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Abstract

Since 1782, when Euler addressed the question of existence of a pair of Orthogonal Latin Squares(OLS)by stating his

famous conjecture ([8, 9, 13]), these structures have remained an active area of research due to their theoretical properties as

well as their applications in a variety of fields. In the current work we consider the polyhedral aspects ofOLS.In particular

we establish the dimension of theOLSpolytope, describe all cliques of the underlying intersection graph and categorize

them into three classes. For two of these classes we show that the related inequalities have Chvátal rank two and both are

facet defining. For each such class, we give a separation algorithm of the lowest possible complexity, i.e. linear in the

number of variables.
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1 Introduction

A Latin squareL of ordern is an× n square matrix havingn2 entries ofn different elements each occurring exactly once

in every row and column. W.l.o.g. we can assume that then different elements are the integers0, 1, ..., n − 1. Two latin

squaresL1 =‖ aij ‖, L2 =‖ bij ‖ onn symbols are calledorthogonalif every ordered pair of symbols occurs exactly once

amongn2 pairs(aij,bij) i, j = 0, 1, ..., n−1. An example of a pair of orthogonal latin squares(OLS)of order4 is illustrated

in Table 1.

Table 1: AnOLSconfiguration of order4

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

An alternative definition ofOLScan be given with respect to disjoint sets and transversals. Atransversalof a latin

square of ordern is a set ofn cells, no two of which are in the same row or the same column or contain the same symbol.

Consider three disjoint setsI, J,K, | I |=| J |=| K |= n. Let I be the set of rows,J the set of columns andK the set of

symbols in the cells of a latin square. Then the latin square has an orthogonal mate if and only if it hasn disjoint transversals

([8, Theorem 5.1.1]). Each transversal hasn triplets, each representing a different row, column, and symbol. Therefore the

transversal partitions the union of then-sets of rows, columns, and symbols. For example, the four transversals, numbered

from 0 to 3, of the first latin square illustrated in Table 1 are:

((0, 0, 0), (1, 2, 3), (2, 3, 1), (3, 1, 2))0

((0, 1, 1), (1, 3, 2), (2, 2, 0), (3, 0, 3))1

((0, 2, 2), (1, 0, 1), (2, 1, 3), (3, 3, 0))2

((0, 3, 3), (1, 1, 0), (2, 0, 2), (3, 2, 1))3

Let L, (| L |= n) denote the index-set of the transversals. The orthogonal mate can be constructed if we set at each cell,

defined by a row index and a column index, the value of thel index which indicates the transversal that this cell belongs

to. This definition reveals another property ofOLS: Latin squaresL1, L2 of ordern are orthogonal if and only if for each

symbol then cells that contain it inL1 correspond ton cells of a transversal inL2 and vice-versa. This implies that each

pair of symbols(aij , bij) i, j = 0, ..., n− 1 appears exactly once(the orthogonal property).

Now consider all possible triplets with one element from each of the three disjoint setsI, J, K and a weight associated

with each triplet. Theplanar four-index assignmentproblem(4PAPn) refers to identifying a minimum weight collection

of n2 triplets, which formn disjoint subsets (transversals) ofn disjoint triplets. Each such subset forms a partition of the

union of the threen-sets. This is theweighted OLSproblem. It is analogous to theplanar three-index assignmentproblem
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(3PAPn) which asks for a minimum weight collection ofn2 pairs which formn disjoint subsets ofn disjoint pairs. The

3PAPn is equivalent to the problem of finding a minimum weight latin square (see [14]), while4PAPn is equivalent to

identifying a minimum weight pair ofOLS.

OLShave attracted substantial attention from very early on. As noted in [8, p. 156], Euler in 1779 had proposed the

36-officers problem which asked for a pair ofOLSof order 6 (see also [13]). Having failed to find such a configuration

and probably misguided by the nonexistence of a pair of OLS forn = 2, he conjectured that there exists no pair ofOLS

of ordern = 2(mod 4) ([8, 13]), i.e. odd multiple of two. At the beginning of the 20th century his conjecture was proven

for n = 6 ([18]). However, it took sixty more years to prove that his conjecture forn > 6 was wrong ([5]). Even today

OLSremain a very active area of research due to their theoretical properties and their applications in diverse fields. In terms

of theoretical interest, these structures are strongly related to the theory of affine and projective planes and to orthogonal

hypercubes and(t,m, s)-nets. Their practical applications include the problem of multi-variate experimental design, the

problem of designing optimal error correcting codes and that of encryption. An extensive study of the theory ofOLSand

related structures as well as a variety of applications can be found in [8, 9, 13].

In spite of the early availability of a 0-1 integer programming formulation (due to D. Gale as noted in [7]),OLShave not

been analyzed through mathematical programming. The current work is a step in that direction. In this paper we focus on

theOLSpolytope, study its intersection graph and obtain facets induced by clique constraints. In Section 2 we present the

mathematical formulation of the problem and discuss related problems. The associated intersection graph and its cliques

are described in Section 3. In Section 4 we prove the dimension of the underlying polytope and show that two of the three

classes of clique inequalities induce facets of this polytope. We also provide proofs that these inequalities are of Chvátal

rank 2. A separation algorithm for each of these two facet-defining clique classes is given in Section 5.

Throughout the rest of the paper we will assumen > 1 since forn = 1 OLSreduces to a trivial single-variable problem.

3



2 The OLS polytope and related structures

Appa ([1]) gives several different mathematical programming formulations for theOLSproblem and indicates that the one

attributed to D. Gale (in [7]) and reproduced below is the most suitable for theoretical and computational work:

∑

{xijkl : i ∈ I, j ∈ J} = 1, ∀k ∈ K, l ∈ L (2.1)
∑

{xijkl : j ∈ J, k ∈ K} = 1, ∀i ∈ I, l ∈ L (2.2)
∑

{xijkl : i ∈ I, k ∈ K} = 1, ∀j ∈ J, l ∈ L (2.3)
∑

{xijkl : k ∈ K, l ∈ L} = 1,∀i ∈ I, j ∈ J (2.4)
∑

{xijkl : i ∈ I, l ∈ L} = 1,∀j ∈ J, k ∈ K (2.5)
∑

{xijkl : j ∈ J, l ∈ L} = 1, ∀i ∈ I, k ∈ K (2.6)

xijkl ∈ {0, 1}∀i ∈ I, j ∈ J, k ∈ K, l ∈ L (2.7)

whereI, J,K,L are disjoint sets with| I |=| J |=| K |=| L |= n.

Given real weightscijkl for every(i, j, k, l, ) ∈ I × J ×K × L the problem of minimizing (maximizing) the function
∑

{cijklxijkl : i ∈ I, j ∈ J, k ∈ K, l ∈ L} over the polytope described by constraints (2.1),..., (2.7) is the4PAPn. This

formulation requiresn4 binary variables and6n2 equality constraints.

Let A denote the coefficient matrix of constraints (2.1),..., (2.6). Then we define the polytopePL asPL = {x ∈

Rn4
Ax = e, x ≥ 0} wheree = {1, 1, ..., 1}T . The convex hull of integer points ofPL is defined asPI = conv{x ∈

{0, 1}n4
Ax = e}. This is theOLS polytope since every integer pointx ∈ PI is anOLS. PL is also called thelinear

relaxationof PI . ClearlyPI ⊂ PL. We will sometimes refer toPI asPn
I so as to include the concept of order in the

notation. ThusP 6
I = ∅ is another way of stating Euler’s conjecture forn = 6.

Substituting(=) by (≤) in constraints (2.1),..., (2.6) yields the polytopeP̃I = conv{x ∈ {0, 1}n4
: Ax ≤ e}. The

polytopesPI , P̃I are related sincePI ⊂ P̃I . Let D denote a matrix of zeros and ones. ThenPI is a special case of the

set partitioning polytopePSPP = {x ∈ {0, 1}q : Dx = e} whereasP̃I is a special case of the set packing polytope

PSP = {x ∈ {0, 1}q : Dx ≤ e} (see [2, 15] for details).

There are two problems, each involving three disjointn − sets, that are highly related to theOLSproblem:(3PAPn)

and theaxial three-index assignment problem(3AAPn). We have referred to the former in the previous section. The latter

is defined with respect to three disjointn − sets, namelyI, J,K, and a weight coefficientcijk for each triplet(i, j, k) ∈

I × J × K. 3AAPn is the problem of findingn disjoint triplets of minimum weight, i.e. finding a single transversal of
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minimum weight. The constraints of3AAPn are

∑

{xijk : i ∈ I, j ∈ J} = 1, ∀k ∈ K
∑

{xijk : j ∈ J, k ∈ K} = 1, ∀i ∈ I
∑

{xijk : i ∈ I, k ∈ K} = 1, ∀j ∈ J

xijk ∈ {0, 1}, ∀i ∈ I, j ∈ J, k ∈ K

Remark 2.1.Constraints (2.1), (2.2), (2.3), for a given value of thel index, are equivalent to the constraints ofa 3AAPn.

The above remark will be very useful for establishing the dimension ofPL andPI . Research work on3AAPn and

3PAPn polytopes can be found in [3, 4, 11, 17] and [10].

3 The intersection graph and its cliques

Let R andC denote the index sets of rows and columns respectively of the 0-1A matrix. We refer to a column of theA

matrix asac for c ∈ C. The intersectiongraphGA(V,E) has a nodec for every columnac of A and an edge(cs, ct) if and

only if acs · act ≥ 1, i.e., both columnscs andct of A have a+1 entry in at least one common row.

Let GA(C,EC) denote the intersection graph ofOLS, whereC = I × J × K × L. It is convenient to label then4

columns of theOLSA matrix, not from1 to n4, but with four indicesi, j, k andl ranging from1 to n. This leads to an

equivalent definition ofGA(C,EC) wherecs represents the index set of columns.

Definition 3.1. The intersection graph ofOLSGA(C, EC) has a nodec, for everyc ∈ C, and an edge(cs, ct) for every

pair of nodescs, ct ∈ C such that| cs ∩ ct |= 2 or 3.

Note that an edge(cs, ct) ∈ EC corresponds to columnsacs , act with acs · act = 1 or 3. The row set of theOLSA

matrix is defined asR = (K ×L)∪ (I ×L)∪ (J ×L)∪ (I ×J)∪ (J ×K)∪ (I ×K). Since| I |=| J |=| K |=| L |= n,

| C |= n4 and| R |= 6n2.

Proposition 3.2. The graphGA(C, EC) is regular of degree2(3n− 1)(n− 1).

Proof. Consider anyc ∈ C. There are(n−1)4 elements ofC, which have no index in common withc. For each of the four

indices ofc there are(n−1)3 elements ofC, which share the same value for this index but have different values for the other

three. Therefore, there are4(n− 1)3 elements ofC which have exactly one index in common withc. By definition 3.1,c is

connected only to nodes that have two or three indices in common with it, so it is connected to all but(n− 1)4 + 4(n− 1)3

nodes. Therefore the degree of eachc ∈ C is n4 − 1− ((n− 1)4 + 4(n− 1)3) = 6n2 − 8n + 2 = 2(3n− 1)(n− 1).
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Corollary 3.3. | EC |= n4(3n− 1)(n− 1).

Proof. Since the number of edges of a graph equals the sum of the degrees of its nodes divided by2, we have| EC |=

0.5× n4 × 2(3n− 1)(n− 1) = n4(3n− 1)(n− 1).

A maximal completesubgraph of a graphG(V, E) is called aclique ([3, 10, 15]). LetQ ⊆ V denote the node set of

a clique. Thecardinality of a clique is the cardinality of its node setQ, denoted| Q |. Cliques of the intersection graph

GA(V, E) define inequalities of the form
∑

{xq : q ∈ Q} ≤ 1, which are highly relevant to the description of the set

packing polytope. Next we will examine the cliques ofGA(C, EC).

Let ac
r denote the entry of theA matrix at rowr and columnc. Then we define the setR(r) = {c ∈ C : ac

r = 1}. So

R(r) denotes the set of columns with a non-zero entry in rowr.

Proposition 3.4. For eachr ∈ R, the node setR(r) induces a clique inGA(C,EC) of cardinality n2. There are6n2

cliques of this type.

Proof. The subgraph induced by the node setR(r) is complete since all its elements have two indices in common. To prove

that it is also maximal w.l.o.g. assume thatr = (i1, j1) ∈ I × J and considerc0 = (i0, j0, k0, l0) ∈ C \ R(r) where

i0 6= i1 andj0 6= j1. SinceR(r) contains alln2 elements ofC whose first two indices arei1 andj1, it contains an element

c1 = (i1, j1, k1, l1) with | c0 ∩ c1 |= 0. Next considerc0 = (i1, j0, k0, l0) ∈ C \ R(r). But then there existsc1 ∈ C (for

examplec1 = (i1, j1, k1, l1)) so that| c0 ∩ c1 |= 1. The same happens ifc0 = (i0, j1, k0, l0). Therefore there is noc0 such

that the subgraph induced byR(r) ∪ {c0} is complete. Consequently, the subgraph havingR(r) as its node set is maximal.

There are as many cliques of this type as the number of rows of theA matrix, i.e.6n2.

Proposition 3.5. For eachc ∈ C the setQ(c) = {c} ∪ {s ∈ C :| c ∩ s |= 3} induces a clique of cardinality4n − 3 in

GA(C,EC). There aren4 cliques of this type.

Proof. W.l.o.g. considerc = c0 = (i0, j0, k0, l0) ∈ C andc1, c2 ∈ Q(c0) with c1 6= c2 6= c0 6= c1. Sincec1, c2 have three

indices in common withc0, at least two of their indices coincide. Therefore(c1, c2) ∈ EC for any c1, c2 ∈ Q(c0), thus

Q(c0) is complete. To show that the subgraph is also maximal, considerc3 = (i3, j3, k3, l3) ∈ C \Q(c0) and(c0, c3) ∈ EC .

Thenc3 has exactly two indices in common withc0, by definition. If | c0 ∩ c3 |= 2, w.l.o.g. consideri0 = i3, j0 = j3 and

k0 6= k3, l0 6= l3. By definition,Q(c0) contains two elements, namelycs = (is, j0, k0, l0) andct = (i0, jt, k0, l0) such that

i0 6= is andj0 6= jt. But then| c3 ∩ cs |=| c3 ∩ ct |= 1, thus the graph with node setQ(c0) ∪ {c3} is not complete. So

Q(c0) is maximal.

The setQ(c0) includes nodec0 = (i0, j0, k0, l0) and all nodes with exactly one index different fromc0. So| Q(c0) |=

4(n− 1) + 1 = 4n− 3.
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There aren4 elements belonging to the setC, each of which can play the role ofc0. Therefore, there aren4 cliques of

this type.

Proposition 3.6. Let c, s ∈ C such that| c ∩ s |= 1. Then the setQ(c, s) = {c} ∪ {t ∈ C :| c ∩ t |= 2, | s ∩ t |= 3}

induces a 4-clique inGA(C,EC).

Proof. W.l.o.g. let c = c0 = (i0, j0, k0, l0) and s = (i0, j1, k1, l1). We can uniquely define three elementst1 =

(i0, j0, k1, l1), t2 = (i0, j1, k0, l1), t3 = (i0, j1, k1, l0), satisfying| c ∩ ti |= 2 and | s ∩ ti |= 3 for i = 1, 2, 3. It

is obvious that the node set{c, t1, t2, t3} induces a complete subgraph ofGA(C, EC). To show that it is also maximal,

considerc2 = {i2, j2, k2, l2} ∈ C \ Q(c, s). If i2 6= i0 then for an edge(c, c2) to exist inGA(C, EC) we must have

| c ∩ c2 |≥ 2, which implies that| c2 ∩ ti |≤ 1 for i = 1, 2, 3. ThereforeQ(c, s) cannot be extended to includec2, since

the resulting graph is not complete. Ifi2 = i0 eitherc2 has another element common withc and the remaining two withs,

in which case it coincides with one of theti’s, or it has three elements in common withc and one withs. In the latter case,

w.l.o.g. letj2 = j0 andk2 = k1. Then we have| c2 ∩ t2 |= 1. Hence, in this case as wellQ(c, s) cannot be extended.

Therefore the subgraph induced byQ(c, s) is complete and maximal.

Concerning the cardinality of the set of cliques of this type, every ordered pair(c, s) such that| c ∩ s |= 1 can be used

to create a clique of this type. Considering that| C |= n4 and that for eachc ∈ C there are4(n− 1)3 possibles such that

| c ∩ s |= 1, the number of such ordered pairs is4n4(n − 1)3. Note, however, that the4-cliqueQ(c, s) = (c, t1, t2, t3) is

also generated asQ(ci, si) for i = 1, 2, 3 where

c1 = t1 = (i0, j0, k1, l1) ands1 = (i0, j1, k0, l0),

c2 = t2 = (i0, j1, k0, l1) ands2 = (i0, j0, k1, l0),

c3 = t3 = (i0, j1, k1, l0) ands3 = (i0, j0, k0, l1).

Proposition 3.7. Q(c, s) = Q(ci, si), i = 1, 2, 3

It is also obvious that the4-cliqueQ(c, s) = (c, t1, t2, t3) cannot arise from any other choice ofc ands.

Corollary 3.8. The number of distinct 4-cliques isn4(n− 1)3.

Proof. Each 4-clique arises from four different ordered pairs ofC and there exist4n4(n− 1)3 such pairs.

Cliques described in Propositions 3.4, 3.5 and 3.6 will be called cliques of type I, II and III respectively. Next we will

show that these are the only types of cliques inGA(C,EC).
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Theorem 3.9. The cliques of type I, II and III are the only cliques inGA(C, EC).

Proof. Let Q be the node set of a clique inGA(C, EC). Let c = (i0, j0, k0, l0) ∈ Q. Every otherq ∈ Q must have at least

two indices in common withc. So there has to be aqs ∈ Q such that| c∩ qs |= 2. W.l.o.g. letqs = (i0, j0, k1, l1). If every

other element ofQ has the same valuesi0, j0 for the first two indices thenQ is a node set of a clique of type I. If not, then

there exists aqt = (it, jt, kt, lt) ∈ Q which must satisfy the following relationships:

(i) Either it = i0 or jt = j0. If both it 6= i0 andjt 6= j0 thenkt = k0 andlt = l0 in order forqt to be connected toc.

But then| qs ∩ qt |= 0, which means thatQ does not induce a clique.

(ii) Either kt = k0 andlt = l1 or kt = k1 andlt = l0 then, together with (i),| c ∩ qt |= 1 while if kt = k0 andlt = l0

then| qs ∩ qt |= 1. In both casesQ does not induce a clique.

W.l.o.g. assume thatqt = (i0, j1, k0, l1). If (i0, j1, k1, l0) ∈ Q thenQ ≡ Q(c, (i0, j1, k1, l1)), in which caseQ is a node

set of a clique of type III. If(i0, j1, k1, l0) /∈ Q then there is aqr ∈ Q such that| qr ∩ (i0, j1, k1, l0) |≤ 1, | qr ∩ c |≥ 2,

| qr ∩ qs |≥ 2 and| qr ∩ qt |≥ 2. Then one can check by enumeration of case that every suchqr must have at least three

indices in common with(i0, j0, k0, l1), in which caseQ ≡ Q(i0, j0, k0, l1) i.e. Q induces a clique of type II.

Corollary 3.10. The total number of cliques inGA(C, EC) is n4((n− 1)3 + 1) + 6n2.

Proof. As shown above, there are6n2, n4, andn4(n− 1)3 cliques of type I, II and III respectively.

4 Facets induced by clique inequalities

We briefly summarize some basic concepts and definitions of polyhedral theory (for a short but succinct presentation of this

theory see [12, 16]). Apolyhedronis the intersection of a finite set of half spaces. Apolytopeis a bounded polyhedron. A

polytopeP is of dimensionn, denoted as dim(P ) = n, if it containsn + 1 affinely independent points. By convention, if

P = ∅ then dim(P ) = −1. If P = {x ∈ Rn : B
=

x = b
=

, B
≤

x ≤ b
≤
} then dim(P ) = n − rank(B

=
). HereB

=
and

B
≤

denote the matrix of co-efficients of equality and less than or equal to type inequality constraints respectively, while

b
=

andb
≤

denote the corresponding right-hand side vectors for the linear system definingP . An inequalityax ≤ a0 is

calledvalid for P if it is satisfied by allx ∈ P . It is calledsupportingif it is valid and there exist somêx ∈ P satisfying

ax̂ = a0. The set of points which satisfyax ≤ a0 as equality (F = {x ∈ P : ax = a0}) is called afaceof P . A face

F of a polytopeP is said to beimproper if ax = a0 for all x ∈ P . A proper, non-empty faceF of P is called afacet if

dim(F ) = dim(P ) − 1. Facets are important since they provide a minimal inequality representation of a polyhedron. Our
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main interest here is in the facets of the convex hullPI of integer points inPL defined in Section 2. Conditions(c) and(d)

of the following theorem usually provide the two basic tools for proving that a given inequalityax ≤ a0 induces a facet.

