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Abstract

The chromatic polynomials considered in this paper are associated with graphs constructed
in the following way. Take n copies of a complete graph Kb and, for i = 1, 2, . . . , n, join
each vertex in the ith copy to the same vertex in the (i + 1)th copy, taking n + 1 = 1 by
convention. Previous calculations for b = 2 and b = 3 suggest that the chromatic poly-
nomial contains terms that occur in ‘levels’. In the present paper the levels are explained
by using a version of the sieve principle, and it is shown that the terms at level ` corre-
spond to the irreducible representations of the symmetric group Sym`. In the case of the
two linear representations the terms can be calculated explicitly by methods based on the
theory of distance-regular graphs. For the nonlinear representations the calculations are
more complicated. An illustration is given in Section 10, where the complete chromatic
polynomial for the case b = 4 is obtained.

MSC 2000: 05C15, 05C50.
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Chromatic polynomials and representations of the symmetric group

1. Introduction

The chromatic polynomials considered in this paper are associated with graphs, which we
call bracelets, constructed in the following way. Take n copies of a base graph, and join
certain vertices in the ith copy to certain vertices in the (i + 1)th copy, the joins being
the same for each i, and n + 1 = 1 by convention. Here we take the base graph to be the
complete graph Kb, and the joins to be the matching in which each vertex in one copy
of Kb is joined to the same vertex in the next copy. This gives a bracelet that we denote
by Bn(b). More generally, bracelets can be constructed by allowing the base graph to be
incomplete, and by allowing the copies to be joined in a more complicated way [5,7].

The chromatic polynomials for Bn(2) and Bn(3) are as follows [3, 4, 6, 7]:

P (Bn(2); k) = (k2 − 3k + 3)n + (k − 1)
(

(1− k)n + (3− k)n)

+ (k2 − 3k + 1).

P (Bn(3); k) = (k3 − 6k2 + 14k − 13)n

+ (k − 1)
(

(−k2 + 7k − 13)n + 2(−k2 + 4k − 4)n
)

+ k(k − 3)/2
(

(k − 5)n + 2(k − 2)n
)

+ (k − 1)(k − 2)/2
(

(k − 1)n + 2(k − 4)n
)

+ (k3 − 6k2 + 8k − 1)(−1)n.

A partial explanation of the form of these results is provided by the transfer-matrix method,
which leads to a formula of the kind

P (Bn(b); k) =
∑

r

mr(k)λr(k)n,

where λr(k) and mr(k) are the eigenvalues and multiplicities of suitable matrices T (k), k
being a positive integer. However, the results quoted above suggest that more is true: the
terms occur in ‘levels’, the terms at level ` being of the form

(

Polynomial of degree `
)

×
(

Integer
)(

Polynomial of degree b− `
)n

.

The levels can be explained, in general terms, by using the sieve method introduced in
[5]. In the present paper the method is applied to the graphs Bn(b), where it turns out
that all the required polynomials of degree b − ` can be derived (in principle) from the
representation theory of the symmetric group Sym`.

There are two reasons why this result is significant. The first is that the polynomials that
are raised to the nth power determine the behaviour of the chromatic roots of Bn(b) as
n → ∞, for all b. Indeed, a theorem of Beraha, Kahane and Weiss [2] can be used to
determine the curves that comprise the limit points of the chromatic roots. The second
reason is that the same general structure is observed to apply to many other families of
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bracelets, with different base graphs and different links. Since these graphs correspond
to the lattice-like models studied in theoretical physics, information about the limiting
behaviour of their chromatic roots is potentially of great interest [10,11,12].

The main result proved here (Theorem 4) is that, for every partition π of ` (` ≤ b), the
corresponding representation Rπ of Sym` gives rise to a ‘collapsed’ matrix Nπ whose eigen-
values are also eigenvalues of the transfer matrix T (k); and conversely, every eigenvalue of
T (k) is an eigenvalue of Nπ for some π and `. It follows that the chromatic polynomial of
Bn(b) can be written in the form

P (Bn(b); k) =
b

∑

`=0

∑

|π|=`

mπ(k) tr(Nπ)n,

for certain polynomials mπ(k).

In the case of the two linear representations of Sym`, the matrices Nπ and their spectra
can be calculated by methods based on the theory of distance-regular graphs, using the
Johnson graphs J(b, `). This calculation produces explicitly d + 1 polynomials associated
with the principal representation (where d = min(`, b−`)), and two polynomials associated
with the alternating representation (Theorems 5 and 6). For nonlinear representations the
calculations are more complicated. As an illustration, the case b = 4, ` = 3 is studied in
Section 10, and the complete chromatic polynomial of Bn(4) is obtained. The result agrees
with that obtained by Chang [8], using a different method.

2. The sieve formula

We take V = {1, 2, . . . , b} as the vertex-set of a complete graph Kb, and regard the set
{1, 2, . . . , k}, where k ≥ b, as a set of colours. The set of all proper k-colourings of Kb will
be denoted by Pk, and Vk will denote the vector space of real-valued functions defined on
Pk. A basis for Vk is given by the set of functions [γ], γ ∈ Pk, such that [γ](α) = 0 unless
α = γ, in which case the value is 1.

