlkzlt + annnll

Again by substituting all terms from (4.42) we g8l..n = Tnj,ni, = 7. In @ similar manner as in case 5 we derive

Tinnkolo — Tnjokon = Tngjonlg — T-

Finally, (4.43) is true since we have shown thatifor 5 andn # 6 P2 £ ),

Proposition 4.16. The inequalities (4.41) are of rank 2.
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Table 77: Pointt’ (Theorem 4.14, case 6)

’ H‘]O“Jl“n‘ ’ H‘]O“Jl“n‘
10 ko n 10 Iy n
n ko n ko n n Iy 1

Proof. The proof will essentially proceed in the same way as the proof of Proposition 4.13. Assume wd.o=g.
(Z-07j0> k07 lO) andS - (i07j15 kla ll) The nOde set Of the C"que@(Q S) = {(i07j03 k07 l0)7 (i0>j07 kla ll)a (iOajlv kOa l1>7

(40, J1, k1,10)}, the induced inequality being

Tigjokolo T Tigjokils T Tigjikols T Ligjikile < 1 (4.57)

If the inequality (4.57) is of Chvatal rank then there exist8 < ¢ < 1, such that every solution to the LP-relaxation of

OLS,i.e. Az = ¢,z > 0, satisfies:

Tigjokolo T Tigjokily T Tiogrkols T Ligjikilo <2—¢ (458)

However, any solution having;, jokot, = Tigjokits = Tiejikels = Tiojikilo = 3 Violates (4.58). We will show that such a
solution always exists fat > 3, distinguishing between the cases wherie even andh is odd, thus proving that the rank
of the inequality (4.57) is at least 2.

If n is even then for eacti,, j,) € I x J define two possible value pairs: eithgt(i,, ju), (i, ju)} = {y1,21} Or

{k(iv, ju), 1(iv, ju)} = {y2, 22} where

y1=(2- [g—‘ +2- LgJ)modn, z1=(y1+2- {gJ +u—2- LgJ)modn,
and
ya = (2- {E—‘ +2- LEJ +1)modn, zo = (y2 +2- LBJ —u+2- LBJ)modn.
2 2 2 2
The proposed solution is:
%, ify=wy1,2=210y =ya,2 = 29
Liyjukyl. =

0, otherwise
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forall (i,,j.) € I x J. Itis easy to see that u, z,y € {0,1,2,...,n — 1}.

To illustrate this solution with respect to &L Sstructure, assume that= J = K = L = {0,1,...,n — 1}, andn
even.[ is the row set,J is the column set and’, L are the value sets of the first and the second latin square, respectively.
For each cell(i, j) € I x J, we define:

ey = (2 m +2. BJ)modm o= (ks +2- BJ +j-2- BJ)modn,

and

W+2~ M +1)modn, lo = (ks +2- H —j+2- BJ)modn.

1

2

| ;

The solution must satisfy:

%7 |f]€:k1,l:ll Ork:kg,l:lz
Tijkl =
0, otherwise

The non zero variables for = 6 are depicted at Table 7®air (k,[) placed at celli, j) implies thatz; ;i = % The

Table 78: A solution violating (4.58) fat = 6
L [ o s 2 s ]4]5s |

00,11 | 01,10 | 22,33 | 23,32 | 44,55 | 45,54
22,33 | 23,32 | 4455 | 4554 | 00,11 | 01,10
24,35 | 25,34 | 40,51, | 41,50 | 02,13 | 03,12
40,51 | 41,50 | 02,13 | 03,12 | 24,35 | 25,34
42,53 | 43,52 | 04,15 | 05,14 | 20,31 | 21,30
04,15 | 05,14 | 20,31 | 21,30 | 42,53 | 43,52

a|lhr|lw|N|FR|O

marginal row values are the values of indgxvhereas the marginal column values are the ones of indéiis easy to
verify that exactly two variables at the left-hand side of each constraint are §é1y:m:hecking that each value of indéx
(or 1) appears exactly twice in each row/column, each (fait) appears at exactly two cells and each cell has exactly two
non-zero variables.