Theorem 4.1. (see [16, Theorem 3.16], [12, Theorem1])

Let P ⊆ Rn be a polyhedron and assume thatB is a real valuedm × n matrix andb ∈ Rm such thatP = {x ∈

Rn : B
=

x = b
=

, B
≤

x ≤ b
≤
} whereB = (B

=
, B

≤
)T andb = (b

=
, b

≤
)T . LetF be a non-empty face ofP , then the

following statements are equivalent:

(a) F is a facet ofP .

(b) F is a maximal proper face ofP .

(c) dim(F ) = dim(P )− 1.

(d) There exists an inequalityax ≤ a0 valid with respect toP with the following three properties:

(i) F = {x ∈ P : ax = a0}.

(ii) There exists̄x ∈ P with ax̄ < a0, i.e. the inequality is proper

(iii) If any other inequalitydx ≤ d0, valid with respect toP satisfiesF = {x ∈ P : dx = d0}, then(d, d0) can be

expressed as a linear (affine) combination of(B
=

, b
=

) and(a, a0).

In this paper, we will use(d) to prove that cliques of type II and III induce facets ofPI . The dimension ofPI will also

be established through the same approach. The same technique has been used for proving facet-defining inequalities and

the dimension of the3AAPn, and3PAPn polytopes in [3] and [10] respectively.

First, we discuss some properties ofP̃I . In [15] it is shown that for the general packing polytope(PSP ) the cliques of

the underlying intersection graph induce facet-defining inequalities. However, no similar result has been proven forPSPP .

Since theOLSpacking polytopeP̃I is a special case ofPSP , the inequalities
∑

{xq : q ∈ Q} ≤ 1, whereQ is the node set

of a clique ofGA(C, EC), define facets of the polytopẽPI . Other properties of̃PI arising from its relation toPSP are:

(i) P̃I is full-dimensional, i.e.dim(P̃I) = n4. Then4 + 1 independent points of̃PI are the zero vector and all then4

unit vectors.

(ii) P̃I is down monotone, i.e.x ∈ P̃I ⇒ y ∈ P̃I for all y such that0 ≤ y ≤ x.

(iii) The non-negativity constraintsxijkl ≥ 0 define facets of̃PI .

Although we know quite a few things about the facial structure ofP̃I , the same cannot be said with respect toPI . Since

PI is a face ofP̃I we know thatdim(PI) ≤ dim(P̃I). However, the structure ofPI presents irregularities that do not appear

in P̃I . For example, we know thatPI = ∅ for n = 2 andn = 6. P 2
I = ∅ can be easily verified since there are only two latin
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squares forn = 2. As stated previously,P 6
I = ∅ was proven in [18]. Fortunately,Pn

I 6= ∅ for n 6= 2, 6 as shown in [6] (see

also [13, Theorem 2.9]). Before establishing the dimensionPI we prove the dimension ofPL.

Theorem 4.2. The rank of the systemAx = e is 6n2 − 8n + 3

Proof. Order then4 columns of the A matrix, denoted byxijkl, so that indicesk, j, i andl vary in that order. Forn = 2,

the order of the column indices is:

(1, 1, 1, 1), (1, 1, 2, 1), (1, 2, 1, 1), (1, 2, 2, 1), (2, 1, 1, 1), (2, 1, 2, 1), (2, 2, 1, 1), (2, 2, 2, 1),

(1, 1, 1, 2), (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 2), (2, 1, 1, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 2)

As to the6n2 rows, we divide them into six sets ofn2 rows each, as defined by equalities (2.1)..(2.6).

Figure 1 illustrates the matrix forn = 2 (each constraint set is separated from the next by a horizontal line).

Figure 1:OLSA matrix forn = 2
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To find the rank of theA matrix, we follow five steps, the last four of which identify a3AAPn substructure, exactly as

at Remark 2.1.

Step I: It is obvious that the sum of all the rows of each set is the same, i.e.
∑

{xijkl : i ∈ I, j ∈ J, k ∈ K, l ∈ L} = n2.

Therefore, any one constraint can be removed from any of the six sets as being linearly dependent. We choose to keep the

row set (2.1) intact and remove the first row of all the remaining sets. Table 2 shows the outcome.
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Table 2:Linearly dependent rows removed at Step I
Row set Rows removed Rows removed for n=2

(2.1) − −
(2.2) n2 + 1 5
(2.3) 2n2 + 1 9
(2.4) 3n2 + 1 13
(2.5) 4n2 + 1 17
(2.6) 5n2 + 1 21

Step II: Consider row sets (2.1), (2.2) and (2.3). Observe that, as noted at Remark 2.1, they formn independent3AAPn

problems, one for each value of the indexl. For l = l0, the corresponding3AAPn involves then3 variablesxijkl0 , for

i, j, k = 1, ..., n, and the3n rows (l0 − 1) · n + t, n2 + (l0 − 1) · n + t, 2n2 + (l0 − 1) · n + t, for t = 1, ..., n. Balas

and Saltzman show in [3] that the rank of a3n × n3 3AAPn matrix is 3n − 2. So, we can remove up to2 rows from

each of then 3AAPn problems. Note that, having removed rowsn2 + 1, 2n2 + 1 at Step I, forl0 = 1, the corresponding

3AAPn includes no linearly dependent rows. For the remainingn − 1 independent3AAPn problems, we can remove the

two linearly dependent rows. We choose to remove rows numberedn2 +(t−1) ·n+1, 2n2 +(t−1) ·n+1, for t = 2, ..., n,

a total of2(n− 1) rows. Table 3 gives a complete list of rows removed so far.

Table 3:Linearly dependent rows removed at Steps I & II
Row set Rows removed Rows removed for n=2

(2.1) − −
(2.2) {n2 + (t− 1) · n + 1, t = 1..n} 5, 7
(2.3) {2n2 + (t− 1) · n + 1, t = 1..n} 9, 11
(2.4) 3n2 + 1 13
(2.5) 4n2 + 1 17
(2.6) 5n2 + 1 21

Step III: Consider row sets (2.1), (2.5) and (2.6). Observe that they formn independent3AAPn problems, one for

each value of the indexk. For k = k0, the corresponding3AAPn involves variablesxijk0l, for i, j, l = 1...n, and rows

k0 + (t − 1) · n, 4n2 + k0 + (t − 1) · n, 5n2 + k0 + (t − 1) · n, for t = 1, ..., n. Again, fork0 = 1, the corresponding

3AAPn includes no linearly dependent rows, since rows4n2 + 1, 5n2 + 1 have already been removed. All the rows of the

remainingn − 1 independent3AAPn problems are present. We choose to remove two linearly dependent rows from each

problem, namely rows4n2 + t, 5n2 + t, for t = 2, ..., n,i.e. 2(n − 1) rows in total. Table 4 gives a complete list of rows

removed so far.

Step IV: Consider row sets (2.3), (2.4) and (2.5). Observe that they formn independent3AAPn problems, one for

each value of the indexj. For j = j0, the corresponding3AAPn involves variablesxij0kl, for i, k, l = 1, ..., n and rows

2n2 + j0 +(t− 1) ·n, 3n2 + j0 +(t− 1) ·n, 4n2 +(j0− 1) ·n + t, for t = 1, ..., n. Forj0 = 1, the corresponding3AAPn

includes no linearly dependent rows, since rows2n2 +1, 4n2 + t, 5n2 + t, for t = 1, ..., n, have already been removed. The
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Table 4:Linearly dependent rows removed at Steps I - III
Row set Rows removed Rows removed for n=2

(2.1) − −
(2.2) {n2 + (t− 1) · n + 1, t = 1..n} 5, 7
(2.3) {2n2 + (t− 1) · n + 1, t = 1..n} 9, 11
(2.4) 3n2 + 1 13
(2.5) 4n2 + 1, {4n2 + t, t = 1..n} 17, 18
(2.6) 5n2 + 1, {5n2 + t, t = 1..n} 21, 22

remainingn − 1 independent3AAPn problems have been left intact. We choose to remove two linearly dependent rows

from each problem, namely rows3n2 + t, 4n2 + (t− 1) · n, for t = 2...n, i.e. 2(n− 1) rows. Table 5 gives a complete list

of rows removed so far.

Table 5:Linearly dependent rows removed at Steps I - IV
Row set Rows removed Rows removed for n=2

(2.1) − −
(2.2) {n2 + (t− 1) · n + 1, t = 1..n} 5, 7
(2.3) {2n2 + (t− 1) · n + 1, t = 1..n} 9, 11
(2.4) 3n2 + 1, {3n2 + t, t = 2..n} 13, 14
(2.5) {4n2 + (t− 1) · n + 1, t = 1..n}, {4n2 + t, t = 2..n} 17, 18, 19
(2.6) 5n2 + 1, {5n2 + t, t = 2..n} 21, 22

Step V: Consider row sets (2.2), (2.4) and (2.6). Observe that they formn independent3AAPn problems one for

each value of the indexi. For i = i0, the corresponding3AAPn involves variablesxi0jkl, for j, k, l = 1, ..., n, and rows

n2 +i0 +(t−1) ·n, 3n2 +(i0−1) ·n+t, 5n2 +(i0−1) ·n+t, for t = 1, ..., n. Again fori0 = 1, the corresponding3AAPn

includes no linearly dependent rows, since rowsn2 + (t − 1) · n + 1, 3n2 + t, for t = 1, ..., n and5n2 + 1 have already

been removed. All the rows of the remainingn − 1 independent3AAPn problems are present. We choose to remove two

linearly dependent rows from each problem, namely rows3n2 + (t− 1) · n, 5n2 + (t− 1) · n, for t = 2, ..., n i.e. 2(n− 1)

rows. Table 6 gives a complete list of rows removed so far.

Table 6:Linearly dependent rows removed at Steps I - V
Row set Rows removed Rows removed for n=2

(2.1) − −
(2.2) {n2 + (t− 1) · n + 1, t = 1..n} 5, 7
(2.3) {2n2 + (t− 1) · n + 1, t = 1..n} 9, 11
(2.4) {3n2 + (t− 1) · n + 1, t = 1..n}, {3n2 + t, t = 2..n} 13, 14, 15
(2.5) {4n2 + (t− 1) · n + 1, t = 1..n}, {4n2 + t, t = 2..n} 17, 18, 19
(2.6) {5n2 + (t− 1) · n + 1, t = 1..n}, {5n2 + t, t = 2..n} 21, 22, 23

In total,4 · 2 · (n− 1) + 5 = 8n− 3 rows have been removed. Therefore,6n2 − 8n + 3 is an upper bound on the rank

of A. We will complete the proof by exhibiting6n2 − 8n + 3 affinely independent columns.

Consider the columns:
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(1, 1, 1, 1), ..., (1, 1, n, 1), ..., (1, 1, 1, n), ...., (1, 1, n, n) (n2columns)

(2, 1, 1, 1), ..., (n, 1, 1, 1), ..., (2, 1, 1, n), ...., (n, 1, 1, n) (n(n− 1) columns)

(1, 2, 1, 1), ..., (1, n, 1, 1), ..., (1, 2, 1, n), ...., (1, n, 1, n) (n(n− 1) columns)

(2, 2, 1, 1), ..., (n, n, 1, 1), ..., (2, 2, 1, n− 1), ...., (n, n, 1, n− 1) ((n− 1)2 columns)

(1, 2, 2, 1), ..., (1, n, n, 1), ..., (1, 2, 2, n− 1), ...., (1, n, n, n− 1) ((n− 1)2 columns)

(2, 1, 2, 1), ..., (n, 1, n, 1), ..., (2, 1, 2, n− 1), ...., (n, 1, n, n− 1) ((n− 1)2 columns)

The matrix formed by these columns and the6n2 − 8n + 3 remaining rows ofA is upper triangular, with each diagonal

element equal to one.

Corollary 4.3. dim(PL) = n4 − 6n2 + 8n− 3.

We now describe the tools needed to obtain the dimension and the clique facets ofPI .

Unless otherwise stated, we will illustrate a pair ofOLSas points ofPI expressed in terms of four sets of indices, viz.I

for the row set,J for the column set, andK andL for the set of elements of the first and the second latin square respectively.

The elements of all four sets are the integers from1 to n. We will further usek(i, j) (respectivelyl(i, j)) to denote the value

of the cell in rowi, columnj of the first (second) latin square. Thusk(i, j) ∈ K andl(i, j) ∈ L. The following remark

reveals a very useful property of the points ofPI corresponding to a pair ofOLS.

Remark 4.4.Given anOLSstructure andm1,m2 ∈ M , whereM can be any one of the disjointn − setsI, J, K, L then

(inter)changing allm1 values tom2 and allm2 values tom1 yields anotherOLSstructure. These two structures are called

equivalent([8, p. 168]).

If the interchange is carried out for elements of setI (i.e. M = I) we will call it a first index interchange, for elements of

setJ a second index interchange, etc. To facilitate a study of interchanges, we define theinterchangeoperator(↔). Thus, by

settingx∗ = x(i1 ↔ i2)1 we imply that at pointx ∈ PI we apply a first index interchange between rowsi1, i2 ∈ I deriving

pointx∗ ∈ PI . Note that brackets must also have an index for denoting the set of the indices that are interchanged. Notation

without this subscript in cases like(1 ↔ n) becomes ambiguous. It is easy to see thatx(m1 ↔ m2)t = x(m2 ↔ m1)t

andx = x(m1 ↔ m2)t(m1 ↔ m2)t. A series of interchanges at a pointx ∈ P is expressed by using the operator(↔)

as many times as the number of interchanges with priority from left to right. For example,x∗ = x(i1 ↔ i2)1(1 ↔ n)3 is

taken to mean that at pointx we apply a first index interchange betweeni1, i2 ∈ I and then at the derived point we apply a

third index interchange between1, n ∈ K, thus yielding pointx∗.

We additionally define aconditional interchange as the interchange to be performed only when a certain condition is

met. The condition refers to a logical expression consisting of values of an index set, at a given pointx. If this expression

evaluatestrue then the interchange will be applied to pointx. Since we are going to use only conditional interchanges for

which both the logical expression and the interchange refer to elements of the same set we will use a common subscript
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for both. Thus to denote this type of interchange at pointx we will use the expressionx(condition?interchange)t, where

the subscript refers to the index set. For example,x2 = x1(i1 = n?1 ↔ i1)1 implies that ifi1 = n at pointx1 then we

derive pointx2 by applying at pointx1 the first index interchange between1, i1. If i1 6= n thenx2 = x1. As in the previous

case we can have more than one conditional interchange in the same expression. Again priority is considered from left to

right. As we will see shortly, the interchanges will be used extensively for proving the dimension ofPI and facet defining

inequalities.

An additional complication for proving the dimension ofPI comes from the fact that it is not easy to exhibit a pair of

OLSfor every value ofn, i.e. for everyn it is difficult to demonstrate a 0-1 vector feasible w.r.t. constraints (2.1),...,(2.6)

that will have specific variables set to one. In contrast, both for3AAPn and3PAPn such “trivial” points exist. For the

3AAPn the trivial point hasxijk = 1 for i = j = k andxijk = 0 for i 6= j 6= k 6= i. For the3PAPn the trivial solution

is defined w.r.t.k̄ = i + j − 1 mod n, i.e. the trivial point hasxijk̄ = 1 for k0 > 0, xijn = 1 for k0 = 0 and all other

variables set to zero. To overcome this difficulty, in the following lemma we establish, forn ≥ 4 andn 6= 6, the existence

of anOLSstructure with four specific variables set to one.

Lemma 4.5. For n ≥ 4 andn 6= 6 let i0 ∈ I \ {1}, j0 ∈ J \ {1}, k0, k1, k2 ∈ K \ {1} with k2 6= k0, k1, l0, l1 ∈ L \ {1}.

Then there exists a pointx0 ∈ PI with four particular variables taking value one as illustrated in Table 7.

Table 7: Pointx0
1 · · · j0 · · ·

1 1 k1
...
i0 k0 k2
...

1 · · · j0 · · ·
1 1 l1
...
i0 l0 1
...

Proof. Consider an arbitrary pointx ∈ PI as illustrated in Table 8.

Table 8: An arbitrary pointx ∈ PI (Lemma 4.5)
1 · · · j0 · · ·

1 kb kc
...
i0 kd ke
...

1 · · · j0 · · ·
1 lb lc
...
i0 ld le
...

wherekb, kc, kd, ke ∈ K, lb, lc, ld, le ∈ L. Forx to be a validOLSstructure we must havekb 6= kc, kd; ke 6= kc, kd;

lb 6= lc, ld; le 6= lc, ld. We consider two cases:

case 1:kb 6= ke
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Let x∗ = x(kb 6= 1?1 ↔ kb)3(lb 6= 1?1 ↔ lb)4. If le = 1 then we are done, i.e.x∗ is x0 if we denotekd ask0, kc

ask1, lc asl1 andld asl0. If le 6= 1 then leti1 (i1 6= 1) be the row for whichl(i1, j0) = 1 at pointx∗. By labeling

k(i1, 1) ask0, k(i1, j0) ask2, kc ask1, l(i1, 1) asl0 andlc asl1 thenx0 = x∗(i0 ↔ i1)1.

case 2:kb = ke

In this caselb 6= le (orthogonal property). Again we setx∗ = x(kb 6= 1?1 ↔ kb)3(lb 6= 1?1 ↔ lb)4. At point x∗ if

we denotekd ask0, kc ask1, ld asl0, lc asl1 andle asl2 and exchange the roles of setsK andL we have pointx0.

There might be more than one points ofPI with these four variables set to one. However, one point suffices to carry out

the proofs that follow.

SincePI ⊂ PL, dim(PI) ≤ dim(PL). Moreover, dim(PI) < dim(PL) if and only if there exists an equationax = a0

satisfied by allx ∈ PI such that it is not implied by (i.e. cannot be expressed as a linear combination of) the equations

Ax = e. We now show that no such equation exists.

Theorem 4.6. Let n ≥ 4 andn 6= 6, and suppose everyx ∈ Pn
I satisfiesax = a0 for somea ∈ Rn4

, a0 ∈ R. Then there

exist scalarsλ1
kl, λ2

il, λ3
jl, λ4

ij , λ5
jk, λ6

ik, i ∈ I, j ∈ J , k ∈ K, l ∈ L, satisfying

aijkl = λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik (4.1)

a0 =
∑

{λ1
kl : k ∈ K, l ∈ L}+

∑

{λ2
il : i ∈ I, l ∈ L}

+
∑

{λ3
jl : j ∈ J, l ∈ L}+

∑

{λ4
ij : i ∈ I, j ∈ J} (4.2)

+
∑

{λ5
jk : j ∈ J, k ∈ K}+

∑

{λ6
ik : i ∈ I, k ∈ K}

Proof. Define
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λ1
kl = a11kl

λ2
il = ai11l − a111l

λ3
jl = a1j1l − a111l

λ4
ij = aij11 − ai111 − a1j11 + a1111

λ5
jk = a1jk1 − a1j11 − a11k1 + a1111

λ6
ik = ai1k1 − ai111 − a11k1 + a1111

Note that these6n2 scalars are defined in such a way so that exactly8n − 3 of them, corresponding to the dependent

rows of theA matrix, equal zero.

By substituting theλs in equation (4.1) we get:

aijkl = a11kl + ai11l + a1j1l + aij11 + a1jk1 + ai1k1

−2ai111 − 2a1j11 − 2a11k1 − 2a111l + 3a1111 (4.3)

Substitution alone is enough to show that (4.3) is true fora1111 and for all cases where at least two of the indices are

equal to one. For all cases where only one of the indices equals one, equation (4.3) becomes

aijk1 = aij11 + ai1k1 + a1jk1 − ai111 − a1j11 − a11k1 + a1111 (4.4)

aij1l = aij11 + ai11l + a1j1l − ai111 − a1j11 − a111l + a1111 (4.5)

ai1kl = ai1k1 + ai11l + a11kl − ai111 − a11k1 − a111l + a1111 (4.6)

a1jkl = a1jk1 + a1j1l + a11kl − a1j11 − a11k1 − a111l + a1111 (4.7)

Before proving that (4.3) to (4.7) hold, we prove the following proposition.
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Proposition 4.7. For n ≥ 3 andn 6= 6, it can be shown that

ai1j1k(i1,j1)l(i1,j1) + ai1j2k(i1,j2)l(i1,j2) + ai2j1k(i2,j1)l(i2,j1) + ai2j2k(i2,j2)l(i2,j2)

+ai1j1k(i2,j2)l(i2,j2) + ai1j2k(i2,j1)l(i2,j1) + ai2j1k(i1,j2)l(i1,j2) + ai2j2k(i1,j1)l(i1,j1)

= ai1j1k(i2,j1)l(i2,j1) + ai1j2k(i2,j2)l(i2,j2) + ai2j1k(i1,j1)l(i1,j1) + ai2j2k(i1,j2)l(i1,j2)

+ai1j1k(i1,j2)l(i1,j2) + ai1j2k(i1,j1)l(i1,j1) + ai2j1k(i2,j2)l(i2,j2) + ai2j2k(i2,j1)l(i2,j1) (4.8)

for i1, i2 ∈ I, i1 6= i2 andj1, j2 ∈ J , j1 6= j2.

Proof. Let b, c, d, e ∈ K andp, q, r, s ∈ L and an arbitrary pointx ∈ PI as illustrated in Table 9.