Let X be a non-empty subset of V and let θ be a k-colouring of the subgraph of Kb induced
by X. For any γ ∈ Pk, denote by γX the restriction of γ to X, and define [X|θ] to be the
element of Vk given by

[X|θ] =
∑

γX=θ

[γ].

In other words, [X|θ] is the function that takes the value 1 on the colourings that agree
with θ on X, and 0 otherwise.

To cover the case when X = ∅ and φ is the empty function it makes sense to define
[∅|φ] =

∑

γ [γ], where the sum is taken over all γ ∈ Pk. So [∅|φ] is the function which takes
the constant value 1 on every element of Pk. We also denote this function by u.

We say that a pair (α, β) of members of Pk is compatible if α(v) 6= β(v) for all v ∈ V .
Suppose this condition holds. Then, if two disjoint copies of Kb are linked by edges, each
vertex v in the first copy being joined to the vertex v in the second, and the colourings
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α and β are given to the first and second copy respectively, these colourings combine to
form a (proper) colouring of the linked graph.

For each k ≥ b we define a compatibility matrix T = T (k) (and an associated compatibility
operator on Vk) as follows. The rows and columns of T correspond to the elements of Pk,
and the entries are given by:

(T )αβ =
{

1 if α and β are compatible;
0 otherwise.

The sieve formula [5] Suppose that k is given and let T = T (k) be the associated
compatibility operator. For any given α ∈ Pk let αX denote the restriction of α to X.
Then

T [α] =
∑

X⊆V

(−1)|X|[X|αX ].

3. Invariant subspaces

In this section we shall prove the following result.

Theorem 1 Let S be a subset of the colours {1, 2, . . . , k}, and let U(S) be the subspace
of Vk spanned by all functions [Y |β] with β(Y ) ⊆ S. Then U(S) is invariant under the
action of T .

The proof is in several stages. We begin with the following simple calculation:

T [Y |β] = T
(

∑

αY =β

[α]
)

=
∑

αY =β

T [α]

=
∑

αY =β

∑

X⊆V

(−1)|X| [X|αX ]

=
∑

X⊆V

(−1)|X| σ(X,Y, β),

where

σ(X,Y, β) =
∑

αY =β

[X|αX ].

In order to prove Theorem 1 we require an expression for σ(X,Y, β) which, for all X,
involves only functions of the form [Z|γ], with γ(Z) ⊆ β(Y ).

If δ is an injection from X to {1, 2, . . . , k} such that δ and β agree on X ∩ Y , then there
is a function δ ∗ β from X ∪ Y to {1, 2, . . . , k} defined by

(δ ∗ β)(v) =
{

δ(v) if v ∈ X;
β(v) if v ∈ Y .
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Note that δ ∗ β does not exist unless δX∩Y = βX∩Y , and if it does exist, it may not be
an injection (because it is possible that, for some x ∈ X \ (X ∩ Y ) and y ∈ Y \ (X ∩ Y ),
δ(x) = β(y)). We define

G(β) = {θ ∈ Pk | θX ∗ β exists and is an injection}.

Recall that for any complex number z and non-negative integer n the ‘falling factorial’
(z)n is defined by

(z)0 = 1, (z)n = z(z − 1)n−1 (n ≥ 1).

In other words, (z)n = z(z − 1) · · · (z − n + 1).

Lemma 1 Suppose that X and Y are subsets of V , where |X ∪Y | = p and |V | = b, and
let β be an injection from Y into {1, 2, . . . , k}. Then

σ(X, Y, β) = (k − p)b−p

∑

θ∈G(β)

[θ].

Proof Using the definitions of σ(X,Y, β) and [X|αX ] we have

φ(X, Y, β) =
∑

αY =β

[X|αX ]

=
∑

αY =β

∑

θX=αX

[θ].

In order to reverse the order of summation it is convenient to write this as a sum taken
over pairs (α, θ):

σ(X, Y, β) =
∑

(α,θ)∈A(β)

[θ],

where

A(β) = {(α, θ) | αX = θX and αY = β}.

Treating this a repeated sum we have

∑

(α,θ)∈A(β)

[θ] =
∑

θ

[θ]
∑

(α,θ)∈A(β)

1 =
∑

θ

[θ] m(θ, β),

where m(θ, β) is the number of α such that αX = θX and αY = β .

Suppose first that θ is in the set G(β) defined above. Then θX ∗β exists and is an injection
on X ∪ Y , and m(θ, β) is the number of ways of extending this injection to an injection
defined on the whole of V . This number is just

(k − p)(k − p− 1) . . . (k − b + 1) = (k − p)b−p.
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On the other hand, if θ is not in the set G(β), there can be no injection α satisfying the
conditions, and m(θ, β) = 0.

If Z is a subset of X containing X ∩ Y define

Π(Z) = {π | π : Z → Y is an injection and πX∩Y = id}.