If n is odd, the solution does not follow a pattern as concrete as above, therefore it can be better described in the format
used in Table 78. Assume again w.l.o.g. that J = K = L = {0,1,...,n}, n odd and construct a square matrix, with
the marginal values on rows and columns corresponding to elements dfaseld, respectively. The matrix is symmetric,
with respect to the main bottom-left to top-right diagonal (i.e. the diagmat 1,0), (n — 2,1),...,(0,n — 1)) and is
illustrated in Table 79.

The non-zeracy;;; variables (i.e. the ones in the first row) are fixed exactly as in the casdeing even, except for
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Table 79: A solution violating (4.58) fat odd

] \ 0 |+ [ | ] n-3 \ n-2 \ n-1
0 00,11 01,10 | ... | ... | (n-3)(n-3),(n-2)(n-2) | (n-3)(n-2),(n-2)(n-3) (n-1)(n-1)
(n-5)(n-3),(n-4)(n-2) (n-1)0,(n-1)1 (n-3)(n-2),(n-2)(n-3))
2 (n-3)(n-3),(n-2)(n-2)
n-2 (n-1)2,(n-1)3 01,10
n-1 (n-5)(n-3),(n-4)(n-2) 00,11

variablezo(,—1)(n—1)(n—1), the single variable set tb The non-zera;(,,_1);,; variables (i.e. the ones in the last column)
are fixed in the manner posed by the above mentioned symmetry. Excluding the first row and the last column, we are left
with a(n — 1) x (n — 1) square submatrix (of even size), which can be split ﬂﬂ@l)—z 2 x 2 submatrices.

Each such2 x 2 submatrix, which is “above” the main diagonal, involves two pairs of consecutive indices from each

of the setsX, L according to the pattern illustrated at Table 80 (remember all four sets contain elgfdnts.,n — 1}),

Table 80:
yz,y+ D(z+1) | zy,(z+ 1) (y+ 1)
(z+Dy,z(y+1) | y(z+1),(y+1)z

wherey,z =0,2,...,n — 3.

It is therefore enough to define only the upper left element of each such submatrix, appearinglaBrows — 4 and
columns0, 2, ...,n — 5. Atrow ¢ and columnj (i < n —4 and odd,j < n — 5 and even; + j < n — 4), there must be
y=n—(i+j)—4andz =y+n—i. If 2 >n— 3, thenz is replaced by mod n — 3.

The remaining2 x 2 submatrices are the last to be filled according to the pattern illustrated at Table 81,ywhkere

Table 81:

(n=Dy,(n=Dy+1) | yn-1),(y+1)(n—-1)
y(n -1, (y+ (-1 | (n =1y, (n-1)(y+1)

0,2,...,n — 3. Note that the top-right and bottom-left cells are on the diagonal induced by the(eelisl, 0), (n —
2,1),...,(0,n—1). The value ofy must be the one appearing only once in that column, after all other cells have been filled.
A solution violating inequality (4.58) fon = 7 is illustrated in Table 82. It is easy to check that exactly two variables at
the left-hand side of each constraint are se} tor exactly one variable (i.exqg66) is set tol.

We have shown that the rank of (4.57) is at least two. Now we will show that the rank is a2 iystleriving (4.57)
as a linear combination of rankinequalities. Adding the row§&ig, jo), (70, ko), (%0, 11), €ach one weighted b%/, gives
an inequality, where variables;, ; k1o Tigjokiln aNdTi05, 101, appear with coefficient, variable x;, j,x,:, appears with
coefficient% and all other variables appear with coefficiéptThe r.h.s. isg. Rounding down both sides results in the

inequality:
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Table 82: A solution violating (4.58) fat = 7.

[ [ o[ [ 2]3[4a]s |6 |
0 00,11 | 01,10 | 22,33 | 23,32 | 44,55 | 45,54 66
1 24,35 | 42,53 | 02,13 | 20,31 | 60,61 | 06,16 | 45,54
2 43,52 | 25,34 | 21,30 | 03,12 | 06,16 | 60,61 | 44,55
3 04,15 | 40,51 | 64,65 | 46,56 | 03,12 | 20,31 | 23,32
4 50,41 | 05,14 | 46,56 | 64,65 | 21,30 | 02,13 | 22,33
5 62,63 | 26,36 | 05,14 | 40,51 | 25,34 | 42,53 | 01,10
6 26,36 | 62,63 | 50,41 | 04,15 | 43,52 | 24,35 | 00,11
Tigjokolo T Tigjokils T Tigjikols T Tiggokols <1 (4-59)