Table 9: Pointx (Proposition 4.7)
· · · j1 · · · j2 · · ·

...
i1 b c
...
i2 d e
...

· · · j1 · · · j2 · · ·
...
i1 p q
...
i2 r s
...

Let x′ = x(i1 ↔ i2)1 (Table 10).

Table 10: Pointx′ (Proposition 4.7)
· · · j1 · · · j2 · · ·

...
i1 d e
...
i2 b c
...

· · · j1 · · · j2 · · ·
...
i1 r s
...
i2 p q
...

Let x̄ = x(j1 ↔ j2)2 (Table 11).

Let x̄′ = x̄(i1 ↔ i2)1 (Table 12).

Letkx(is, jt) (lx(is, jt)) denote the value of thek(l) index fori = is, j = jt at pointx. kx′(is, jt), kx̄(is, jt), kx̄′(is, jt)

andlx
′
(is, jt), lx̄(is, jt), lx̄

′
(is, jt) are defined accordingly for pointsx′, x̄ andx̄′.

Sincex, x′ ∈ PI we haveax = ax′. By observing that allaijkl terms for everyi ∈ I \ {i1, i2} are canceled out,
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Table 11: Point̄x(Proposition 4.7)
· · · j1 · · · j2 · · ·

...
i1 c b
...
i2 e d
...

· · · j1 · · · j2 · · ·
...
i1 q p
...
i2 s r
...

Table 12: Point̄x′ (Proposition 4.7)
· · · j1 · · · j2 · · ·

...
i1 e d
...
i2 c b
...

· · · j1 · · · j2 · · ·
...
i1 s r
...
i2 q p
...

ax = ax′ becomes

ai1j1bp + ai1j2cq +
∑

{ai1jkx(i1,j)lx(i1,j) : j ∈ J \ {j1, j2}}

+ ai2j1dr + ai2j2es +
∑

{ai2jkx(i2,j)lx(i2,j) : j ∈ J \ {j1, j2}}

= ai1j1dr + ai1j2es +
∑

{ai1jkx′ (i1,j)lx′ (i1,j) : j ∈ J \ {j1, j2}}

+ ai2j1bp + ai2j2cq +
∑

{ai2jkx′ (i2,j)lx′ (i2,j) : j ∈ J \ {j1, j2}} (4.9)

We observe thatkx(i2, j) = kx′(i1, j), kx(i1, j) = kx′(i2, j) and lx(i2, j) = lx
′
(i1, j), lx(i1, j) = lx

′
(i2, j) for

j ∈ J \ {j1, j2}. Writing (4.9) in terms of pointx, we derive

ai1j1bp + ai1j2cq +
∑

{ai1jkx(i1,j)lx(i1,j) : j ∈ J \ {j1, j2}}

+ ai2j1dr + ai2j2es +
∑

{ai2jkx(i2,j)lx(i2,j) : j ∈ J \ {j1, j2}}

= ai1j1dr + ai1j2es +
∑

{ai1jkx(i2,j)lx(i2,j) : j ∈ J \ {j1, j2}}

+ ai2j1bp + ai2j2cq +
∑

{ai2jkx(i1,j)lx(i1,j) : j ∈ J \ {j1, j2}} (4.10)

Similarly, sincex̄, x̄′ ∈ PI we haveax̄ = ax̄′. Termsaijkl, for everyi ∈ I \ {i1, i2}, are canceled out, soax̄ = ax̄′

becomes
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ai1j1cq + ai1j2bp +
∑

{ai1jkx̄(i1,j)lx̄(i1,j) : j ∈ J \ {j1, j2}}

+ ai2j1es + ai2j2dr +
∑

{ai2jkx̄(i2,j)lx̄(i2,j) : j ∈ J \ {j1, j2}}

= ai1j1es + ai1j2dr +
∑

{ai1jkx̄′ (i1,j)lx̄′ (i1,j) : j ∈ J \ {j1, j2}}

+ ai2j1cq + ai2j2bp +
∑

{ai2jkx̄′ (i2,j)lx̄′ (i2,j) : j ∈ J \ {j1, j2}} (4.11)

We observe thatkx̄(i2, j) = kx̄′(i1, j), kx̄(i1, j) = kx̄′(i2, j) and lx̄(i2, j) = lx̄
′
(i1, j), lx̄(i1, j) = lx̄

′
(i2, j) for

j ∈ J \ {j1, j2}. Writing (4.11) in terms of point̄x, we derive

ai1j1cq + ai1j2bp +
∑

{ai1jkx̄(i1,j)lx̄(i1,j) : j ∈ J \ {j1, j2}}

+ ai2j1es + ai2j2dr +
∑

{ai2jkx̄(i2,j)lx̄(i2,j) : j ∈ J \ {j1, j2}}

= ai1j1es + ai1j2dr +
∑

{ai1jkx̄(i2,j)lx̄(i2,j) : j ∈ J \ {j1, j2}}

+ ai2j1cq + ai2j2bp +
∑

{ai2jkx̄(i1,j)lx̄(i1,j) : j ∈ J \ {j1, j2}} (4.12)

Subtracting (4.10) from (4.12) and observing that fori ∈ {i1, i2} andj ∈ J \ {j1, j2} we havekx(i, j) = kx̄(i, j) and

lx(i, j) = lx̄(i, j), we obtain

ai1j1bp + ai1j2cq + ai2j1dr + ai2j2es − (ai1j1cq + ai1j2bp + ai2j1es + ai2j2dr)

= ai1j1dr + ai1j2es + ai2j1bp + ai2j2cq − (ai1j1es + ai1j2dr + ai2j1cq + ai2j2bp)

If we eliminate the negative sign by moving terms in brackets to the other side of the equation and write the elements of

setsK andL using the notationk(i, j) andl(i, j) respectively, we obtain equation (4.8).

In Proposition 4.7, the role of the setsI, J for the row and column set, respectively, is purely conventional. Any

pair of sets fromI, J,K, L can be used for the role of row/column set. Hence, for the rest of the paper, the notation

x((m1, m2)t1 ; (n1, n2)t2) implies equation (4.8), derived by applying Proposition 4.7 at pointx, for rows m1,m2 and

columnsn1, n2. In this expression, the first pair denotes the rows whereas the second denotes the columns. The subscripts

t1, t2 declare the sets that index the rows and the columns, respectively. Following the same convention as for the inter-

changes,1 is used to denote setI, 2 is used to denote setJ , etc. For example,x((1, i1)1; (1, n)2) denotes equation (4.8)
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written for rows1, i1 and columns1, n at pointx, where elements of the first pair belong to setI and of the second pair to

setJ .

(Back to the proof of Theorem 4.6). We will show (4.3),...,(4.7) fori = i0, j = j0, k = k0, l = l0.

At point x0 of Lemma 4.5 we distinguish two cases, viz.k0 = k1, k0 6= k1.

case 1:k0 = k1

Let x∗1 = x0 (see Table 13). In this casel0 6= l1 (orthogonal property). Forn ≥ 4 there exists (another)k1 ∈

Table 13: Pointx∗1(Theorem 4.6, case 1)
1 · · · j0 · · ·

1 1 k0
...
i0 k0 k2
...

1 · · · j0 · · ·
1 1 l1
...
i0 l0 1
...

K \ {1, k0, k2}. Let x1 = x∗1(k0 ↔ k1)3 (see Table 14).

Table 14: Pointx1(Theorem 4.6, case 1)
1 · · · j0 · · ·

1 1 k1
...
i0 k1 k2
...

1 · · · j0 · · ·
1 1 l1
...
i0 l0 1
...

x1((1, i0)1; (1, j0)2)⇒

a1111 + a1j0k1l1 + ai01k1l0 + ai0j0k21 + a11k21 + a1j0k1l0 + ai01k1l1 + ai0j011

= a11k1l0 + a1j0k21 + ai0111 + ai0j0k1l1 + a11k1l1 + a1j011 + ai01k21 + ai0j0k1l0

Let x2 = x1(1 ↔ k0)3 (see Table 15).

Table 15: Pointx2 (Theorem 4.6, case 1)
1 · · · j0 · · ·

1 k0 k1
...
i0 k1 k2
...

1 · · · j0 · · ·
1 1 l1
...
i0 l0 1
...
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x2((1, i0)1; (1, j0)2)⇒

a11k01 + a1j0k1l1 + ai01k1l0 + ai0j0k21 + a11k21 + a1j0k1l0 + ai01k1l1 + ai0j0k01

= a11k1l0 + a1j0k21 + ai01k01 + ai0j0k1l1 + a11k1l1 + a1j0k01 + ai01k21 + ai0j0k1l0

x2((1, i0)1; (1, j0)2)-x1((1, i0)1; (1, j0)2) yields (4.4).

This completes the proof of case 1 for (4.4). Before proceeding to case 2, we derive a further relationship for case 1

which will be used later on, for proving (4.3).

Let x3 = x1(1 ↔ l0)4 andx4 = x3(1 ↔ k0)3. Pointsx3 andx4 are illustrated in Tables 16, 17 respectively.

Table 16: Pointx3 (Theorem 4.6, case 1)
1 · · · j0 · · ·

1 k0 k1
...
i0 k1 k2
...

1 · · · j0 · · ·
1 l0 l1
...
i0 1 l0
...

Table 17: Pointx4 (Theorem 4.6, case 1)
1 · · · j0 · · ·

1 1 k1
...
i0 k1 k2
...

1 · · · j0 · · ·
1 l0 l1
...
i0 1 l0
...

x3((1, i0)1; (1, j0)2)⇒

a11k0l0 + a1j0k1l1 + ai01k11 + ai0j0k2l0 + a11k2l0 + a1j0k11 + ai01k1l1 + ai0j0k0l0

= a11k11 + a1j0k2l0 + ai01k0l0 + ai0j0k1l1 + a11k1l1 + a1j0k0l0 + ai01k2l0 + ai0j0k11

x4((1, i0)1; (1, j0)2)⇒

a111l0 + a1j0k1l1 + ai01k11 + ai0j0k2l0 + a11k2l0 + a1j0k11 + ai01k1l1 + ai0j01l0

= a11k11 + a1j0k2l0 + ai011l0 + ai0j0k1l1 + a11k1l1 + a1j01l0 + ai01k2l0 + ai0j0k11
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x3((1, i0)1; (1, j0)2)-x4((1, i0)1; (1, j0)2)⇒

ai0j0k0l0 = (ai0j01l0 + ai01k0l0 + a1j0k0l0)− ai011l0 − a1j01l0 − a11k0l0 + a111l0 (4.13)

(4.13) will be used later for proving (4.3).

case 2:k0 6= k1

Let x1 = x0. Thus pointx1 is pointx0 of Lemma 4.5, exactly as illustrated in Table 7.

x1((1, i0)1; (1, j0)2)⇒

a1111 + a1j0k1l1 + ai01k0l0 + ai0j0k21 + a11k21 + a1j0k0l0 + ai01k1l1 + ai0j011

= a11k0l0 + a1j0k21 + ai0111 + ai0j0k1l1 + a11k1l1 + a1j011 + ai01k21 + ai0j0k0l0

Let x2 = x1(1 ↔ k0)3 (see Table 18).

Table 18: Pointx2 (Theorem 4.6, case 2)
1 · · · j0 · · ·

1 k0 k1
...
i0 1 k2
...

1 · · · j0 · · ·
1 1 l1
...
i0 l0 1
...

x2((1, i0)1; (1, j0)2)⇒

a11k01 + a1j0k1l1 + ai01k0l0 + ai0j0k21 + a11k21 + a1j0k0l0 + ai01k1l1 + ai0j0k01

= a111l0 + a1j0k21 + ai01k01 + ai0j0k1l1 + a11k1l1 + a1j0k01 + ai01k21 + ai0j01l0

x1((1, i0)1; (1, j0)2)-x2((1, i0)1; (1, j0)2)⇒

a1111 + a1j0k01 + ai01k01 + ai0j011 − (ai0j0k01 + ai0111 + a1j011 + a11k01)

= ai0j0k0l0 + ai011l0 + a1j01l0 + a11k0l0 − (ai0j01l0 + ai01k0l0 + a1j0k0l0 + a111l0) (4.14)

We refer to equation (4.14) as (4.14)l0 to distinguish it from (4.14) withl1 in the place ofl0 denoted as (4.14)l1 . We

observe that we can derive (4.14)l1 by applying Proposition 4.7 at pointsẋ1 = x1(l1 ↔ l0)4 andẋ2 = x2(l1 ↔ l0)4.
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This is also true for the case wherel(1, j0) = l0 (i.e. l1 = l0) at pointsx0, x1 andx2 since forn ≥ 3 there exists

(another)l1 ∈ L \ {1, l0} such that we can derivėx1, ẋ2. In both cases, (4.14)l0+(4.14)l1⇒

2(a1111 + a1j0k01 + ai01k01 + ai0j011 − (ai0j0k01 + ai0111 + a1j011 + a11k01))

=
∑

{ai0j0k0l + ai011l + a1j01l + a11k0l − (ai0j01l + ai01k0l + a1j0k0l + a111l) : l ∈ {l0, l1}} (4.15)

At point x2 we distinguish two cases viz.l(1, j0) = l0, l(1, j0) = l1 6= l0

case 2.1:l(1, j0) = l0.

For n ≥ 3 we have already establish the existence ofl1 ∈ L \ {1, l0}. Let x3 = x2(1 ↔ l0)4(1 ↔ l1)4

(Table 19) andx4 = x3(1 ↔ k0)3 (Table 20).

Table 19: Pointx3 (Theorem 4.6, case 2.1)
1 · · · j0 · · ·

1 k0 k1
...
i0 1 k2
...

1 · · · j0 · · ·
1 l0 l1
...
i0 l1 l0
...

Table 20: Pointx4 (Theorem 4.6, case 2.1)
1 · · · j0 · · ·

1 1 k1
...
i0 k0 k2
...

1 · · · j0 · · ·
1 l0 l1
...
i0 l1 l0
...

x3((1, i0)1; (1, j0)2)⇒

a11k0l0 + a1j0k1l1 + ai011l1 + ai0j0k2l0 + a11k2l0 + a1j01l1 + ai01k1l1 + ai0j0k0l0

= a111l1 + a1j0k2l0 + ai01k0l0 + ai0j0k1l1 + a11k1l1 + a1j0k0l0 + ai01k2l0 + ai0j01l1

x4((1, i0)1; (1, j0)2)⇒

a111l0 + a1j0k1l1 + ai01k0l1 + ai0j0k2l0 + a11k2l0 + a1j0k0l1 + ai01k1l1 + ai0j01l0

= a11k0l1 + a1j0k2l0 + ai011l0 + ai0j0k1l1 + a11k1l1 + a1j01l0 + ai01k2l0 + ai0j0k0l1
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x4((1, i0)1; (1, j0)2)-x3((1, i0)1; (1, j0)2)⇒

∑

{ai0j0k0l + ai011l + a1j01l + a11k0l − (ai0j01l + ai01k0l + a1j0k0l + a111l) : l ∈ {l0, l1}} = 0 (4.16)

case 2.2:l(1, j0) = l1 6= l0.

Let x3 = x2(1 ↔ l0)4(1 ↔ l1)4 (Table 21) andx4 = x3(1 ↔ k0)3 (Table 22).

Table 21: Pointx3 (Theorem 4.6, case 2.2)
1 · · · j0 · · ·

1 k0 k1
...
i0 1 k2
...

1 · · · j0 · · ·
1 l0 1
...
i0 l1 l0
...

Table 22: Pointx4 (Theorem 4.6, case 2.2)
1 · · · j0 · · ·

1 1 k1
...
i0 k0 k2
...

1 · · · j0 · · ·
1 l0 1
...
i0 l1 l0
...

x3((1, i0)1; (1, j0)2)⇒

a11k0l0 + a1j0k11 + ai011l1 + ai0j0k2l0 + a11k2l0 + a1j01l1 + ai01k11 + ai0j0k0l0

= a111l1 + a1j0k2l0 + ai01k0l0 + ai0j0k11 + a11k11 + a1j0k0l0 + ai01k2l0 + ai0j01l1

x4((1, i0)1; (1, j0)2)⇒

a111l0 + a1j0k11 + ai01k0l1 + ai0j0k2l0 + a11k2l0 + a1j0k0l1 + ai01k11 + ai0j01l0

= a11k0l1 + a1j0k2l0 + ai011l0 + ai0j0k11 + a11k11 + a1j01l0 + ai01k2l0 + ai0j0k0l1

x4((1, i0)1; (1, j0)2)-x3((1, i0)1; (1, j0)2) yields (4.16).

Hence (4.16) is valid for case 2 (both for case 2.1 and 2.2). Substituting the right-hand side of equation (4.15) from

(4.16) yields (4.4).
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Our proof with respect to (4.4) is now complete. Equations (4.5),(4.6) and (4.7) follow by symmetry. To show (4.3) we

consider (4.13). This equation is valid for case 2 as well; the right-hand side of equation (4.14) is equal to0 due to equation

(4.4) thus yielding (4.13). Therefore, if we substitute in equation (4.13) terms in brackets from (4.5), (4.6) and (4.7) we get

(4.3).

Finally, (4.2) is true since forn ≥ 3 and different than6, Pn
I 6= ∅ (see [13, Theorem 2.9]). This implies that there exists

at least one 0-1 vectorx for which (2.1),...,(2.6) are satisfied, thus by multiplying these equations with the corresponding

scalars and summing over all rows we get:

ax =
∑

{λ1
kl : k ∈ K, l ∈ L}+

∑

{λ2
il : i ∈ I, l ∈ L}

+
∑

{λ3
jl : j ∈ J, l ∈ L}+

∑

{λ4
ij : i ∈ I, j ∈ J}

+
∑

{λ5
jk : j ∈ J, k ∈ K}+

∑

{λ6
ik : i ∈ I, k ∈ K}

This completes the proof for generaln. The theorem holds forn ≥ 4 andn 6= 6 since the proof requires four distinct

values for one of the indices (indexk). In particular, we have used values (1, i0) for indexi, (1, j0) for indexj, (1, k0, k1, k2)

for indexk , (1, l0, l1) for indexl . Hence, the result holds forn ≥ 4 andn 6= 6.

Corollary 4.8. For n ≥ 4 andn 6= 6, dim(PI) = n4 − 6n2 + 8n− 3.

Next we will examine which of the constraints definingPL are facet defining forPI .

Proposition 4.9. For n ≥ 4 andn 6= 6 every inequality of the typexc ≥ 0 for c ∈ C defines a facet ofPI .

Proof. For anyc ∈ C consider the polytopeP c
I = {x ∈ PI : xc = 0}. We need to show that dim(P c

I ) = dim(PI) − 1.

Evidently, dim(P c
I ) ≤ n4− 1− rank(Ac) whereAc is the matrix obtained fromA if we remove columnac. It is not hard to

see that the rank ofAc is equal to the rank ofA. This is immediate, if the columnac is not among the columns of the upper

triangular matrix described in Theorem 4.2, otherwise it follows by symmetry. Therefore, dim(P c
I ) ≤ n4 − 6n2 + 8n− 4.

To prove that this bound is attained, we use the same approach as in the proof of Theorem 4.6, i.e. show that any equation

ax = a0 (different thanxc = 0) satisfied for everyx ∈ P c
I is a linear combination ofAcx = e. The proof goes through

essentially unchanged.

Proposition 4.10. For n ≥ 3 andn 6= 6 every inequalityxc ≤ 1 for c ∈ C does not define a facet ofPI

Proof. For anyc ∈ C consider the polytopeP c
I = {x ∈ PI : xc = 1}. We will show that dim(P c

I ) < dim(PI) − 1.

We know that dim(P c
I ) ≤ dim(P c

L) whereP c
L is the linear relaxation ofP c

I . Settingxc to one is equivalent to setting
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the variables belonging to the common constraints withxc to zero. The number of these variables is2(3n − 1)(n − 1)

(Proposition 3.2). Thus, dim(P c
L) = n4 − 2(3n − 1)(n − 1) − rank(Ac

n) whereAc
n is the matrix obtained fromA by

removing the columns corresponding to the variables set to zero. Obviously rank(An−1) ≤ rank(Ac
n) whereAn−1 is the

constraint matrix of theOLSof ordern− 1. By Theorem 4.2 rank(An−1) = 6(n− 1)2 − 8(n− 1) + 3 so

dim(P c
I ) ≤ dim(P c

L) ≤ n4 − 2(3n− 1)(n− 1)− (6(n− 1)2 − 8(n− 1) + 3)

= n4 − 12n2 + 28n− 19

which is less than dim(PI)− 1 = n4 − 6n2 + 8n− 4 for n ≥ 3.

It is easy to see that cliques of type I do not induce facets ofPI . For each of these cliques the coefficient vector of the

corresponding inequality is identical to a row of theA matrix. Thus, each of this inequalities is satisfied as equality by all

x ∈ PI and therefore defines an improper face ofPI .

Next we consider the inequalities induced by cliques of type II.

Theorem 4.11. LetQ(c) denote the node set of a clique of type II. Then forn ≥ 5 andn 6= 6 the inequality

∑

{xq : q ∈ Q(c)} ≤ 1 (4.17)

defines a facet ofPI for everyc ∈ C.

Proof. As usual, we will assume thatn 6= 2, 6. Let PQ(c)
I = {x ∈ PI :

∑

{xq : q ∈ Q(c)} = 1}. We will show thatPQ(c)
I

is a facet ofPI .

First we note that (4.17) is a valid inequality for allx ∈ PI becauseQ(c) is the node set of a clique in the intersection

graphGA(C,EC).

W.l.o.g. letc = (n, n, n, n). Then

Q(n, n, n, n) = {(n, n, n, n), (1, n, n, n), ..., (n− 1, n, n, n), (n, 1, n, n), ..., (n, n− 1, n, n),

(n, n, 1, n), ..., (n, n, n− 1, n), (n, n, n, 1), ..., (n, n, n, n− 1)}

It is easy to show that the facePQ(n,n,n,n)
I is not empty. Clearly for any pointx ∈ PI there existi0 ∈ I andj0 ∈ J

such thatxi0j0nn = 1. Let x∗ = x(i0 6= n?i0 ↔ n)1(j0 6= n?j0 ↔ n)2. Pointx∗ belongs toPQ(n,n,n,n)
I since it has

xnnnn = 1.

Now consider an arbitrary pointx ∈ PQ(n,n,n,n)
I . We will show that there exists at least one point inPI \ PQ(n,n,n,n)

I .
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W.l.o.g. suppose that at pointx we havexnjnn = 1 , j 6= n. Then we apply a first index interchange betweenn and

i for any i ∈ I \ {n}. The resulting point belongs toPI but not toPQ(n,n,n,n)
I . Similarly at pointx xinnn = 1 and

i 6= n or xnnkn = 1 andk 6= n or xnnnl = 1 andl 6= n then a corresponding one index interchange will give a point in

PI \PQ(n,n,n,n)
I . Finally, if at pointx we havexnnnn = 1 then we apply a first index interchange betweenn andi ∈ I \{n}

and then a second index interchange betweenn andj ∈ J \ {n}. The resulting point belongs toPI but not toPQ(n,n,n,n)
I .

ThusPQ(n,n,n,n)
I is a proper face ofPI .

To show thatPQ(n,n,n,n)
I is a facet ofPI we will use the same approach as in Theorem 4.6. Thus we will exhibit6n2

scalarsλ1
kl, λ2

il, λ3
jl, λ4

ij , λ5
jk, λ6

ik for i ∈ I, j ∈ J , k ∈ K, l ∈ L and an additional scalarπ for the clique inequality, such

that if ax = a0 for all x ∈ PQ(n,n,n,n)
I , then

aijkl =











λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik, (i, j, k, l) ∈ C \Q(n, n, n, n)

λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik + π, (i, j, k, l) ∈ Q(n, n, n, n)
(4.18)

and

a0 =
∑

{λ1
kl : k ∈ K, l ∈ L}+

∑

{λ2
il : i ∈ I, l ∈ L}

+
∑

{λ3
jl : j ∈ J, l ∈ L}+

∑

{λ4
ij : i ∈ I, j ∈ J} (4.19)

+
∑

{λ5
jk : j ∈ J, k ∈ K}+

∑

{λ6
ik : i ∈ I, k ∈ K}+ π

Again we define

λ1
kl = a11kl

λ2
il = ai11l − a111l

λ3
jl = a1j1l − a111l

λ4
ij = aij11 − ai111 − a1j11 + a1111

λ5
jk = a1jk1 − a1j11 − a11k1 + a1111

λ6
ik = ai1k1 − ai111 − a11k1 + a1111

Thus for(i, j, k, l) ∈ C \Q(n, n, n, n) we have to show

aijkl = a11kl + ai11l + a1j1l + aij11 + a1jk1 + ai1k1

−2ai111 − 2a1j11 − 2a11k1 − 2a111l + 3a1111 (4.20)
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This is clearly true fora1111 and for all cases where at least two of the indices equal one. When one of the indices equals

one, we denote equation (4.20) as (4.20)m=1 wherem is any ofi, j, k, l. For example equation (4.20)l=1 is:

aijk1 = aij11 + ai1k1 + a1jk1 − ai111 − a1j11 − a11k1 + a1111

For each of the cases to be examined next, when at most one of the indices is equal to one, the proof of (4.20) will be

carried out in a manner analogous to that of Theorem 4.6 except that this time we will exclusively use points belonging

to PQ(n,n,n,n)
I . For any pointx ∈ PI we denote asX the collection of points(x, x′, x̄, x̄′) (notation and derivation of

points fromx as introduced in Proposition 4.7).X ∈ PQ(n,n,n,n)
I implies thatx, x′, x̄, x̄′ ∈ PQ(n,n,n,n)

I . Thus for all of

the following cases, equation (4.20)l=1 is derived explicitly by the application of Proposition 4.7 to pointsxt ∈ Xt where

Xt ∈ PQ(n,n,n,n)
I for t = 1, ..., 4. Equations (4.20)i=1, (4.20)j=1, (4.20)k=1 follow by symmetry. On the other hand, when

none of the indices is equal to one, (4.20) is shown by substituting these equations to an equation, corresponding to (4.13)

of Theorem 4.6, which is derived in the course of proving (4.20)l=1.

The indicesi, j, k, l of aijkl give rise to the cases where none, one or two of them are equal ton. In each of these cases

we make use of the pointxq which is established in Lemma 4.12.

Lemma 4.12. For n ≥ 5 and n 6= 6 let iq ∈ I \ {1, n}, jq ∈ J \ {1, n}, kq, k1, k2 ∈ K \ {1, n} with k2 6= k1, kq,

lq, l1 ∈ L \ {1, n} with lq 6= l1. Then there exists the pointxq ∈ PI as illustrated in Table 23.

Table 23: Pointxq (Lemma 4.12)
1 · · · jq · · ·

1 1 k1
...
iq kq k2
...

1 · · · jq · · ·
1 1 l1
...
iq lq n
...

Proof. Consider theOLSthat has in natural order the elements of the a) first row of the two latin squares and b) the elements

of the first column of one of the two squares . A pair ofOLSwith this property is said to be astandardizedset. IfPI 6= ∅ then

there always exists anOLSstructure of this type ([8, p. 159]). W.l.o.g. assume the elements of the first column of the second

latin square (latin square consisting of the values of setL) to be in natural order. At this point we havek(n, 1) = kq 6= n. Let

j3 ∈ J \ {1} be such thatk(n, j3) = 1. Forn ≥ 5 there existlq ∈ L \ {1, n} andl1 ∈ L \ {1, lq, n} such thatl(1, j1) = lq,

l(1, j2) = l1 andl(n, j2) = lq wherej1, j2 ∈ L\{1, n} with j1 6= j2, j2 6= j3. We denotek(1, j2) ask1 andk(n, j2) ask2.

Note that sincek1, k2 lie in the same column we havek1 6= k2. Combining this withk(1, 1) = 1, k(1, n) = n, we obtain

thatk1 ∈ K \ {1, k2, n}. In a similar manner, becausek(n, 1) = kq, k(n, j3) = 1 andj3 6= j2, k1 6= k2 we derive that

k2 ∈ K \ {1, k1, kq}. We apply a fourth index interchange betweenlq andn. The resulting point namelyx∗q is illustrated in

28



Table 24. Ifk(n, j2) = n then forn ≥ 5 there existsk2 ∈ K \ {1, k1, kq, n}. Let x∗∗q = x∗q(k(n, j2) = n?k2 ↔ n)3. If at

Table 24: Pointx∗q(Lemma 4.12)
1 · · · j1 · · · j2 · · · n

1 1 k1 n
...
iq
...
n kq

1 · · · j1 · · · j2 · · · n
1 1 n l1 lq
...
iq
...
n lq n

pointx∗q k(n, j2) 6= n then we denotek(n, j2) ask2. In any case at pointx∗∗q we havek(n, j2) = k2 ∈ K \ {1, k1, kq, n}.

Let iq ∈ I \ {1, n} andjq ∈ J \ {1, n}. Thenxq = x∗∗q (iq ↔ n)1(jq 6= j2?jq ↔ j2)2.

(Back to the proof of Theorem 4.11). Now we are ready to examine each case separately.

case 1: None of the indices is equal ton.

W.l.o.g. leti = iq 6= n, j = jq 6= n, k = kq 6= n, l = lq 6= n. Thus we must prove

aiqjqkqlq = a11kqlq + aiq11lq + a1jq1lq + aiqjq11 + a1jqkq1 + aiq1kq1

−2aiq111 − 2a1jq11 − 2a11kq1 − 2a111lq + 3a1111 (4.21)

At point xq of Lemma 4.12 we distinguish two cases, viz.kq = k1, kq 6= k1.

case 1.1:kq = k1.

Let x∗q = xq(kq ↔ n)3 (Table 25). At pointx∗q , sincek(1, jq) = n andk(iq, 1) = n there existi1 ∈ I \ {1, iq}

and j1 ∈ J \ {1, jq} such thatxi1j1nn = 1. Let x1 = x∗q(i1 6= n?i1 ↔ n)1(j1 6= n?j1 ↔ n)2. Then

X1 ∈ PQ(n,n,n,n)
I (xnnnn = 1). Let x2 = x1(1 ↔ kq)3 (Table 26). AgainX2 ∈ PQ(n,n,n,n)

I (xnnnn = 1).

Table 25: Pointx∗q(Theorem 4.11, case 1.1)
1 · · · jq · · ·

1 1 n
...
iq n k2
...

1 · · · jq · · ·
1 1 l1
...
iq lq n
...
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Table 26: Pointx2. (Theorem 4.11, case 1.1)
1 · · · jq · · · n

1 kq n
...
iq n k2
...
n n

1 · · · jq · · · n
1 1 l1
...
iq lq n
...
n n

x1((1, iq)1; (1, jq)2)⇒

a1111 + a1jqnl1 + aiq1nlq + aiqjqk2n + a11k2n + a1jqnlq + aiq1nl1 + aiqjq11

= a11nlq + a1jqk2n + aiq111 + aiqjqnl1 + a11nl1 + a1jq11 + aiq1k2n + aiqjqnlq

x2((1, iq)1; (1, jq)2)⇒

a11kq1 + a1jqnl1 + aiq1nlq + aiqjqk2n + a11k2n + a1jqnlq + aiq1nl1 + aiqjqkq1

= a11nlq + a1jqk2n + aiq1kq1 + aiqjqnl1 + a11nl1 + a1jqkq1 + aiq1k2n + aiqjqnlq

x1((1, iq)1; (1, jq)2)-x2((1, iq)1; (1, jq)2) yields (4.21)lq=1. To show (4.21) consider the pointsx3 = x2(1 ↔

lq)4 andx4 = x1(1 ↔ lq)4. X3, X4 ∈ PQ(n,n,n,n)
I (xnnnn = 1). Pointsx3, x4 are illustrated in Table 27 and

28 respectively.

Table 27: Pointx3. (Theorem 4.11, case 1.1)
1 · · · jq · · · n

1 kq n
...
iq n k2
...
n n

1 · · · jq · · · n
1 lq l1
...
iq 1 n
...
n n

x3((1, iq)1; (1, jq)2)⇒

a11kqlq + a1jqnl1 + aiq1n1 + aiqjqk2n + a11k2n + a1jqn1 + aiq1nl1 + aiqjqkqlq

= a11n1 + a1jqk2n + aiq1kqlq + aiqjqnl1 + a11nl1 + a1jqkqlq + aiq1k2n + aiqjqn1
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Table 28: Pointx4. (Theorem 4.11, case 1.1)
1 · · · jq · · · n

1 1 n
...
iq n k2
...
n n

1 · · · jq · · · n
1 lq l1
...
iq 1 n
...
n n

x4((1, iq)1; (1, jq)2)⇒

a111lq + a1jqnl1 + aiq1n1 + aiqjqk2n + a11k2n + a1jqn1 + aiq1nl1 + aiqjq1lq

= a11n1 + a1jqk2n + aiq11lq + aiqjqnl1 + a11nl1 + a1jq1lq + aiq1k2n + aiqjqn1

x3((1, iq)1; (1, jq)2)-x4((1, iq)1; (1, jq)2)⇒

aiqjqkqlq = a111lq − a11kqlq − a1jq1lq − aiq11lq + (aiqjq1lq + aiq1kqlq + a1jqkqlq ) (4.22)

(4.22) will be used to derive (4.21).

case 1.2:kq 6= k1.

Let x∗q = xq(kq ↔ n)3(l1 ↔ n)4. At point x∗qbecausek(iq, 1) = n andl(1, jq) = n there existi1 ∈ I \ {1, iq}

and j1 ∈ J \ {1, jq} such thatxi1j1nn = 1. Let x1 = x∗q(i1 6= n?i1 ↔ n)1(j1 6= n?j1 ↔ n)2. Let

x2 = x1(1 ↔ kq)3. X1, X2 ∈ PQ(n,n,n,n)
I (xnnnn = 1). The pointsx1, x2 are illustrated in Table 29 and 30

respectively.

Table 29: Pointx1. (Theorem 4.11, case 1.2)
1 · · · jq · · · n

1 1 k1
...
iq n k2
...
n n

1 · · · jq · · · n
1 1 n
...
iq lq l1
...
n n

x1((1, iq)1; (1, jq)2)⇒

a1111 + a1jqk1n + aiq1nlq + aiqjqk2l1 + a11k2l1 + a1jqnlq + aiq1k1n + aiqjq11

= a11k1n + a1jq11 + aiq1k2l1 + aiqjqnlq + a11nlq + a1jqk2l1 + aiq111 + aiqjqk1n
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Table 30: Pointx2. (Theorem 4.11, case 1.2)
1 · · · jq · · · n

1 kq k1
...
iq n k2
...
n n

1 · · · jq · · · n
1 1 n
...
iq lq l1
...
n n

x2((1, iq)1; (1, jq)2)⇒

a11kq1 + a1jqk1n + aiq1nlq + aiqjqk2l1 + a11k2l1 + a1jqnlq + aiq1k1n + aiqjqkq1

= a11k1n + a1jqkq1 + aiq1k2l1 + aiqjqnlq + a11nlq + a1jqk2l1 + aiq1kq1 + aiqjqk1n

x1((1, iq)1; (1, jq)2)-x2((1, iq)1; (1, jq)2) yields (4.21)lq=1.

Let x3 = x2(1 ↔ lq)4 andx4 = x1(1 ↔ lq)4 (see Table 31 and 32 respectively).X3, X4 ∈ PQ(n,n,n,n)
I

(xnnnn = 1).

Table 31: Pointx3. (Theorem 4.11, case 1.2)
1 · · · jq · · · n

1 kq k1
...
iq n k2
...
n n

1 · · · jq · · · n
1 lq n
...
iq 1 l1
...
n n

Table 32: Pointx4. (Theorem 4.11, case 1.2)
1 · · · jq · · · n

1 1 k1
...
iq n k2
...
n n

1 · · · jq · · · n
1 lq n
...
iq 1 l1
...
n n

x3((1, iq)1; (1, jq)2)⇒

a11kqlq + a1jqk1n + aiq1n1 + aiqjqk2l1 + a11k2l1 + a1jqn1 + aiq1k1n + aiqjqkqlq

= a11k1n + a1jqkqlq + aiq1k2l1 + aiqjqn1 + a11n1 + a1jqk2l1 + aiq1kqlq + aiqjqk1n
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x4((1, iq)1; (1, jq)2)⇒

a111lq + a1jqk1n + aiq1n1 + aiqjqk2l1 + a11k2l1 + a1jqn1 + aiq1k1n + aiqjq1lq

= a11k1n + a1jq1lq + aiq1k2l1 + aiqjqn1 + a11n1 + a1jqk2l1 + aiq11lq + aiqjqk1n

x3((1, iq)1; (1, jq)2)-x4((1, iq)1; (1, jq)2) yields equation (4.22).

For all cases examined we have derived (4.21)lq=1 explicitly, as well as equation (4.22). It is easy to see that equations

(4.21)iq=1, (4.21)jq=1, (4.21)kq=1 follow by symmetry for all these cases. Substituting in equation (4.22) terms in

brackets from (4.21)iq=1, (4.21)jq=1, (4.21)kq=1 yields equation (4.21).

case 2: One of the indices is equal ton.

W.l.o.g. assumei = iq 6= n, j = jq 6= n, k = n, l = lq 6= n. Equation (4.20) becomes

aiqjqnlq = a11nlq + aiq11lq + a1jq1lq + aiqjq11 + a1jqn1 + aiq1n1

−2aiq111 − 2a1jq11 − 2a11n1 − 2a111lq + 3a1111 (4.23)

As in the previous case, first we show explicitly (4.23)lq=1. At point xq of Lemma 4.12 we apply a third index

interchange betweenkq andn. At the derived point, namelyx2
q (Table 33), we distinguish two cases, viz.k(1, jq) = n,

k(1, jq) = k1 6= n. The first case can occur ifkq = k1 at pointxq of Lemma 4.12.

Table 33: Pointx2
q (Theorem 4.11, case 2)

1 · · · jq · · ·
1 1 k(1, jq)
...
iq n k2
...

1 · · · jq · · ·
1 1 l1
...
iq lq n
...

case 2.1:k(1, jq) = n.

Pointx2
q is the pointx∗q of case 1.1. Therefore we can derive pointx1 as in case 1.1. This implies that we have

the sameX1 collection and the samex1(1, iq; 1, jq) equation both for this case and case 1.1.

Let x∗2 = x1(1 ↔ n)3 . At this point becausek(1, 1) = n andl(iq, jq) = n there existi1 ∈ I \ {1, iq} and

j1 ∈ \{1, jq} such thatxi1j1nn = 1. Let x2 = x∗2(i1 6= n?i1 ↔ n)1(j1 6= n?j1 ↔ n)2 (Table 34). Then

X2 ∈ PQ(n,n,n,n)
I (xnnnn = 1).
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Table 34: Pointx2 (Theorem 4.11, case 2.1 )
1 · · · jq · · · n

1 n 1
...
iq 1 k2
...
n n

1 · · · jq · · · n
1 1 l1
...
iq lq n
...
n n

x2((1, iq)1; (1, jq)2)⇒

a11n1 + a1jq1l1 + aiq11lq + aiqjqk2n + a11k2n + a1jq1lq + aiq11l1 + aiqjqn1

= a111lq + a1jqk2n + aiq1n1 + aiqjq1l1 + a111l1 + a1jqn1 + aiq1k2n + aiqjq1lq

x1((1, iq)1; (1, jq)2)-x2((1, iq)1; (1, jq)2)⇒

a1111 + aiqjq11 + a1jqn1 + aiq1n1 − (aiqjqn1 + aiq111 + a1jq11 + a11n1)

=
∑

{aiqjqnl + a11nl + a1jq1l + aiq11l − (aiqjq1l + a111l + a1jqnl + aiq1nl) : l ∈ {lq, l1}} (4.24)

For n ≥ 5 there existsl2 ∈ L \ {1, l1, lq, n} such that we can derive two additional equations of the type

(4.24); one by substituting(lq, l1) by (l1, l2) and the other by substituting(lq, l1) by (l2, lq) at pointsx1, x2. By

summing these two equations and (4.24) we get

3[a1111 + aiqjq11 + a1jqn1 + aiq1n1 − (aiqjqn1 + aiq111 + a1jq11 + a11n1)]

= 2
∑

{aiqjqnl + a11nl + a1jq1l + aiq11l − (aiqjq1l + a111l + a1jqnl + aiq1nl) : l ∈ {lq, l1, l2}} (4.25)

Let x3 = x2(1 ↔ l2)4 (Table 35) andx4 = x1(1 ↔ l2)4 (Table 36).X3, X4 ∈ PQ(n,n,n,n)
I (xnnnn = 1).

Table 35: Pointx3 (Theorem 4.11, case 2.1 )
1 · · · jq · · · n

1 n 1
...
iq 1 k2
...
n n

1 · · · jq · · · n
1 l2 l1
...
iq lq n
...
n n

x3((1, iq)1; (1, jq)2)-x4((1, iq)1; (1, jq)2) yields the right-hand side of (4.25) to zero proving thus (4.23)lq=1.
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Table 36: Pointx4 (Theorem 4.11, case 2.1 )
1 · · · jq · · · n

1 1 n
...
iq n k2
...
n n

1 · · · jq · · · n
1 l2 l1
...
iq lq n
...
n n

Now consider the equation (4.24) derived for(l1, l2) instead of(lq, l1). Multiply by 2 and subtract from (4.25).

The left-hand side of the derived equation is equal to zero (due to (4.23)lq=1) yielding

aiqjqnlq = (aiqjq1lq + a1jqnlq + aiq1nlq ) + a111lq − a11nlq − a1jq1lq − aiq11lq (4.26)

We will show that equation (4.26) is valid for all sub-cases of case 2.2, as well.

case 2.2:k(1, jq) = k1 6= n.

We investigate the location of pair(n, n) ∈ K × L at pointx2
q. That is, we examine variablexi2j2nn = 1 for

all feasible values ofi2, j2. Clearly i2 ∈ I \ {iq} sincek(iq,1) = n and l(iq, 1) = lq 6= n (by definition).