Applying the same procedure to rois, jo), (<o, k1), (i0, lp) results in the inequality:

Tigjokolo t Tigjokily T Tiogrkilo T Ligjokilo <1 (460)

Applying the same procedure to ros, j1), (io, ko), (i0, lo) results in the inequality:

Tigjokolo T Tigjikols T Ligjikilo T Ligjikolo < 1 (4.61)

Applying the same procedure to ros, j1 ), (io, k1), (i0, {1) results in the inequality:

Tigjokaly T Tigjrkoly T Tiogrkilo T Tigjikaly <1 (462)

Adding inequalities (4.59)-(4.62) gives the following inequality:

3(Tigjokolo T Tinjoksls + Tigjikilo T Tigjikoly) T (Tigjokols T+ Tinjokilo T Tigjrkolo T Tigjikily) < 4 (4.63)

Dividing inequality (4.63) by3 and rounding down both sides gives inequality (4.57). This implies that inequality (4.57)

is of rank at mos® and the proof is complete.
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5 Violated cligue inequalities

Facet-defining inequalities are of great importance since they describe the convex hull of integer solutions for a problem.
Therefore, if we knew all facet-defining inequalities of an integer polytope, we would be able to solve the integer problem
by incorporating them into the constraint matrix and then solving the linear programming relaxation. In practice, however,
this is not easy, since for most problems a) not all the facets of the underlying convex hull of integer points are known,
and b) the number of facets is not polynomially bounded on the size of the problem, thus yielding a constraint matrix of
exponential size. For these reasons most algorithms consider the known facet inequalities only when they are violated by
some points of the linear relaxation polytope. Although determining whether an arbitrary non-integer solution violates a
facet-defining inequality of the convex hull of integer solutions foNaR — hard problem is generally ald8 P — hard, it

is sometimes possible to do that efficiently for certain classes of facets. In particular, with respedLstihe propose

two polynomial procedures, one for each class of facet defining cliques, that deal with the problem of detecting a violated
cligue inequality.

First we give an algorithm that detects a violated facet-defining inequality induced by cliques of type II.

Algorithm 1 Separation of Cliques of type II.
Letx € P, andv € N such that > 5.

Step 1: Setd. = 0forallc € C.

Step 2: For all s € C checkz,. If x4 > ﬁ then setd, = d. + z, for all ¢ € Q(s). If d. > 1 stop: the inequality
> {zq:q € Qc)} <1lisviolated. Otherwise continue.

Step 3: For allc € C if d. > *=1 then check whether the inequalilly {z, : ¢ € Q(c)} < 1 is violated. If so stop;
otherwise continue.

In order to prove the correctness and complexity of the algorithm we need some intermediate results.
Lemma 5.1. For a pointz € P, and a positive integer, the number of componentsofvith value> v is < "72

Proof. The value of the linear prograh = max{ex : + € Pr} can be easily shown to b€ since the vectors € R
andu € R’ defined byr. = %,Vc € C andu, = %,Vr € R are feasible solutions tb and its dual. Therefore they are
optimal. Thus if more thaﬁvi components of have values greater than or equabtthen the value oéxz would be greater
thann? contradicting the above.

O

Lemma5.2. For anyxz € P;, and any positive integes, the number ot € C, such that) {z, : ¢ € Q(¢)} > v is

n?(4n—3)
< ﬁ-
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Proof. Consider

> D fegqeQe)} ey (5.1)

We know thatl Q(c) |= 4n — 3 for all ¢ € C which implies that each. appearsin — 3 times in (5.1). Hence

Z{Z{xq q€Q()}:ceCl=(4n—-3) Z{xc cc€C} < (4n —3)n?

If there were more thaﬁ@ > {zq : ¢ € Q(c)} with a value greater than or equalddhen it would bed " {> {z, :
q € Q(e)} : ¢ € C} > n?(4n — 3) contradicting the above.
O

Theorem 5.3. Algorithm 1 determines i®(n?) steps whether a givene P;, violates a facet-defining inequality of type II.

Proof. Let us first prove that the algorithm is correct. Assume that the inequglity, : ¢ € Q(c)} < 1 is violated for

somec € C. Then

1 1
dC:Z{xq:qu(c),xq 2 %} > I*Z{zq:qu(C)J!} < %}

4dn — 3 v—4
>1- >

wn v

Hence, violation is detected &tep3 of the algorithm. Therefore the algorithm is correct.