For the same reasonj2 6= 1. Additionally j2 6= jq sincel(iq, jq) = n andk(iq, jq) = k2 6= n. Therefore

j2 ∈ J \ {1, jq}. We distinguish two cases w.r.t. indexi2 of xi2j2nn = 1 viz. i2 6= 1, i2 = 1.

case 2.2.1:i2 6= 1.

Let x1 = x2
q(i2 6= n?i2 ↔ n)1(j2 6= n?j2 ↔ n)2. X1 ∈ PQ(n,n,n,n)

I (xnnnn = 1). Letx∗2 = x1(1 ↔ n)3.

At this point sincek(1, 1) = n and l(iq, jq) = n there existi1 ∈ I \ {1, iq} andj1 ∈ J \ {1, jq} such

that xi1j1nn = 1. Let x2 = x∗2(i1 6= n?i1 ↔ n)1(j1 6= n?j1 ↔ n)2 (Table 37). X2 ∈ PQ(n,n,n,n)
I

(xnnnn = 1).

Table 37: Pointx2. (Theorem 4.11, case 2.2.1)
1 · · · jq · · · n

1 n k1
...
iq 1 k2
...
n n

1 · · · jq · · · n
1 1 l1
...
iq lq n
...
n n
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x1((1, iq)1; (1, jq)2)⇒

a1111 + a1jqk1l1 + aiq1nlq + aiqjqk2n + a11k2n + a1jqnlq + aiq1k1l1 + aiqjq11

= a11k1l1 + a1jq11 + aiq1k2n + aiqjqnlq + a11nlq + a1jqk2n + aiq111 + aiqjqk1l1

x2((1, iq)1; (1, jq)2)⇒

a11n1 + a1jqk1l1 + aiq11lq + aiqjqk2n + a11k2n + a1jq1lq + aiq1k1l1 + aiqjqn1

= a11k1l1 + a1jqn1 + aiq1k2n + aiqjq1lq + a111lq + a1jqk2n + aiq1n1 + aiqjqk1l1

x1((1, iq)1; (1, jq)2)-x2((1, iq)1; (1, jq)2)⇒

a1111 + aiqjq11 + aiq1n1 + a1jqn1 − (aiqjqn1 + aiq111 + a1jq11 + a11n1)

= aiqjqnlq + a11nlq + aiq11lq + a1jq1lq − a111lq − (aiqjq1lq + aiq1nlq + a1jqnlq ) (4.27)

We derive pointsẋ1 = x1(lq ↔ l1)4 and ẋ2 = x2(lq ↔ l1)4. Ẋ1, Ẋ2 ∈ PQ(n,n,n,n)
I (xnnnn = 1).

ẋ1((1, iq)1; (1, jq)2)-ẋ2((1, iq)1; (1, jq)2) yields equation (4.27) withl1 in the place oflq. By adding this

equation to (4.27) we get

2[a1111 + aiqjq11 + aiq1n1 + a1jqn1 − (aiqjqn1 + aiq111 + a1jq11 + a11n1)]

=
∑

{aiqjqnl + a11nl + aiq11l + a1jq1l − a111l − (aiqjq1l + aiq1nl + a1jqnl) : l ∈ {lq, l1}} (4.28)

Let x3 = x2(1 ↔ l1)4 andx4 = x1(1 ↔ l1)4. X3, X4 ∈ PQ(n,n,n,n)
I (xnnnn = 1). x3((1, iq)1; (1, jq)2)-

x4((1, iq)1; (1, jq)2) yields the right-hand side of (4.28) to zero thus implying (4.23)lq=1. Substituting term

aiqjqn1 from (4.23)lq=1 to (4.27) yields equation (4.26).

case 2.2.2:i2 = 1.

Let x1 = x2
q(j2 6= n?j2 ↔ n)2. X1 ∈ PQ(n,n,n,n)

I (x1nnn = 1). Point x2 is derived from pointx1

exactly as in case 2.2.1.X2 ∈ PQ(n,n,n,n)
I (xnnnn = 1). The rest of the points are derived fromx1

andx2 exactly as in the previous case. The only difference is that collections derived fromx1 belong to

PQ(n,n,n,n)
I because they havex1nnn = 1 for all of their points. The equations of the previous case apply

throughout this case as well.

Thus, for case 2 we have shown (4.23)lq=1 and (4.26). Cases (4.23)iq=1 and (4.23)jq=1 follow by symmetry. Substi-

tuting in (4.26) terms in brackets from (4.23)iq=1, (4.23)jq=1 and (4.21)kq=1 yields equation (4.23).

36



By reversing the roles of the sets, w.r.t. the row set, the column set and the set of the elements of the first and the

second latin square of anOLSstructure, we can show equation (4.20) with any other index being equal ton.

case 3: Two of the indices are equal ton.

W.l.o.g. assumei = iq 6= n, j = n, k = n, l = lq 6= n. Equation (4.20) becomes

aiqnnlq = a11nlq + aiq11lq + a1n1lq + aiqn11 + a1nn1 + aiq1n1

−2aiq111 − 2a1n11 − 2a11n1 − 2a111lq + 3a1111 (4.29)

As in the previous case, first we show explicitly (4.29)lq=1. At point x2
q of the previous case we apply a second index

interchange betweenjq andn. At the derived point, namelyx3
q (Table 38), we distinguish two cases, viz.k(1, n) = n,

k(1, n) = k1 6= n.

Table 38: Pointx3
q (Theorem 4.11, case 3)

1 · · · n
1 1 k(1, n)
...
iq n k2
...

1 · · · n
1 1 l1
...
iq lq n
...

case 3.1:k(1, n) = n.

At pointx3
q there existi1 ∈ I\{1, iq} andj1 ∈ J\{1, n} such thatxi1j1nn = 1. Letx1 = x3

2(i1 6= n?i1 ↔ n)1.

ClearlyX1 ∈ PQ(n,n,n,n)
I (xnj1nn = 1). Let x∗2 = x1(1 ↔ n)3. At point x∗2 there existi2 ∈ I \ {1, iq} and

j2 ∈ J \ {1, n} such thatxi2j2nn = 1. Therefore letx2 = x2(i2 6= n?i2 ↔ n)1. ClearlyX2 ∈ PQ(n,n,n,n)
I

(xnj2nn = 1). Pointx2 is illustrated at Table 39. Note thatj2 6= j1.

Table 39: Pointx2 (Theorem 4.11, case 3.1)
1 · · · j2 · · · n

1 n 1
...
iq 1 k2
...
n n

1 · · · j2 · · · n
1 1 l1
...
iq lq n
...
n n

The rest of the points are derived fromx1 andx2 exactly as in case 2.1 (same interchanges). The points and the

relatedX collections derived fromx1 belong toPQ(n,n,n,n)
I since they havexnj1nn = 1 whereas those derived
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from x2 belong toPQ(n,n,n,n)
I since they havexnj2nn = 1. All equations of case 2.1, withn in the place ofjq,

are derived in a similar manner for this case as well. Therefore, we prove (4.29)lq=1 which is (4.23)lq=1 with n

replaced byjq and derive the equation corresponding to (4.26):

aiqnnlq = (aiqn1lq + a1nnlq + aiq1nlq ) + a111lq − a11nlq − a1n1lq − aiq11lq (4.30)

We will show that (4.30) is valid for the following sub-cases.

case 3.2:k(1, n) = k1 6= n.

Let x∗1 = x3
q(k1 ↔ n)3(l1 ↔ lq)4 (Table 40). At this point sincek(1, n) = n, l(1, n) = lq 6= n and

Table 40: Pointx∗1 (Theorem 4.11, case 3.2)
1 · · · n

1 1 n
...
iq k1 k2
...

1 · · · n
1 1 lq
...
iq l1 n
...

k(iq, n) = k2 6= n, l(iq, n) = n there existi1 ∈ I \ {1, iq} andj1 ∈ J \ {n} such thatxi1j1nn = 1. Let

x1 = x∗1(1 ↔ i1)1. X1 ∈ PQ(n,n,n,n)
I because ifj1 6= 1 thenxnj1nn = 1 for all points ofX1, else ifj1 = 1

thenxn1nn = 1 at pointsx1, x′1 andxnnnn = 1 at pointsx̄1, x̄′1. Let x∗2 = x1(1 ↔ n)3. At x∗2 since

k(1, 1) = n, l(1, 1) = 1 andk(iq, n) = k2 6= n, l(iq, n) = n there existi2 ∈ I \ {1, iq} andj2 ∈ J \ {1, n}

such thatxi2j2nn = 1. Note thatj1 6= j2. Let x2 = x∗2(i2 ↔ n)1 (Table 41).X2 ∈ PQ(n,n,n,n)
I (xnj2nn = 1).

Table 41: Pointx2 (Theorem 4.11, case 3.2)
1 · · · j2 · · · n

1 n 1
...
iq k1 k2
...
n n

1 · · · j2 · · · n
1 1 lq
...
iq l1 n
...
n n

x1((1, iq)1; (1, n)2)⇒

a1111 + a1nnlq + aiq1k1l1 + aiqnk2n + a11k2n + a1nk1l1 + aiq1nlq + aiqn11

= a11nlq + a1n11 + aiq1k2n + aiqnk1l1 + a11k1l1 + a1nk2n + aiq111 + aiqnnlq
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x2((1, iq)1; (1, n)2)⇒

a11n1 + a1n1lq + aiq1k1l1 + aiqnk2n + a11k2n + a1nk1l1 + aiq11lq + aiqnn1

= a111lq + a1nn1 + aiq1k2n + aiqnk1l1 + a11k1l1 + a1nk2n + aiq1n1 + aiqn1lq

x1((1, iq)1; (1, n)2)-x2((1, iq)1; (1, n)2) ⇒

a1111 + aiqn11 + aiq1n1 + a1nn1 − (aiqnn1 + aiq111 + a1n11 + a11n1)

= a11nlq + a1n1lq + aiq11lq + aiqnnlq − (aiqn1lq + a1nnlq + aiq1nlq + a111lq ) (4.31)

By interchanginglq, l1 in pointsx1 andx2, we derive equation (4.31) withl1 in the place oflq. By adding this

equation to (4.31) we get

2[a1111 + aiqn11 + aiq1n1 + a1nn1 − (aiqnn1 + aiq111 + a1n11 + a11n1)]

=
∑

{a11nl + a1n1l + aiq11l + aiqnnl − (aiqn1l + a1nnl + aiq1nl + a111l) : l ∈ {lq, l1}} (4.32)

Let x3 = x2(1 ↔ l1)4 andx4 = x1(1 ↔ l1)4. Pointsx3 andx4 are illustrated in Table 42 and 43

Table 42: Pointx3 (Theorem 4.11, case 3.2)
1 · · · j2 · · · n

1 n 1
...
iq k1 k2
...
n n

1 · · · j2 · · · n
1 l1 lq
...
iq 1 n
...
n n

Table 43: Pointx4 (Theorem 4.11, case 3.2)
1 · · · j1 · · · n

1 1 n
...
iq k1 k2
...
n n

1 · · · j1 · · · n
1 l1 lq
...
iq 1 n
...
n n

respectively (note that we can havej1 = 1). X3 ∈ PQ(n,n,n,n)
I andX4 ∈ PQ(n,n,n,n)

I due to the same reasoning

thatX2 ∈ PQ(n,n,n,n)
I andX1 ∈ PQ(n,n,n,n)

I respectively.
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x3((1, iq)1; (1, n)2)⇒

a11nl1 + a1n1lq + aiq1k11 + aiqnk2n + a11k2n + a1nk11 + aiq11lq + aiqnnl1

= a111lq + a1nnl1 + aiq1k2n + aiqnk11 + a11k11 + a1nk2n + aiq1nl1 + aiqn1lq

x4((1, iq)1; (1, n)2)⇒

a111l1 + a1nnlq + aiq1k1 + aiqnk2n + a11k2n + a1nk11 + aiq1nlq + aiqn1l1

= a11nlq + a1n1l1 + aiq1k2n + aiqnk11 + a11k11 + a1nk2n + aiq11l1 + aiqnnlq

x3((1, iq)1; (1, n)2)-x4((1, iq)1; (1, n)2) yields the right-hand side of equation (4.32) to zero, proving thus

(4.29)lq=1.

Substituting termaiqnn1 in equation (4.31) from (4.29)lq=1, we derive equation (4.30).

Therefore, for case 3, we have derived (4.29)lq=1 and (4.30). Equation (4.29)iq=1 follows by symmetry. By replacing

to equation (4.30) termaiqn1lq from (4.20) withi = iq, j = n, k = 1, l = lq (shown implicitly in case 2), terma1nnlq

from (4.29)iq=1 and termaiq1nlq from (4.23)jq=1 we derive equation (4.29).

Again, by reversing the roles of the sets we derive equation (4.20) with any other pair of indices being equal ton.

Our proof with respect to(i, j, k, l) ∈ C \Q(n, n, n, n) is now complete.

For (i, j, k, l) ∈ Q(n, n, n, n) we define

πijkl = aijkl − (λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik)

To prove (4.18) for(i, j, k, l) ∈ Q(n, n, n, n) we must prove that allπijkl are equal. Note that for(i, j, k, l) ∈ Q(n, n, n, n)

we have4n− 3 terms:

πnnnn = πtnnn = πntnn = πnntn = πnnnt, ∀t ∈ {1, ..., n− 1}

First we showπnnkpn = πnnkrn for kp, kr ∈ K \ {n} andkp 6= kr.

For k0, k1, kp, n ∈ K and l0, l1, n ∈ L consider the pointxkp as illustrated in Table 44. At this point we have

kp 6= k0, k1, n andl0 6= n, l1 6= n. To show that forn ≥ 4 andn 6= 6 such a point exists, consider the pointx illustrated

in Table 45. Letj0 ∈ J \ {1, n} be such thatl(1, j0) = n. Denotel(n, j0) asl0, k(1, j0) askp andk(n, j0) ask0. Then

xkp = x(1 ↔ j0)2.
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Table 44: Pointxkp (Theorem 4.11)
1 · · · n

1 kp k1
...
n k0 n

1 · · · n
1 n l1
...
n l0 n

Table 45: Pointx (Theorem 4.11)
1 · · · n

1 kt k1
...
n ks n

1 · · · n
1 lt l1
...
n ls n

For n ≥ 5 there iskr ∈ K \ {k0, k1, kp, n}. Let xkr = xkp(kp ↔ kr)3. Note thatXkp , Xkr ∈ PQ(n,n,n,n)
I .

xkp((1, n)1; (1, n)2) -xkr ((1, n)1; (1, n)2)⇒

annkpn + a11kpn + an1krn + a1nkrn − (an1kpn + a1nkpn + a11krn + annkrn) = 0

By substituting each term from (4.18) we getπnnkpn = πnnkrn.

Exchanging the roles of the sets we obtain the corresponding results for setsI, J, L, i.e.

πipnnn = πirnnn, ∀ip, ir ∈ I \ {n}, ip 6= ir,

πnjpnn = πnjrnnn, ∀jp, jr ∈ J \ {n}, jp 6= jr, (4.33)

πnnnlp = πnnnlr , ∀lp, lr ∈ L \ {n}, lp 6= lr

Now we will show thatπnnkn = πnnnl for k ∈ K \ {n}, l ∈ L \ {n}.

We consider pointsxk, xl illustrated in Table 46 and 47 respectively.

Table 46: Pointxk (Theorem 4.11)
1 · · · n

1 k k1
...
n k0 n

1 · · · n
1 n l1
...
n l0 n

Again note thatXk, Xl ∈ PQ(n,n,n,n)
I . xk((1, n)1; (1, n)2)-xl((1, n)1; (1, n)2)⇒

a11kn + annkn + an1nl + a1nnl − (an1kn + a1nkn + a11nl + annnl) = 0
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Table 47: Pointxl (Theorem 4.11)
1 · · · n

1 n k1
...
n k0 n

1 · · · n
1 l l1
...
n l0 n

Again substituting terms from (4.18) we obtainπnnkn = πnnnl.

Thus by exchanging the roles of the sets and taking into account equations (4.33) we obtain

πinnn = πnjnn = πnnkn = πnnnl = π, ∀i ∈ I \ {n}, j ∈ J \ {n}, k ∈ K \ {n}, l ∈ L \ {n}

Consider againxk((1, n)1; (1, n)2)⇒

a11kn + a1nk1l1 + an1k0l0 + annnn + a11nn + a1nk0l0 + an1k1l1 + annkn

= a11k0l0 + a1nnn + an1kn + annk1l1 + a11k1l1 + a1nkn + an1nn + annk0l0

By substituting terms from (4.18) we get

πnnnn + πnnkn = π1nnn + πn1nn

thus yieldingπnnnn = π.

Finally, using the same argument as in Theorem 4.6, (4.19) is true sincePQ(c)
I 6= ∅ for all c ∈ C for n 6= 2, 6.

Proposition 4.13. The inequalities (4.17) are of rank 2.

Proof. We will first derive a lower bound for the rank of (4.17) by showing that the inequality cannot be of rank1. We

will proceed by illustrating how the inequality can be derived within two steps of the Chvátal-Gomory procedure. This will

provide an upper bound of2 on its rank.

W.l.o.g. assumec = (i0, j0, k0, l0). Then the node set of the clique is
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Q(c) = {(i0, j0, k0, l0),

(i0, j0, k0, 1), ..., (i0, j0, k0, l0 − 1), ..., (i0, j0, k0, l0 + 1), ..., (i0, j0, k0, n),

(i0, j0, 1, l0), ..., (i0, j0, k0 − 1, l0), ..., (i0, j0, k0 + 1, l0), ..., (i0, j0, n, l0),

(i0, 1, k0, l0), ..., (i0, j0 − 1, k0, l0), ..., (i0, j0 + 1, k0, l0), ..., (i0, n, k0, l0),

(1, j0, k0, l0), ..., (i0 − 1, j0, k0, l0), ..., (i0 + 1, j0, k0, l0), ..., (n, j0, n, l0)}

The induced inequality is:

xi0j0k0l0 +
∑

{xij0k0l0 : i ∈ I \ {i0}}+
∑

{xi0jk0l0 : j ∈ J \ {j0}}

+
∑

{xi0j0kl0 : k ∈ K \ {k0}}+
∑

{xi0j0k0l : l ∈ L \ {l0}} ≤ 1 (4.34)

If the inequality (4.34) is of Chvátal rank 1, then there exists0 < ε < 1, such that

xi0j0k0l0 +
∑

{xij0k0l0 : i ∈ I \ {i0}}+
∑

{xi0jk0l0 : j ∈ J \ {j0}}

+
∑

{xi0j0kl0 : k ∈ K \ {k0}}+
∑

{xi0j0k0l : l ∈ L \ {l0}} ≤ 2− ε (4.35)

Any solutionx ∈ PL havingxi0j0k0l0 = 0 andxij0k0l0 = xi0jk0l0 = xi0j0kl0 = xi0j0k0l = 1
2(n−1) , ∀i ∈ I \ {i0}, j ∈

J \ {j0}, k ∈ K \ {k0}, l ∈ L \ {l0}, violates (4.35) since its left-hand side has4(n − 1) variables equal to 1
2(n−1) , and

therefore adding to2. Such a solution exists, and its coordinates are:

• xijk0l0 = xij0kl0 = xij0k0l = xi0jkl0 = xi0jk0l = xi0j0kl = 0,

• xi0jkl = xij0kl = xijk0l = xijkl0 = 2n−3
2(n−1)3 ,

• xijkl = (n−2)2

(n−1)4

for all i ∈ I \ {i0}, j ∈ J \ {j0}, k ∈ K \ {k0}, l ∈ L \ {l0}.

To see thatx ∈ PL, assume row labeled(m1,m2) ∈ M1×M2, whereM1,M2 can be any ofI, J,K, L with M1 6= M2.

Then recalling thatc = {i0, j0, k0, l0}:

case 1: Ifm1, m2 ∈ c, the row has2(n− 1) variables equal to 1
2(n−1) , and(n− 1)2 + 1 variables equal to0.

case 2: Ifm1 ∈ c, m2 /∈ c or m1 /∈ c, m2 ∈ c, the row has one variable equal to1
2(n−1) , (n− 1)2 variables equal to 2n−3

2(n−1)3

and2(n− 1) variables equal to0.
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case 3: Ifm1, m2 /∈ c, the row has2(n− 1) variables equal to 2n−3
2(n−1)3 , (n− 1)2 variables equal to(n−2)2

(n−1)4 and one variable

equal to0.

Therefore, inequality (4.34) is of Chvátal rank at least2.