Let us now examine the complexity of the algorithm.Stepl we initializen* counters. AStep2 there can be at most
vn® components of a fractional pointwhich are examined. For each of thede,— 3 counters are updated since there
are4n — 3 nodes in the node set of a clique of type Il. So, in the worst case the complex8tgp2 is vn?(4n — 3). At
Step3 the number of € C for which> {z, : ¢ € Q(c)} > =2 is at most% (Lemma 5.2). For each suchwe
needdn — 3 extra steps to check whether the corresponding inequality is indeed violated. Hence, the comp&tepg of

e vn?(4n—3)2

is — . Thus, the overall complexity of the algorithm is

vn?(4n — 3)?

" 3 _
flo,n) =n"4+ovn’(4n — 3) + —

(5.2)

which isO(n?).

The value ofv that minimizesf (v, n) is found by setting the first derivative with respecttto zero:

8f(’l},n)_ _A\4 _ _ — _Lz
5 =n(v—4)"—4(4n—-3)=0=v=4+4/16 -
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which for largen producesy = 8. For this value ob (5.2) becomeg (n) = n* + 8n3(4n — 3) + 2n2(4n — 3)2.
Note that the complexity of the above algorithm remains linear with respect to the number of variables, therefore it is

the lowest possible.

Now we will give a separation algorithm for cliques of type Ill.

Algorithm 2 Separation of Cliques of type IlI
Letx € Py, .

Step 1:Foralk € C'if 1 >z, > 1
Step 2: Thenforali € C with | cNt |=2if 2, > 152

Step3: Thenforalk € C,suchthatcns|=1and| sNt|=3if Y {z,:q9 € Q(c,s)} > 1 stop; otherwise continue.

Theorem 5.4. Algorithm 2 determines i (n*) steps whether a givem € P;, violates a facet defining inequality of

type Ill.

Proof. Let us first consider the correctness of the algorittipic, s) is a node set of d-clique thus if a non-integer point

1

z violatesY {z, : ¢ € Q(c,s)} < 1 at least one component of must be> 1. W..0.g. assume that, > 1 for

¢ = (do, jo, ko, lo). Sincex € Py, then it belongs to the constraints

D {wijkor ri € Lj €5} =1 (5.3)
> {igjwio 1 €T kEK} =1 (5.4)
> {wijomo i€ LE€ K} =1 (5.5)
> {igjor k€K, le L} =1 (5.6)
> {wijorr 1i € LI€ L} =1 (5.7)
> {igjror :j €SI L} =1 (5.8)

If z. = 1 then for allt € C suchthaf cNt |= 2 we havez;, = 0. Hence, the inequality "{z, : ¢ € Q(c,s)} < 1is
satisfied as equality for a#l € C such that ¢ N s |= 1. Therefore ifz violates such an inequality the. < 1 and the range
1> z. > 1 are correct. SinceQ(c, s) |= 4 the conditionz, > I*TI must hold for at least onfec Q(c, s). Consequently,
algorithm 2 is correct.

Concerning the complexity of the algorithm, we note that the comparis@tapl is executed in the worst casé
times, once for each variable. The number of variables with val%eis at mostdn? (Lemma 5.1). For each such variable

there are6(n — 1)2 t € C such thaf ¢ N ¢ |= 2 as indicated by constraints (5.3),...,(5.8). Hence, we Rded(n — 1)?
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comparisons to identify all such ordered pdirst), yielding complexity ofO(n*). For each such the number of cannot

be more thar in each of (5.3),...,(5.8) since otherwise one of these inequalities would be violated. Thus the total number

of ¢ givenc for whichz; > 1‘3‘”“ is satisfied is8. Forc, ¢t given there are at most— 1 s € C' such that ¢cN s |= 1. Thus,

Step3 will be executedin? x 18 x (n — 1) times, i.e. its complexity is of the ordér(n?). Thus, the total complexity is of
O(n?).
O

Corollary 5.5. Whether there exists a violated clique inequality can be detected in linear time with respect to the number

of variables, i.e. irD(n*) steps.

Acknowledgment:We are grateful to Dr. K. Kilakos and Dr. D. Keedwell for helpful discussions at various stages of
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