We now show that the Chvátal rank is at most2. To this end, note that adding rows(i0, l0), (j0, l0), (k0, l0), dividing

the resulting inequality by2 and rounding down both sides gives

xi0j0k0l0 +
∑

{xij0k0l0 : i ∈ I \ {i0}}+
∑

{xi0jk0l0 : j ∈ J \ {j0}}+
∑

{xi0j0kl0 : k ∈ K \ {k0}} ≤ 1 (4.36)

Adding rows(i0, k0), (j0, k0), (k0, l0), dividing the resulting inequality by2 and rounding down both sides gives

xi0j0k0l0 +
∑

{xij0k0l0 : i ∈ I \ {i0}}+
∑

{xi0jk0l0 : j ∈ J \ {j0}}+
∑

{xi0j0k0l : l ∈ L \ {l0}} ≤ 1 (4.37)

Adding rows(i0, j0), (j0, k0), (j0, l0), dividing the resulting inequality by2 and rounding down both sides gives

xi0j0k0l0 +
∑

{xij0k0l0 : i ∈ I \ {i0}}+
∑

{xi0j0kl0 : k ∈ K \ {k0}}+
∑

{xi0j0k0l : l ∈ L \ {l0}} ≤ 1 (4.38)

Adding rows(i0, j0), (i0, k0), (i0, l0), dividing the resulting inequality by2 and rounding down both sides gives

xi0j0k0l0 +
∑

{xi0jk0l0 : j ∈ J \ {j0}}+
∑

{xi0j0kl0 : k ∈ K \ {k0}}+
∑

{xi0j0k0l : l ∈ L \ {l0}} ≤ 1 (4.39)

Finally, adding (4.36)-(4.39) yields

4xi0j0k0l0 + 3
∑

{xij0k0l0 : i ∈ I \ {i0}}+ 3
∑

{xi0jk0l0 : j ∈ J \ {j0}}

+ 3
∑

{xi0j0kl0 : k ∈ K \ {k0}}+ 3
∑

{xi0j0k0l : l ∈ L \ {l0}} ≤ 4 (4.40)

Dividing (4.40) by3 and rounding down both sides gives inequality (4.34). Therefore, inequality (4.34) is of rank at

most2 and the proof is complete.

Theorem 4.14. For n ≥ 5 andn 6= 6 the inequality

∑

{xq : Q(c, s)} ≤ 1 (4.41)

defines a facet ofPI for everyc, s ∈ C such that| c ∩ s |= 1.
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Proof. Let PQ(c,s)
I = {x ∈ PI :

∑

{xq : q ∈ Q(c, s)} = 1}. Forn ≥ 5 andn 6= 6 we will show thatPQ(c,s)
I is a facet of

PI .

First, we note that (4.41) is a valid inequality for allx ∈ PI becauseQ(c, s) is a node set of a clique in the intersection

graphGA(C, EC).

W.l.o.g. letc = (n, n, n, n). Thens can be any of the following four quadruples:(n, j, k, l), (i, n, k, l), (i, j, n, l),

(i, j, k, n) for i ∈ I\{n}, j ∈ J\{n}, k ∈ K\{n} andl ∈ L\{n}. Since all cases are symmetrical we will analytically carry

out the proof only fors = (n, j, k, l). Thus by settingj = j0, k = k0, l = l0 with j0 ∈ J \{1, n}, k0 ∈ K \{1, n} andl0 ∈

L \ {1, n} we deriveQ(c, s) = Q((n, n, n, n), (n, j0, k0, l0)) = {(n, n, n, n), (n, n, k0, l0), (n, j0, k0, n), (n, j0, n, l0)}.

It is easy to see thatPQ(c,s)
I 6= ∅. Clearlyxijnn = 1 for everyx ∈ PI . If pair (i, j) for this variable hasi 6= n and/or

j 6= n we apply a first and/or second index interchange betweenn, i and/orn, j. The point derived satisfiesxnnnn = 1,

therefore it belongs toPQ(c,s)
I .

Next we will show that ifx ∈ PQ(c,s)
I there exists at least one point which belongs toPI \ PQ(c,s)

I . For this purpose,

we will assume pointx ∈ PQ(c,s)
I havingxi1nk0l0 = xi2j0k0n = xi3j0nl0 = 1 for i1 6= i2 6= i3 6= i1, all other cases

being easier to handle. Note that the constraints of the problem also impose the conditioni1, i2, i3 ∈ I \ {n}. Pointx is

illustrated in Table 48. Forn ≥ 5 there existsi0 ∈ I \ {i1, i2, i3, n} such thatxi0j0k1l1 = 1 for k1 6= k0, n, l1 6= l0, n

Table 48: A pointx ∈ PQ(c,s)
I for c = (n, n, n, n), s = (n, j0, k0, l0)

· · · j0 · · · n
...
i1 k0
...
i2 k0
...
i3 n
...
n n

· · · j0 · · · n
...
i1 l0
...
i2 n
...
i3 l0
...
n n

andxi0nk2l2 = 1 for k2 6= k0, n, l2 6= l0, n. We apply a first index interchange betweenn, i0. At the derived point

xi2j0k0n = xi3j0nl0 = xnnk2l2 = 1 implying xnj0k0n = xnj0nl0 = xnnk0l0 = xnnnn = 0. Thus the point belongs to

PI \ PQ(c,s)
I . We observe that if pairs(k0, n), (n, l0) ∈ K × L lie at the same row(i2 = i3) we need onlyn ≥ 4. The

same is true for pairs(k0, l0), (n, n) ∈ K × L. The argument goes essentially unchanged ifxnj0nl0 = 1 or xnj0k0n = 1 or

xnnk0l0 = 1 instead ofxnnnn = 1 at pointx.

To show thatPQ(c,s)
I is a facet ofPI we will exhibit scalarsλ1

kl, λ2
il, λ3

jl, λ4
ij , λ5

jk, λ6
ik, π ∈ R for i ∈ I, j ∈ J , k ∈ K,
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l ∈ L, such that ifax = a0 for all x ∈ PQ(c,s)
I then

aijkl =











λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik, (i, j, k, l) ∈ C \Q(c, s)

λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik + π, (i, j, k, l) ∈ Q(c, s)
(4.42)

and

a0 =
∑

{λ1
kl : k ∈ K, l ∈ L}+

∑

{λ2
il : i ∈ I, l ∈ L}

+
∑

{λ3
jl : j ∈ J, l ∈ L}+

∑

{λ4
ij : i ∈ I, j ∈ J}

+
∑

{λ5
jk : j ∈ J, k ∈ K}+

∑

{λ6
ik : i ∈ I, k ∈ K}+ π (4.43)

As in Theorem 4.6 we define

λ1
kl = a11kl

λ2
il = ai11l − a111l

λ3
jl = a1j1l − a111l

λ4
ij = aij11 − ai111 − a1j11 + a1111

λ5
jk = a1jk1 − a1j11 − a11k1 + a1111

λ6
ik = ai1k1 − ai111 − a11k1 + a1111

By replacingλs from these equations to (4.42) for(i, j, k, l) ∈ Q \Q(c, s) we end up with equation (4.20) which must

be proven for any(i, j, k, l) ∈ Q \ Q(c, s). It is easy to see that this equation is valid fora1111 and for all cases in which

at least two of the indices equal 1. For cases where at most one of the indices is equal to one, we will show (4.20) using

exclusively points fromPQ(c,s)
I for c = (n, n, n, n) ands = (n, j0, k0, l0).

W.r.t. the indices(i, j, k, l) ∈ Q \Q(c, s) we distinguish four cases viz. none, one, two, three of the indices are equal to

n. For the first three cases we follow the same approach as in Theorem 4.11 i. e., we show explicitly (4.20)l=1. Equations

(4.20)i=1, (4.20)j=1, (4.20)k=1 follow by symmetry whereas (4.20), when none of the indices is equal to one, is shown by

substituting terms from these equations to an equation derived explicitly in the course of proving (4.20)l=1. For the last case

equation (4.42) will be shown explicitly.

case 1 None of the indices is equal ton.

W.l.o.g. let i = iq 6= n, j = jq 6= n, k = kq 6= n, l = lq 6= n. The proof is exactly the same as in case 1 of

Theorem 4.11. We observe that all the points, on which we have applied Proposition 4.7, in case 1 of Theorem 4.11
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havexnnnn = 1. So these points belong not only toPQ(n,n,n,n)
I but to PQ(c,s)

I as well. Hence, all the equations

derived for the case 1 of Theorem 4.11 are valid for this case as well. W.l.o.g. we considerk0 6= k1, k2 andl0 6= l1 at

all points used. Thus, forn ≥ 5 we could havekq = k0 and/orjq = j0 and/orlq = l0. This means that (4.20), when

none of the indices equalsn, is valid when some (or none or all) of the corresponding indices are set to valuesj0 , k0,

l0 respectively.

case 2: One of the indices is equal ton.

W.l.o.g. assumei = iq 6= n, j = jq 6= n, k = n, l = lq 6= n. Equation (4.20) becomes equation (4.23). For all

cases except case 2.2.2, points used in the proof of case 2 havexnnnn = 1 which implies that they belong toPQ(c,s)
I

as well. Thus, the proof followed in all sub-cases of case 2 of Theorem 4.11, but case 2.2.2, is valid for this case as

well. Next we will show (4.23) for case 2.2.2. using points ofPQ(c,s)
I .

For case 2.2.2 at pointx2
q we havex1j2nn = 1 with j2 6= jq andk0 6= k1, k2, l1 6= l0. Let x∗1 = x2

q(k0 ↔ n)3(lq 6=

l0?lq ↔ l0)4(l0 ↔ l1)4 (Table 49). At pointx∗1 sincek(iq, 1) = k0, l(iq, 1) = l1 6= l0 andk(1, jq) = k1 6= k0,

Table 49: Pointx∗1 (Theorem 4.11, case 2)
1 · · · jq · · ·

1 1 k1
...
iq k0 k2
...

1 · · · jq · · ·
1 1 l0
...
iq l1 n
...

l(1, jq) = l0 there existi1 ∈ I \{1, iq}, j1 ∈ J \{1, jq} such thatxi1j1k0l0 = 1. Letx1 = x∗1(i1 6= n?i1 ↔ n)1(j1 6=

n?j1 ↔ n)2. X1 ∈ PQ(c,s)
I (xnnk0l0 = 1). Let x2 = x1(1 ↔ n)3 (Table 50).X2 ∈ PQ(c,s)

I (xnnk0l0 = 1).

Table 50: Pointx2 (Theorem 4.11, case 2)
1 · · · jq · · · n

1 n k1
...
iq k0 k2
...
n k0

1 · · · jq · · · n
1 1 l0
...
iq l1 n
...
n l0

x1((1, iq)1; (1, jq)2)⇒

a1111 + a1jqk1l0 + aiq1k0l1 + aiqjqk2n + a11k2n + a1jqk0l1 + aiq1k1l0 + aiqjq11

= a11k1l0 + a1jq11 + aiq1k2n + aiqjqk0l1 + a11k0l1 + a1jqk2n + aiq111 + aiqjqk1l0
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x2((1, iq)1; (1, jq)2)⇒

a11n1 + a1jqk1l0 + aiq1k0l1 + aiqjqk2n + a11k2n + a1jqk0l1 + aiq1k1l0 + aiqjqn1

= a11k1l0 + a1jqn1 + aiq1k2n + aiqjqk0l1 + a11k0l1 + a1jqk2n + aiq1n1 + aiqjqk1l0

x1((1, iq)1; (1, jq)2)-x2((1, iq)1; (1, jq)2) yields (4.23)lq=1. Equations (4.23)iq=1, (4.23)jq=1 follow by symmetry.

Let x∗3 = x2
q(1 ↔ n)4. At point x∗3 sincek(1, 1) = n, l(1, 1) = 1 andk(iq, jq) = 1, l(iq, jq) = n there exist

i1 ∈ I \{1, iq}, j1 ∈ J \{1, jq} such thatxi1j1nn = 1. Letx3 = x∗3(i1 6= n?i1 ↔ n)1(j1 6= n?j1 ↔ n)2 (Table 51).

Let x4 = x3(1 ↔ lq)4. X3, X4 ∈ PQ(c,s)
I (xnnnn = 1).

Table 51: Pointx3 (Theorem 4.11, case 2)
1 · · · jq · · · n

1 n k1
...
iq 1 k2
...
n n

1 · · · jq · · · n
1 1 l1
...
iq lq n
...
n n

x3((1, iq)1; (1, jq)2)⇒

a11n1 + a1jqk1l1 + aiq11lq + aiqjqk2n + a11k2n + a1jq1lq + aiq1k1l1 + aiqjqn1

= a11k1l1 + a1jqn1 + aiq1k2n + aiqjq1lq + a111lq + a1jqk2n + aiq1n1 + aiqjqk1l1

x4((1, iq)1; (1, jq)2)⇒

a11nlq + a1jqk1l1 + aiq111 + aiqjqk2n + a11k2n + a1jq11 + aiq1k1l1 + aiqjqnlq

= a11k1l1 + a1jqnlq + aiq1k2n + aiqjq11 + a1111 + a1jqk2n + aiq1nlq + aiqjqk1l1

x3((1, iq)1; (1, jq)2)-x4((1, iq)1; (1, jq)2)⇒

aiqjqnlq = (aiqjqn1 + aiq1nlq + a1jqnlq − aiqjq1lq ) + a1jq1lq + aiq11lq − a111lq − a11nlq

+a11n1 + aiqjq11 + a1111 − aiq1n1 − a1jqn1 − aiq111 − a1jq11 (4.44)

By replacing to equation (4.44) termsaiqjqn1, aiq1nlq , a1jqnlq , aiqjq1lq from (4.23)lq=1. (4.23)jq=1, (4.23)iq=1 and
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(4.21)kq=1 respectively we derive equation (4.23).

Our proof w.r.t. case 2 is now complete. We observe again thatjq and lq could be equal to valuesj0 and/orl0,

respectively, without affecting the proof. Thus, (4.23) is valid forj = j0 and/orl = l0.

By reversing the roles of the sets, we derive equation (4.20) with any other index being equal ton.

case 3: Two of the indices are equal ton.

We observe that not all cases of(i, j, k, l) ∈ Q \Q(c, s) for which two of the indices are equal ton, are symmetric.

Consider for example(iq, n, n, lq) and(n, jq, n, lq). In the first case the only restriction w.r.t.iq andlq is that they

must be different thann. In the second casejq and lq have the additional restriction that they cannot be equal to

j0 andl0 respectively, simultaneously, because then(n, jq, n, lq) = (n, j0, n, l0) ∈ Q(c, s). This is due to the fact

that (4.41) forc = (n, n, n, n) ands = (n, j0, k0, l0) is not symmetric w.r.t. indexi and the rest of the indices.

Consequently, we consider two cases. The first (second) case refers to a pair of indices, each being equal ton, not

including (respectively including) indexi.

case 3.1: W.l.o.g. assumei = iq 6= n, j = n, k = n, l = lq 6= n. Equation (4.20) becomes equation (4.29). At pointx3
q

we distinguish two cases, vizk(1, n) = n, k(1, n) = k1 6= n.

case 3.1.1:k(1, n) = n.

Let x∗1 = x3
q(k0 ↔ n)3. At pointx∗1 sincek(1, n) = k0, l(1, n) = l1 6= n andk(n, 1) = k0, l(n, 1) = lq 6=

n there existi1 ∈ I \ {1, iq}, j1 ∈ J \ {1, n} such thatxi1j1k0n = 1. Let x1 = x∗1(i1 6= n?i1 ↔ n)1(j1 6=

j0?j1 ↔ j0)2. Let x2 = x1(1 ↔ n)3. X1, X2 ∈ PQ(c,s)
I (xnj0k0n = 1). Pointsx1 andx2 are illustrated in

Table 52 and 53 respectively.

Table 52: Pointx1 (Theorem 4.11, case 3.1.1)
1 · · · j0 · · · n

1 1 k0
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 1 l1
...
iq lq n
...
n n

x1((1, iq)1; (1, n)2)⇒

a1111 + a1nk0l1 + aiq1k0lq + aiqnk2n + a11k2n + a1nk0lq + aiq1k0l1 + aiqn11

= a11k0l1 + a1n11 + aiq1k2n + aiqnk0lq + a11k0lq + a1nk2n + aiq111 + aiqnk0l1
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Table 53: Pointx2 (Theorem 4.11, case 3.1.1)
1 · · · j0 · · · n

1 n k0
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 1 l1
...
iq lq n
...
n n

x2((1, iq)1; (1, n)2)⇒

a11n1 + a1nk0l1 + aiq1k0lq + aiqnk2n + a11k2n + a1nk0lq + aiq1k0l1 + aiqnn1

= a11k0l1 + a1nn1 + aiq1k2n + aiqnk0lq + a11k0lq + a1nk2n + aiq1n1 + aiqnk0l1

x1((1, iq)1; (1, n)2)-x2((1, iq)1; (1, n)2) yields (4.29)lq=1.

Let x3 = x2(1 ↔ lq)4 (Table 54) andx4 = x1(1 ↔ lq)4 (Table 55).X3, X4 ∈ PQ(c,s)
I (xnj0k0n = 1).

Table 54: Pointx3 (Theorem 4.11, case 3.1.1)
1 · · · j0 · · · n

1 n k0
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 lq l1
...
iq 1 n
...
n n

Table 55: Pointx4 (Theorem 4.11, case 3.1.1)
1 · · · j0 · · · n

1 1 k0
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 lq l1
...
iq 1 n
...
n n

x3((1, iq)1; (1, n)2)⇒

a11nlq + a1nk0l1 + aiq1k01 + aiqnk2n + a11k2n + a1nk01 + aiq1k0l1 + aiqnnlq

= a11k0l1 + a1nnlq + aiq1k2n + aiqnk01 + a11k01 + a1nk2n + aiq1nlq + aiqnk0l1
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x4((1, iq)1; (1, n)2)⇒

a111lq + a1nk0l1 + aiq1k01 + aiqnk2n + a11k2n + a1nk01 + aiq1k0l1 + aiqn1lq

= a11k0l1 + a1n1lq + aiq1k2n + aiqnk01 + a11k01 + a1nk2n + aiq11lq + aiqnk0l1

x3((1, iq)1; (1, n)2)-x4((1, iq)1; (1, n)2) yields equation (4.30). We will show that this equation is valid

for the next sub-case.

case 3.1.2:k(1, n) = k1.

Let x∗1 = x3
q(k0 ↔ n)3(l1 ↔ n)4. At point x∗1 sincek(iq, 1) = k0, l(iq, 1) = lq 6= n andk(1, n) = k1 6=

k0, l(1, n) = n there existi1 ∈ I \ {1, iq}, j1 ∈ J \ {1, n} such thatxi1j1k0n = 1. Let x1 = x∗1(i1 6=

n?i1 ↔ n)1(j1 6= j0?j1 ↔ j0)2. Let x2 = x1(1 ↔ n)3. X1, X2 ∈ PQ(c,s)
I (xnj0k0n = 1). Pointsx1, x2

are illustrated in Table 56 and 57 respectively.

Table 56: Pointx1 (Theorem 4.11, case 3.1.2)
1 · · · j0 · · · n

1 1 k1
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 1 n
...
iq lq l1
...
n n

Table 57: Pointx2 (Theorem 4.11, case 3.1.2)
1 · · · j0 · · · n

1 n k1
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 1 n
...
iq lq l1
...
n n

x1((1, iq)1; (1, n)2)⇒

a1111 + a1nk1n + aiq1k0lq + aiqnk2l1 + a11k2l1 + a1nk0lq + aiq1k1n + aiqn11

= a11k1n + a1n11 + aiq1k2l1 + aiqnk0lq + a11k0lq + a1nk2l1 + aiq111 + aiqnk1n
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x2((1, iq)1; (1, n)2)⇒

a11n1 + a1nk1n + aiq1k0lq + aiqnk2l1 + a11k2l1 + a1nk0lq + aiq1k1n + aiqnn1

= a11k1n + a1nn1 + aiq1k2l1 + aiqnk0lq + a11k0lq + a1nk2l1 + aiq1n1 + aiqnk1n

x1((1, iq)1; (1, n)2)-x2((1, iq)1; (1, n)2) yields (4.29)lq=1.

Let x3 = x2(1 ↔ lq)4 (Table 58) andx4 = x1(1 ↔ lq)4 (Table 59).X3, X4 ∈ PQ(c,s)
I (xnj0k0n = 1).

Table 58: Pointx3 (Theorem 4.11, case 3.1.2)
1 · · · j0 · · · n

1 n k1
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 lq n
...
iq 1 l1
...
n n

Table 59: Pointx4 (Theorem 4.11, case 3.1.2)
1 · · · j0 · · · n

1 1 k1
...
iq k0 k2
...
n k0

1 · · · j0 · · · n
1 lq n
...
iq 1 l1
...
n n

x3((1, iq)1; (1, n)2)⇒

a11nlq + a1nk1n + aiq1k01 + aiqnk2l1 + a11k2l1 + a1nk01 + aiq1k1n + aiqnnlq

= a11k1n + a1nnlq + aiq1k2l1 + aiqnk01 + a11k01 + a1nk2l1 + aiq1nlq + aiqnk1n

x4((1, iq)1; (1, n)2)⇒

a111lq + a1nk1n + aiq1k01 + aiqnk2l1 + a11k2l1 + a1nk01 + aiq1k1n + aiqn1lq

= a11k1n + a1n1lq + aiq1k2l1 + aiqnk01 + a11k01 + a1nk2l1 + aiq11lq + aiqnk1n

x3((1, iq)1; (1, n)2)-x4((1, iq)1; (1, n)2) yields equation (4.30).

For case 3.1. we have shown (4.29)lq=1 and (4.30) using points ofPQ(c,s)
I . (4.29)iq=1 follows by symmetry.
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By substituting terms in brackets in (4.30) as in the case 3 of Theorem 4.11 we obtain (4.29). Note thatlq is

allowed to take the valuel0.

case 3.2: W.l.o.g. assumei = n, j = n, k = kq 6= n, l = lq 6= n. Equation (4.20) becomes

annkqlq = a11kqlq + an11lq + a1n1lq + ann11 + a1nkq1 + an1kq1

−2an111 − 2a1n11 − 2a11kq1 − 2a111lq + 3a1111 (4.45)

The proof of equation (4.45) will be carried out by adopting an alternative representation of points ofPI .

Consider setsI andK in reverse roles. That is, setK is the set of rows and setI is the set of elements of the

first square. Pointsx′ andx̄′ of a collectionX are derived by exchanging the elements of two rows (of theOLS

structures representing pointsx andx̄ respectively) indexed by elements of setK. We definei(k, j) to be the

element of the cell at rowk and columnj of the first latin square. Analogously we definel(k, j) for the second

latin square. Thus, equation (4.8) of Proposition 4.7 is modified to

ai(k1,j1)j1k1l(k1,j1) + ai(k1,j2)j2k1l(k1,j2) + ai(k2,j1)j1k2l(k2,j1) + ai(k2,j2)j2k2l(k2,j2)

+ ai(k2,j2)j1k1l(k2,j2) + ai(k2,j1)j2k1l(k2,j1) + ai(k1,j2)j1k2l(k1,j2) + ai(k1,j1)j2k2l(k1,j1)

= ai(k2,j1)j1k1l(k2,j1) + ai(k2,j2)j2k1l(k2,j2) + ai(k1,j1)j1k2l(k1,j1) + ai(k1,j2)j2k2l(k1,j2)

+ ai(k1,j2)j1k1l(k1,j2) + ai(k1,j1)j2k1l(k1,j1) + ai(k2,j2)j1k2l(k2,j2) + ai(k2,j1)j2k2l(k2,j1)

The above equation for a pair of rows(k1, k2) and a pair of columns(j1, j2) at pointx, with k1, k2 ∈ K and

j1, j2 ∈ J , is denoted asx((k1, k2)3; (j1, j2)2).

First we need to establish the existence of the pointx(kq).

Lemma 4.15. For n ≥ 5 andn 6= 6 let iq, i1 ∈ I \ {1, n} with iq 6= i1, i2 ∈ I \ {iq, i1, n}, kq ∈ K \ {1, n},

l0 ∈ L \ {1, n}, l1 ∈ L \ {1, l0, n}. Then there exists the pointx(kq) ∈ PI as illustrated in Table 60.

Table 60: Pointx(kq) (Lemma 4.15)
1 · · · n

1 1 i1
...

kq iq i2
...

1 · · · n
1 1 l0
...

kq l0 l2
...

Proof. ConsiderOLSstructures withK as the set of rows,J the set of columns,I the set of the elements of the
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first square andL the set of the elements of the second square. Consider again theOLSpair with the elements

of the first row of both squares in natural order and the elements of the first column of the second square in

natural order. At this point we apply a fourth index interchange betweenl0 andn thus deriving pointx∗. Point

x∗ is illustrated in Table 61. We observe thati1, i2 6= n. For n ≥ 5 there existsiq ∈ I \ {1, i1, i2, n}. Let

Table 61: Pointx∗ (Lemma 4.15)
1 · · · n

1 1 i1
...
n n i2

1 · · · n
1 1 l0
...
n l0 l1

x(kq) = x∗(iq ↔ n)1(kq ↔ n)3 with kq ∈ K \ {1, n}.

(Back to the proof of Theorem 4.14, case 3.2) We observe thatkq can be equal tok0. At point x(kq) since

xi1n1l0 = xiq1kql0 = 1 there existk1 ∈ K \ {1, kq}, j1 ∈ J \ {1, n} such thatxnj1k1l0 = 1. Let x1 =

x(kq)(j1 6= j0?j1 ↔ j0)2(k1 6= n?k1 ↔ n)3. X1 ∈ PQ(c,s)
I (xnj0nl0 = 1). Pointx1 is illustrated in Table 62.

Let x∗2 = x1(1 ↔ n)3. At point x∗2 we havexi1n1l0 = xiq1kql0 = 1 again. So there existk2 ∈ K \ {1, kq},

Table 62: Pointx1 (Theorem 4.14, case 3.2)
1 · · · j0 · · · n

1 1 i1
...

kq iq i2
...
n n

1 · · · j0 · · · n
1 1 l0
...

kq l0 l1
...
n l0

j2 ∈ J \ {1, n} such thatxnj2k2l0 = 1. Note thatj2 6= j1. Let x2 = x∗2(j2 6= j0?j2 ↔ j0)2(k2 6= n?k2 ↔ n)3.

X2 ∈ PQ(c,s)
I (xnj0nl0 = 1). Pointx2 is illustrated in Table 63.

Table 63: Pointx2 (Theorem 4.14, case 3.2)
1 · · · j0 · · · n

1 n i1
...

kq iq i2
...
n n

1 · · · j0 · · · n
1 1 l0
...

kq l0 l1
...
n l0
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x1((1, kq)3; (1, n)2)⇒

a1111 + ai1n1l0 + aiq1kql0 + ai2nkql1 + ai211l1 + aiqn1l0 + ai11kql0 + a1nkq1

= ai111l0 + a1n11 + ai21kql1 + aiqnkql0 + aiq11l0 + ai2n1l1 + a11kq1 + ai1nkql0

x2((1, kq)3; (1, n)2)⇒

an111 + ai1n1l0 + aiq1kql0 + ai2nkql1 + ai211l1 + aiqn1l0 + ai11kql0 + annkq1

= ai111l0 + ann11 + ai21kql1 + aiqnkql0 + aiq11l0 + ai2n1l1 + an1kq1 + ai1nkql0

x1((1, kq)3; (1, n)2)-x2((1, kq)3; (1, n)2) yields (4.45)lq=1. (4.45)kq=1 follows by symmetry.

To show (4.45) we considerlq ∈ L\{1, l0, l1, n}. Obviously forn ≥ 5 such anlq exists. Letx3 = x2(1 ↔ lq)4

(Table 64) andx4 = x1(1 ↔ lq)4 (Table 65).X3, X4 ∈ PQ(c,s)
I (xnj0nl0 = 1).

Table 64: Pointx3 (Theorem 4.14, case 3.2)
1 · · · j0 · · · n

1 n i1
...

kq iq i2
...
n n

1 · · · j0 · · · n
1 lq l0
...

kq l0 l1
...
n l0

Table 65: Pointx4 (Theorem 4.14, case 3.2)
1 · · · j0 · · · n

1 1 i1
...

kq iq i2
...
n n

1 · · · j0 · · · n
1 lq l0
...

kq l0 l1
...
n l0

x3((1, kq)3; (1, n)2)⇒

an11lq + ai1n1l0 + aiq1kql0 + ai2nkql1 + ai211l1 + aiqn1l0 + ai11kql0 + annkqlq

= ai111l0 + ann1lq + ai21kql1 + aiqnkql0 + aiq11l0 + ai2n1l1 + an1kqlq + ai1nkql0
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x4((1, kq)3; (1, n)2)⇒

a111lq + ai1n1l0 + aiq1kql0 + ai2nkql1 + ai211l1 + aiqn1l0 + ai11kql0 + a1nkqlq

= ai111l0 + a1n1lq + ai21kql1 + aiqnkql0 + aiq11l0 + ai2n1l1 + a11kqlq + ai1nkql0

x3((1, kq)3; (1, n)2)-x4((1, kq)3; (1, n)2)⇒

annkqlq = (ann1lq + an1kqlq + a1nkqlq ) + a111lq − an11lq − a1n1lq − a11kqlq (4.46)

By substituting terms in brackets from (4.45)kq=1, (4.20) with(i, j, k, l) = (n, 1, kqlq) and (4.20) with(i, j, k, l) =

(1, n, kqlq) (the two last equations were shown implicitly in case 2) we derive equation (4.45).

The proof of case 3 is now complete. Note that in case 3.2 wherekq can be equal tok0, lq is restricted from taking

the valuel0 due tol(1, n) = l0, l(kq, 1) = l0 for all x1, x2, x3, x4.

Conclusively, by reversing the roles of the sets, we can show equation (4.20) with any other pair of indices being

equal to(n, n), including cases wherei = n.

case 4: Three of the indices are equal ton.

W.l.o.g. assumei = n, j = n, k = kq 6= n, l = n. Unlike the previous cases, we will explicitly show equation

(4.42). Letx1 = x3
q(1 ↔ j0)2(iq ↔ n)1(kq ↔ k2)3(lq 6= l0?lq ↔ l0)4. We distinguish two cases, viz.k(1, n) = n,

k(1, n) = k1 6= n.

case 4.1:k(1, n) = n.

W.l.o.g. letl(1, j1) = n, andl(n, j2) = 1 with j1, j2 ∈ J \ {j0, n}. We note that we can havej1 = j2. Let

x2 = x1(1 ↔ n)4. Pointsx1, x2 are illustrated in Table 66 and 67 respectively.

Table 66: Pointx1 (Theorem 4.11, case 4.1)
· · · j1 · · · j2 · · · j0 · · · n

1 1 n
...
n n kq

· · · j1 · · · j2 · · · j0 · · · n
1 n 1 l1
...
n 1 l0 n

Sincex1, x2 ∈ PQ(c,s)
I (xnj0nl0 = 1) we haveax1 = ax2. We will write this equation by adopting the following

notation. At pointx1 let j(i, l) denotes the column that defines the cell, at rowi, which contains elementl at

the second latin square . The corresponding element at the first latin square is defined ask(i, l). In this format
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Table 67: Pointx2 (Theorem 4.11, case 4.1)
· · · j1 · · · j2 · · · j0 · · · n

1 1 n
...
n n kq

· · · j1 · · · j2 · · · j0 · · · n
1 1 n l1
...
n n l0 1

j(1, n) = j1 andj(n, 1) = j2. Thusax1 = ax2, after canceling out identical terms, becomes

∑

{aij(i,1)k(i,1)1 : i ∈ I \ {1, n}} +a1j011 + anj(n,1)k(n,1)1

+
∑

{aij(i,n)k(i,n)n : i ∈ I \ {1, n}} +a1j(1,n)k(1,n)n + annkqn

=

∑

{aij(i,1)k(i,1)n : i ∈ I \ {1, n}} +a1j01n + anj(n,1)k(n,1)n

+
∑

{aij(i,n)k(i,n)1 : i ∈ I \ {1, n}} +a1j(1,n)k(1,n)1 + annkq1 (4.47)

Equation (4.47) includes only one term with three indices equal ton (annkqn) since both at pointsx1 andx2

we cannot have pair(n, n) ∈ K × L at the rown or columnn (xnj0nl0 = x1nnl1 = 1 at both points). We also

observe that sincej(n, 1) = j2 6= n termanj(n,1)k(n,1)n 6= anj0k0n. Therefore, the set of indices of every term

of (4.47), exceptannkqn, has been considered in one of the previous cases. That is, we have shown (4.42) for

every term of (4.47), exceptannkqn. Substituting only terms in summands andanj(n,1)k(n,1)1, a1j(1,n)k(1,n)n,

anj(n,1)k(n,1)n, a1j(1,n)k(1,n)1 from (4.42) in (4.47) and canceling out identical terms yields:

∑

{λ1
k(i,1)1 + λ1

k(i,n)n + λ3
j(i,1)1 + λ3

j(i,n)n : i ∈ I}

− (λ1
k(1,1)1 + λ1

k(n,n)n + λ3
j(1,1)1 + λ3

j(n,n)n) + λ2
n1 + λ2

1n +a1j011 + annkqn

=
∑

{λ1
k(i,1)n + λ1

k(i,n)1 + λ3
j(i,1)n + λ3

j(i,n)1 : i ∈ I}

− (λ1
k(n,n)1 + λ1

k(1,1)n + λ3
j(n,n)1 + λ3

j(1,1)n) + λ2
nn + λ2

11 +a1j01n + annkq1 (4.48)

(4.48) is derived by adding and subtracting to (4.47) terms in brackets, so that the index of summands runs for
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all values of the setI. It is easy to see that summands cancel out since

∑

{λt
k(i,1)1 : i ∈ I} =

∑

{λt
k(i,n)1 : i ∈ I}, t ∈ {1, 3} (4.49)

∑

{λt
k(i,1)n : i ∈ I} =

∑

{λt
k(i,n)n : i ∈ I} t ∈ {1, 3} (4.50)

∑

{λt
j(i,1)1 : i ∈ I} =

∑

{λt
j(i,n)1 : i ∈ I}, t ∈ {1, 3} (4.51)

∑

{λt
j(i,1)n : i ∈ I} =

∑

{λt
j(i,n)n : i ∈ I} t ∈ {1, 3} (4.52)

This is because then-tuple (k(i, 1))i∈I ((j(i, 1))i∈I ) is an array containing all elements of{1, ..., n} in some

order. The same is true for(k(i, n))i∈I ((j(i, n))i∈I ). If we consider the twon-tuples as unordered we have

(k(i, 1))i∈I ≡ (k(i, n))i∈I ≡ (1, ..., n) ((j(i, 1))i∈I ≡ (j(i, n))i∈I ≡ (1, ..., n)). Hence equations (4.49),...,

(4.52) are valid. Canceling out identical terms and dropping thej(i, l) andk(i, l) notation by substituting from

the “actual” elements ofx1, x2, (4.48) becomes

annkqn = a1j01n + annkq1 − a1j011

+ λ1
11 + λ1

kqn + λ3
j01 + λ3

nn + λ2
nn + λ2

11

− (λ1
kq1 + λ1

1n + λ3
n1 + λ3

j0n)− λ2
n1 − λ2

1n (4.53)

By substituting termsa1j01n, annkq1, a1j011 from (4.42) and canceling out identical terms (4.53) yieldsannkqn =

λ1
kqn + λ2

nn + λ3
nn + λ4

nn + λ5
nkq

+ λ6
nkq

which is (4.42) for(i, j, k, l) = (n, n, kq, n).

case 4.2:k(1, n) = k1 6= n.

W.l.o.g. letl(1, j1) = n, andl(n, j2) = l1 with j1, j2 ∈ J \ {j0, n}. We note that we can havej1 = j2. Let

x2 = x1(l1 ↔ n)4. Pointsx1, x2 are illustrated in Table 68 and 69 respectively.

Table 68: Pointx1 (Theorem 4.11, case 4.2)
· · · j1 · · · j2 · · · j0 · · · n

1 1 k1
...
n n kq

· · · j1 · · · j2 · · · j0 · · · n
1 n 1 l1
...
n l1 l0 n

As in the previous case sincex1, x2 ∈ PQ(c,s)
I (xnj0nl0 = 1) we haveax1 = ax2. By adopting the same
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Table 69: Pointx2 (Theorem 4.11, case 4.2)
· · · j1 · · · j2 · · · j0 · · · n

1 1 k1
...
n n kq

· · · j1 · · · j2 · · · j0 · · · n
1 l1 1 n
...
n n l0 l1

notation as in case 4.1 and after canceling out identical terms,ax1 = ax2 becomes

∑

{aij(i,l1)k(i,l1)l1 : i ∈ I \ {1, n}} +a1nk1l1 + anj(n,l1)k(n,l1)l1

+
∑

{aij(i,n)k(i,n)n : i ∈ I \ {1, n}} +a1j(1,n)k(1,n)n + annkqn

=

∑

{aij(i,l1)k(i,l1)n : i ∈ I \ {1, n}} +a1nk1n + anj(n,l1)k(n,l1)n

+
∑

{aij(i,n)k(i,n)l1 : i ∈ I \ {1, n}} +a1j(1,n)k(1,n)l1 + annkql1 (4.54)

We observe again that all terms of (4.54), exceptannkqn, can be substituted from (4.42). As in the previous case

this yields the desired result.

Note that in both sub-cases of case 4kq can be equal tok0. Reversing the roles of the sets and following the same

procedure we prove (4.42) for the remaining three cases:(i, j, k, l) = (n, n, n, lq), (i, j, k, l) = (n, jq, n, n) and

(i, j, k, l) = (iq, n, n, n) whereiq ∈ I \ {n}, jq ∈ J \ {n}, kq ∈ K \ {n}, lq ∈ L \ {n}.

Our proof with respect to(i, j, k, l) ∈ C \ Q(c, s) is now complete. We proceed by considering(i, j, k, l) ∈ Q(c, s).

We define

πijkl = aijkl − (λ1
kl + λ2

il + λ3
jl + λ4

ij + λ5
jk + λ6

ik)

To prove (4.42) we have to show that allπijkl are equal. Note that for(i, j, k, l) ∈ Q((n, n, n, n), (n, j0, k0, l0)) we

only have four terms, i.e.πnnnn, πnnk0l0 , πnj0nl0 , πnj0k0n. From pointx0 of Lemma 4.5 we derive pointx as follows:

x = x0(i0 ↔ n)1(1 ↔ i0)1(j0 ↔ n)2(1 ↔ j0)2(1 ↔ n)4(1 ↔ k0)3(1 ↔ n)3. We consider two cases

case 5:k0 6= k1 at pointx0.

Then at pointx let j1, j2 ∈ J \{j0, n} with j1 6= j2 such thatk(i0, j1) = k2 andk(i0, j2) = n. Let alsol(i0, j1) = lt

andl(i0, j2) = ls. Pointx is illustrated in Table 70. Letx′ = x(i0 ↔ n)1 (see Table 71). Clearlyx ∈ PQ(c,s)
I since
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Table 70: Pointx (Theorem 4.14, case 5)
· · · j0 · · · j1 · · · j2 · · · n

...
i0 k0 k2 n k1
...
n n k2

· · · j0 · · · j1 · · · j2 · · · n
...
i0 n lt ls l1
...
n l0 n

Table 71: Pointx′ (Theorem 4.14, case 5)
· · · j0 · · · j1 · · · j2 · · · n

...
i0 n k2
...
n k0 k2 n k1

· · · j0 · · · j1 · · · j2 · · · n
...
i0 l0 n
...
n n lt ls l1

xnj0nl0 = 1 andx′ ∈ PQ(c,s)
I sincexnj0k0n = 1. Thusax = ax′ ⇒

∑

{ai0jkx(i0,j)lx(i0,j) + anjkx(n,j)lx(n,j) : j ∈ J}

=
∑

{ai0jkx(n,j)lx(n,j) + anjkx(i0,j)lx(i0,j) : j ∈ J} (4.55)

Let x̄ = x(k2 ↔ n)3 (see Table 72). Let̄x′ = x̄(i0 ↔ n)1 (see Table 73). Note that pointx̄ ∈ PQ(c,s)
I since

Table 72: Point̄x (Theorem 4.14, case 5)
· · · j0 · · · j1 · · · j2 · · · n

...
i0 k0 n k2 k1
...
n k2 n

· · · j0 · · · j1 · · · j2 · · · n
...
i0 n lt ls l1
...
n l0 n

xnnnn = 1 andx̄′ ∈ PQ(c,s)
I sincexnj0k0n = 1. Thereforeax̄ = ax̄′ ⇒

∑

{ai0jkx̄(i0,j)lx̄(i0,j) + anjkx̄(n,j)lx̄(n,j) : j ∈ J}

=
∑

{ai0jkx̄(n,j)lx̄(n,j) + anjkx̄(i0,j)lx̄(i0,j) : j ∈ J} (4.56)

We observe thatkx(i, j) = kx̄(i, j), lx(i, j) = lx̄(i, j) for i = i0, j ∈ J \ {j1, j2} andi = n, j ∈ J \ {j0, n}. Thus
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Table 73: Point̄x′ (Theorem 4.14, case 5)
· · · j0 · · · j1 · · · j2 · · · n

...
i0 k2 n
...
n k0 n k2 k1

· · · j0 · · · j1 · · · j2 · · · n
...
i0 l0 n
...
n n lt ls l1

(4.55)-(4.56)⇒

ai0j1k2lt + ai0j2nls + anj0nl0 + annk2n + ai0j0k2l0 + ai0nnn + anj1nlt + anj2k2ls

= ai0j1nlt + ai0j2k2ls + anj0k2l0 + annnn + ai0j0nl0 + ai0nk2n + ai0j1k2lt + anj2nls

If we substitute in the equation above all terms from (4.42) we deriveπnnnn = πnj0nl0 = π.

Then we write (4.55) as

∑

{ai0jkx(i0,j)lx(i0,j) : j ∈ J}+
∑

{anjkx(n,j)lx(n,j) : j ∈ J \ {j0}}+ anj0nl0

=
∑

{ai0jkx(n,j)lx(n,j) : j ∈ J}+
∑

{anjkx(i0,j)lx(i0,j) : j ∈ J \ {j0}}+ anj0k0n

By substituting from (4.42) and canceling out terms we obtain

∑

{λ2
i0l(i0,j) + λ2

nl(n,j) + λ6
i0k(i0,j) + λ6

nk(n,j) : j ∈ J}+ πnj0nl0

=
∑

{λ2
i0l(n,j) + λ2

nl(i0,j) + λ6
i0k(n,j) + λ6

nk(i0,j) : j ∈ J}+ πnj0k0n

Sincei0, n indicate rows of a latin square, and considering each such row as an unordered n-tuple with respect

to the values of the cells of that row, then these unordered n-tuples are equivalent, i.e.(k(i0, 1), ..., k(i0, n)) ≡

(k(n, 1), ..., k(n, n)) and(l(i0, 1), ..., l(i0, n)) ≡ (l(n, 1), ..., l(n, n)). Therefore, the above equation becomesπnj0nl0 =

πnj0k0n = π.

Let x1 = x̄(l0 ↔ n)4(k0 ↔ n)3 andx2 = x̄′(l0 ↔ n)4(k0 ↔ n)3. Clearlyx1, x2 ∈ PQ(c,s)
I since forx1 we have

xnnk0l0 = 1 and forx2 we havexnj0nl0 = 1. Therefore, if we substitute inax1 = ax2 terms from (4.42) and take

into account the equivalent terms derived from the latin square property of the rows we getπnnk0l0 = πnj0nl0 = π.

case 6:k0 = k1 at pointx0.

Let j1 ∈ J \ {j0, n} be such thatk(i0, j1) = k2. We denotel(i0, j1) aslt and pointx is illustrated in Table 74. Let

x′ = x(i0 ↔ n)1 (see Table 75). Thenx, x′ ∈ PQ(c,s)
I since for pointx we havexnj0nl0 = 1 and for pointx′ we
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Table 74: Pointx (Theorem 4.14, case 6)
· · · j0 · · · j1 · · · n

...
i0 k0 k2 n
...
n n k2

· · · j0 · · · j1 · · · n
...
i0 n lt l1
...
n l0 n

Table 75: Pointx′ (Theorem 4.14, case 6)
· · · j0 · · · j1 · · · n

...
i0 n k2
...
n k0 k2 n

· · · j0 · · · j1 · · · n
...
i0 l0 n
...
n n lt l1

havexnj0k0n = 1.

Let x̄ = x(k2 ↔ n)3 and x̄′ = x̄(i0 ↔ n)1. Pointsx̄, x̄′ are illustrated in Table 76 and Table 77 respectively.

Table 76: Point̄x (Theorem 4.14, case 6)
· · · j0 · · · j1 · · · n

...
i0 k0 n k2
...
n k2 n

· · · j0 · · · j1 · · · n
...
i0 n lt l1
...
n l0 n

Clearly x̄, x̄′ ∈ PQ(c,s)
I since for pointx̄ we havexnnnn = 1 and for pointx̄′ we havexnj0k0n = 1. Therefore

ax− ax̄ = ax′ − ax̄′ ⇒

ai0j1k2lt + ai0nnl1 + anj0nl0 + annk2n + ai0j0k2l0 + ai0nnn + anj1nlt + annk2l1

= ai0j1nlt + ai0nk2l1 + anj0k2l0 + annnn + ai0j0nl0 + ai0nk2n + anj1k2lt + annnl1

Again by substituting all terms from (4.42) we getπnnnn = πnj0nl0 = π. In a similar manner as in case 5 we derive

πnnk0l0 = πnj0k0n = πnj0nl0 = π.

Finally, (4.43) is true since we have shown that forn ≥ 5 andn 6= 6 PQ(c,s)
I 6= ∅.

Proposition 4.16. The inequalities (4.41) are of rank 2.
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Table 77: Point̄x′ (Theorem 4.14, case 6)
· · · j0 · · · j1 · · · n

...
i0 k2 n
...
n k0 n k2

· · · j0 · · · j1 · · · n
...
i0 l0 n
...
n n lt l1

Proof. The proof will essentially proceed in the same way as the proof of Proposition 4.13. Assume w.l.o.g.c =

(i0, j0, k0, l0) ands = (i0, j1, k1, l1). The node set of the clique isQ(c, s) = {(i0, j0, k0, l0), (i0, j0, k1, l1), (i0, j1, k0, l1),

(i0, j1, k1, l0)}, the induced inequality being

xi0j0k0l0 + xi0j0k1l1 + xi0j1k0l1 + xi0j1k1l0 ≤ 1 (4.57)

If the inequality (4.57) is of Chvátal rank1, then there exists0 < ε < 1, such that every solution to the LP-relaxation of

OLS,i.e. Ax = e, x ≥ 0, satisfies:

xi0j0k0l0 + xi0j0k1l1 + xi0j1k0l1 + xi0j1k1l0 ≤ 2− ε (4.58)

However, any solution havingxi0j0k0l0 = xi0j0k1l1 = xi0j1k0l1 = xi0j1k1l0 = 1
2 violates (4.58). We will show that such a

solution always exists forn ≥ 3, distinguishing between the cases wheren is even andn is odd, thus proving that the rank

of the inequality (4.57) is at least 2.

If n is even then for each(iv, ju) ∈ I × J define two possible value pairs: either{k(iv, ju), l(iv, ju)} = {y1, z1} or

{k(iv, ju), l(iv, ju)} = {y2, z2} where

y1 = (2 ·
⌈v
2

⌉

+ 2 ·
⌊u

2

⌋

) mod n, z1 = (y1 + 2 ·
⌊v
2

⌋

+ u− 2 ·
⌊u

2

⌋

) mod n,

and

y2 = (2 ·
⌈v
2

⌉

+ 2 ·
⌊u

2

⌋

+ 1) mod n, z2 = (y2 + 2 ·
⌊v
2

⌋

− u + 2 ·
⌊u

2

⌋

) mod n.

The proposed solution is:

xivjukylz =











1
2 , if y = y1, z = z1 or y = y2, z = z2

0, otherwise
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for all (iv, ju) ∈ I × J . It is easy to see thatv, u, z, y ∈ {0, 1, 2, ..., n− 1}.

To illustrate this solution with respect to anOLSstructure, assume thatI = J = K = L = {0, 1, ..., n − 1}, andn

even.I is the row set,J is the column set andK,L are the value sets of the first and the second latin square, respectively.

For each cell(i, j) ∈ I × J , we define:

k1 = (2 ·
⌈

i
2

⌉

+ 2 ·
⌊

j
2

⌋

) mod n, l1 = (k1 + 2 ·
⌊

i
2

⌋

+ j − 2 ·
⌊

j
2

⌋

) mod n,

and

k2 = (2 ·
⌈

i
2

⌉

+ 2 ·
⌊

j
2

⌋

+ 1) mod n, l2 = (k2 + 2 ·
⌊

i
2

⌋

− j + 2 ·
⌊

j
2

⌋

) mod n.

The solution must satisfy:

xijkl =











1
2 , if k = k1, l = l1 or k = k2, l = l2

0, otherwise

The non zero variables forn = 6 are depicted at Table 78. Pair (k, l) placed at cell(i, j) implies thatxijkl = 1
2 . The

Table 78: A solution violating (4.58) forn = 6
0 1 2 3 4 5

0 00,11 01,10 22,33 23,32 44,55 45,54

1 22,33 23,32 44,55 45,54 00,11 01,10

2 24,35 25,34 40,51, 41,50 02,13 03,12

3 40,51 41,50 02,13 03,12 24,35 25,34

4 42,53 43,52 04,15 05,14 20,31 21,30

5 04,15 05,14 20,31 21,30 42,53 43,52

marginal row values are the values of indexi, whereas the marginal column values are the ones of indexj. It is easy to

verify that exactly two variables at the left-hand side of each constraint are set to1
2 by checking that each value of indexk

(or l) appears exactly twice in each row/column, each pair(k, l) appears at exactly two cells and each cell has exactly two

non-zero variables.

If n is odd, the solution does not follow a pattern as concrete as above, therefore it can be better described in the format

used in Table 78. Assume again w.l.o.g. thatI = J = K = L = {0, 1, ..., n}, n odd and construct a square matrix, with

the marginal values on rows and columns corresponding to elements of setsI andJ , respectively. The matrix is symmetric,

with respect to the main bottom-left to top-right diagonal (i.e. the diagonal(n − 1, 0), (n − 2, 1), ..., (0, n − 1)) and is

illustrated in Table 79.

The non-zerox0jkl variables (i.e. the ones in the first row) are fixed exactly as in the case ofn being even, except for
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Table 79: A solution violating (4.58) forn odd
0 1 n-3 n-2 n-1

0 00,11 01,10 ... ... (n-3)(n-3),(n-2)(n-2) (n-3)(n-2),(n-2)(n-3) (n-1)(n-1)

1 (n-5)(n-3),(n-4)(n-2) ... ... (n-1)0,(n-1)1 (n-3)(n-2),(n-2)(n-3))

2 (n-3)(n-3),(n-2)(n-2)

... ... ... ... ... ... ... ...

n-2 (n-1)2,(n-1)3 ... ... 01,10

n-1 (n-5)(n-3),(n-4)(n-2) 00,11

variablex0(n−1)(n−1)(n−1), the single variable set to1. The non-zeroxi(n−1)kl variables (i.e. the ones in the last column)

are fixed in the manner posed by the above mentioned symmetry. Excluding the first row and the last column, we are left

with a (n− 1)× (n− 1) square submatrix (of even size), which can be split into(n−1)2

4 2× 2 submatrices.

Each such2 × 2 submatrix, which is “above” the main diagonal, involves two pairs of consecutive indices from each

of the setsK, L according to the pattern illustrated at Table 80 (remember all four sets contain elements{0, 1, ...., n− 1}),

Table 80:
yz, (y + 1)(z + 1) zy, (z + 1)(y + 1)
(z + 1)y, z(y + 1) y(z + 1), (y + 1)z

wherey, z = 0, 2, ..., n− 3.

It is therefore enough to define only the upper left element of each such submatrix, appearing at rows1, 3, ..., n− 4 and

columns0, 2, ..., n − 5. At row i and columnj (i ≤ n − 4 and odd,j ≤ n − 5 and even,i + j ≤ n − 4), there must be

y = n− (i + j)− 4 andz = y + n− i. If z > n− 3, thenz is replaced byz mod n− 3.

The remaining2 × 2 submatrices are the last to be filled according to the pattern illustrated at Table 81, wherey =

Table 81:
(n− 1)y, (n− 1)(y + 1) y(n− 1), (y + 1)(n− 1)
y(n− 1), (y + 1)(n− 1) (n− 1)y, (n− 1)(y + 1)

0, 2, ..., n − 3. Note that the top-right and bottom-left cells are on the diagonal induced by the cells(n − 1, 0), (n −

2, 1), ..., (0, n− 1). The value ofy must be the one appearing only once in that column, after all other cells have been filled.

A solution violating inequality (4.58) forn = 7 is illustrated in Table 82. It is easy to check that exactly two variables at

the left-hand side of each constraint are set to1
2 or exactly one variable (i.e.x0666) is set to1.

We have shown that the rank of (4.57) is at least two. Now we will show that the rank is at most2, by deriving (4.57)

as a linear combination of rank1 inequalities. Adding the rows(i0, j0), (i0, k0), (i0, l1), each one weighted by12 , gives

an inequality, where variablesxi0j0k0l0 , xi0j0k1l1 andxi0j1k0l1 appear with coefficient1, variablexi0j0k0l1appears with

coefficient 3
2 and all other variables appear with coefficient1

2 . The r.h.s. is3
2 . Rounding down both sides results in the

inequality:
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Table 82: A solution violating (4.58) forn = 7.
0 1 2 3 4 5 6

0 00,11 01,10 22,33 23,32 44,55 45,54 66

1 24,35 42,53 02,13 20,31 60,61 06,16 45,54

2 43,52 25,34 21,30 03,12 06,16 60,61 44,55

3 04,15 40,51 64,65 46,56 03,12 20,31 23,32

4 50,41 05,14 46,56 64,65 21,30 02,13 22,33

5 62,63 26,36 05,14 40,51 25,34 42,53 01,10

6 26,36 62,63 50,41 04,15 43,52 24,35 00,11

xi0j0k0l0 + xi0j0k1l1 + xi0j1k0l1 + xi0j0k0l1 ≤ 1 (4.59)

Applying the same procedure to rows(i0, j0), (i0, k1), (i0, l0) results in the inequality:

xi0j0k0l0 + xi0j0k1l1 + xi0j1k1l0 + xi0j0k1l0 ≤ 1 (4.60)

Applying the same procedure to rows(i0, j1), (i0, k0), (i0, l0) results in the inequality:

xi0j0k0l0 + xi0j1k0l1 + xi0j1k1l0 + xi0j1k0l0 ≤ 1 (4.61)

Applying the same procedure to rows(i0, j1), (i0, k1), (i0, l1) results in the inequality:

xi0j0k1l1 + xi0j1k0l1 + xi0j1k1l0 + xi0j1k1l1 ≤ 1 (4.62)

Adding inequalities (4.59)-(4.62) gives the following inequality:

3(xi0j0k0l0 + xi0j0k1l1 + xi0j1k1l0 + xi0j1k0l1) + (xi0j0k0l1 + xi0j0k1l0 + xi0j1k0l0 + xi0j1k1l1) ≤ 4 (4.63)

Dividing inequality (4.63) by3 and rounding down both sides gives inequality (4.57). This implies that inequality (4.57)

is of rank at most2 and the proof is complete.
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5 Violated clique inequalities

Facet-defining inequalities are of great importance since they describe the convex hull of integer solutions for a problem.

Therefore, if we knew all facet-defining inequalities of an integer polytope, we would be able to solve the integer problem

by incorporating them into the constraint matrix and then solving the linear programming relaxation. In practice, however,

this is not easy, since for most problems a) not all the facets of the underlying convex hull of integer points are known,

and b) the number of facets is not polynomially bounded on the size of the problem, thus yielding a constraint matrix of

exponential size. For these reasons most algorithms consider the known facet inequalities only when they are violated by

some points of the linear relaxation polytope. Although determining whether an arbitrary non-integer solution violates a

facet-defining inequality of the convex hull of integer solutions for anNP − hard problem is generally alsoNP − hard, it

is sometimes possible to do that efficiently for certain classes of facets. In particular, with respect to theOLS,we propose

two polynomial procedures, one for each class of facet defining cliques, that deal with the problem of detecting a violated

clique inequality.

First we give an algorithm that detects a violated facet-defining inequality induced by cliques of type II.

Algorithm 1 Separation of Cliques of type II.
Let x ∈ PL andv ∈ N such thatv ≥ 5.

Step 1: Setdc = 0 for all c ∈ C.

Step 2: For all s ∈ C checkxs. If xs ≥ 1
vn then setdc = dc + xs for all c ∈ Q(s). If dc > 1 stop: the inequality

∑

{xq : q ∈ Q(c)} ≤ 1 is violated. Otherwise continue.

Step 3: For all c ∈ C if dc > v−4
v then check whether the inequality

∑

{xq : q ∈ Q(c)} ≤ 1 is violated. If so stop;
otherwise continue.

In order to prove the correctness and complexity of the algorithm we need some intermediate results.

Lemma 5.1. For a pointx ∈ PL and a positive integerv, the number of components ofx with value≥ v is≤ n2

v .

Proof. The value of the linear programL = max{ex : x ∈ PL} can be easily shown to ben2 since the vectorsx ∈ Rn4

andu ∈ R6n2
defined byxc = 1

n2 , ∀c ∈ C andur = 1
6 ,∀r ∈ R are feasible solutions toL and its dual. Therefore they are

optimal. Thus if more thann
2

v components ofx have values greater than or equal tov then the value ofex would be greater

thann2 contradicting the above.

Lemma 5.2. For any x ∈ PL and any positive integerv, the number ofc ∈ C, such that
∑

{xq : q ∈ Q(c)} ≥ v is

≤ n2(4n−3)
v .
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Proof. Consider

∑

{
∑

{xq : q ∈ Q(c)} : c ∈ C} (5.1)

We know that| Q(c) |= 4n− 3 for all c ∈ C which implies that eachxc appears4n− 3 times in (5.1). Hence

∑

{
∑

{xq : q ∈ Q(c)} : c ∈ C} = (4n− 3)
∑

{xc : c ∈ C} ≤ (4n− 3)n2

If there were more thann
2(4n−3)

v

∑

{xq : q ∈ Q(c)} with a value greater than or equal tov then it would be
∑

{
∑

{xq :

q ∈ Q(c)} : c ∈ C} > n2(4n− 3) contradicting the above.

Theorem 5.3. Algorithm 1 determines inO(n4) steps whether a givenx ∈ PL violates a facet-defining inequality of type II.

Proof. Let us first prove that the algorithm is correct. Assume that the inequality
∑

{xq : q ∈ Q(c)} ≤ 1 is violated for

somec ∈ C. Then

dc =
∑

{xq : q ∈ Q(c), xq ≥
1
vn
} > 1−

∑

{xq : q ∈ Q(c), xq <
1
vn
}

≥ 1− 4n− 3
vn

≥ v − 4
v

Hence, violation is detected atStep3 of the algorithm. Therefore the algorithm is correct.

Let us now examine the complexity of the algorithm. AtStep1 we initializen4 counters. AtStep2 there can be at most

vn3 components of a fractional pointx which are examined. For each of these,4n − 3 counters are updated since there

are4n − 3 nodes in the node set of a clique of type II. So, in the worst case the complexity ofStep2 is vn3(4n − 3). At

Step3 the number ofc ∈ C for which
∑

{xq : q ∈ Q(c)} > v−4
v is at mostvn2(4n−3)

v−4 (Lemma 5.2). For each suchc we

need4n− 3 extra steps to check whether the corresponding inequality is indeed violated. Hence, the complexity ofStep3

is vn2(4n−3)2

v−4 . Thus, the overall complexity of the algorithm is

f(v, n) = n4 + vn3(4n− 3) +
vn2(4n− 3)2

v − 4
(5.2)

which isO(n4).

The value ofv that minimizesf(v, n) is found by setting the first derivative with respect tov to zero:

∂f(v, n)
∂v

= n(v − 4)4 − 4(4n− 3) = 0 ⇒ v = 4 +

√

16− 12
n
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which for largen producesv = 8. For this value ofv (5.2) becomesf(n) = n4 + 8n3(4n− 3) + 2n2(4n− 3)2.

Note that the complexity of the above algorithm remains linear with respect to the number of variables, therefore it is

the lowest possible.

Now we will give a separation algorithm for cliques of type III.

Algorithm 2 Separation of Cliques of type III
Let x ∈ PL .

Step 1:For allc ∈ C if 1 > xc > 1
4

Step 2: Then for allt ∈ C with | c ∩ t |= 2 if xt > 1−xc
3

Step 3: Then for alls ∈ C, such that| c ∩ s |= 1 and| s ∩ t |= 3 if
∑

{xq : q ∈ Q(c, s)} > 1 stop; otherwise continue.

Theorem 5.4. Algorithm 2 determines inO(n4) steps whether a givenx ∈ PL violates a facet defining inequality of

type III.

Proof. Let us first consider the correctness of the algorithm.Q(c, s) is a node set of a4-clique thus if a non-integer point

x violates
∑

{xq : q ∈ Q(c, s)} ≤ 1 at least one component ofx must be> 1
4 . W.l.o.g. assume thatxc > 1

4 for

c = (i0, j0, k0, l0). Sincex ∈ PL then it belongs to the constraints

∑

{xijk0l0 : i ∈ I, j ∈ j} = 1 (5.3)
∑

{xi0jkl0 : j ∈ J, k ∈ K} = 1 (5.4)
∑

{xij0kl0 : i ∈ I, k ∈ K} = 1 (5.5)
∑

{xi0j0kl : k ∈ K, l ∈ L} = 1 (5.6)
∑

{xij0k0l : i ∈ I, l ∈ L} = 1 (5.7)
∑

{xi0jk0l : j ∈ J, l ∈ L} = 1 (5.8)

If xc = 1 then for allt ∈ C such that| c ∩ t |= 2 we havext = 0. Hence, the inequality
∑

{xq : q ∈ Q(c, s)} ≤ 1 is

satisfied as equality for alls ∈ C such that| c ∩ s |= 1. Therefore ifx violates such an inequality thexc < 1 and the range

1 > xc > 1
4 are correct. Since| Q(c, s) |= 4 the conditionxt > 1−xc

3 must hold for at least onet ∈ Q(c, s). Consequently,

algorithm 2 is correct.

Concerning the complexity of the algorithm, we note that the comparison inStep1 is executed in the worst casen4

times, once for each variable. The number of variables with value> 1
4 is at most4n2 (Lemma 5.1). For each such variable

there are6(n − 1)2 t ∈ C such that| c ∩ t |= 2 as indicated by constraints (5.3),...,(5.8). Hence, we need24n2(n − 1)2
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comparisons to identify all such ordered pairs(c, t), yielding complexity ofO(n4). For each suchc the number oft cannot

be more than3 in each of (5.3),...,(5.8) since otherwise one of these inequalities would be violated. Thus the total number

of t givenc for whichxt > 1−xc
3 is satisfied is18. Forc, t given there are at mostn− 1 s ∈ C such that| c∩ s |= 1. Thus,

Step3 will be executed4n2 × 18× (n− 1) times, i.e. its complexity is of the orderO(n3). Thus, the total complexity is of

O(n4).

Corollary 5.5. Whether there exists a violated clique inequality can be detected in linear time with respect to the number

of variables, i.e. inO(n4) steps.
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