Note that Π(X ∩ Y ) contains only the inclusion function X ∩ Y → Y .

Lemma 2 With Π(Z) as above, and the other notation as in Lemma 1,

σ(X, Y, β) = t(X,Y )
∑

X∩Y⊆Z⊆X

(−1)|Z|τ(Z),

where

t(X, Y ) = (−1)|X∩Y |(k − p)b−p, τ(Z) =
∑

π∈Π(Z)

[Z | βπ].

Proof Given the result of Lemma 1, it remains to evaluate
∑

[θ] taken over the set G(β).

Recall that G(β) consists of those θ in Pk for which (i) θX ∗ β is defined, and (ii) θX ∗ β is
an injection on X ∪ Y . The set of all θ satisfying condition (i) consists of those for which
θX∩Y = βX∩Y , and the sum of [θ] taken over this set is, by definition,

[X ∩ Y |βX∩Y ].

We apply the sieve principle to obtain the relationship between this sum and the sum taken
over all θ for which both conditions hold. It is convenient to put Z = (X ∩Y )∪D, so that
summing over Z such that X ∩ Y ⊆ Z ⊆ X corresponds to summing over all subsets D of
X \ (X ∩ Y ).

So we write the sum over G(β) as

∑

D⊆X\(X∩Y )

(−1)|D|F (D, β),

where F (D, β) is the sum taken over θ that satisfy condition (i), but fail to satisfy condition
(ii) on the set D. The second statement means that for each v ∈ D there is some π(v) in
Y such that θ(v) = β(π(v)). Clearly, this defines an injection π from D to Y \ (X ∩ Y ).
We can extend π to an injection from (X ∩ Y ) ∪D to Y , by defining it to be the identity
on X ∩ Y , and since condition (i) holds this means that θ(X∩Y )∪D = βπ. In other words

F (D,β) =
∑

π∈Π(X∩Y )∪D

[(X ∩ Y ) ∪D | βπ] = τ((X ∩ Y ) ∪D).

Putting Z = (X ∩ Y ) ∪D we have the result.
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The results obtained in Lemmas 1 and 2 provide the required formula for T [Y |β].

Lemma 3 The action of T is given by

T [Y |β] =
∑

X⊆V

(−1)|X\(X∩Y )|(k − |X ∪ Y |)b−|X∪Y |
∑

X∩Y⊆Z⊆X

(−1)|Z|τ(Z),

where

τ(Z) =
∑

π∈Π(Z)

[Z|βπ].

We can now complete the proof of Theorem 1.

Proof of Theorem 1 Let Y, β be such that β(Y ) ⊆ S. According to Lemma 3, T [Y |β]
is a linear combination of terms of the form [Z|βπ]. Here π is an injection Z → Y , and so
βπ(Z) ⊆ β(Y ) ⊆ S, as claimed.

4. Explicit form of the coefficients

In this section we shall obtain a formula (Theorem 2) that gives the coefficients of the terms
[A|α] that appear in T [Y |β]. This formula is remarkably simple, despite the complicated
arguments that are needed to justify it.

Lemma 4 Suppose that Y and β are given, and that A and α are such that

α(A) ⊆ β(Y ), αA∩Y = βA∩Y .

Then [A|α] appears as a term in σ(X,Y, β) if and only if X is a subset of V satisfying

A ⊆ X ⊆ V \ Y ′,

where Y ′ = Y \ (A ∩ Y ).

Proof It follows from Lemma 2 that the terms [A|α] appearing in σ(X, Y, β) are precisely
those for which

[A|α] = [Z|βπ], where X ∪ Y ⊆ Z ⊆ X, and π ∈ Π(Z).

The given conditions on α ensure that α = βπ for some π ∈ Π(A), so the effective condition
is that X ∪Y ⊆ A ⊆ X. Rearranging this as a condition on X we obtain the stated result.

Now that we have established which terms occur in T [Y |β], it remains only to find the
coefficients.

For each integer n ≥ 0 and any complex number z, the following formula defines a monic
polynomial of degree n:
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C(n, z) =
n

∑

r=0

(−1)r
(

n
r

)

(z − r)n−r.

In particular, the polynomials C(n, z) for 0 ≤ i ≤ 4 are:

C(0, z) = 1, C(1, z) = z − 1, C(2, z) = z2 − 3z + 3,

C(3, z) = z3 − 6z2 + 14z − 13, C(4, z) = z4 − 10z3 + 41z2 − 84z + 73.

The relevance of these polynomials stems ultimately from the fact that C(b, k) is the
number of k-colourings τ of Kb such that τ is compatible with any given k-colouring σ.
In other words, it is the number of τ that are ‘derangements’ of σ: σ(v) 6= τ(v) for all
v ∈ {1, 2, . . . , b}.
For simplicity of notation, we fix the integers b and k ≥ b, and define

ci = C(b− i, k − i) (0 ≤ i ≤ b).

Theorem 2 Let A and Y be subsets of V = {1, 2, . . . , b}, and let α, β be injections from
A and Y respectively to {1, 2, . . . , k}, such that α(A) ⊆ β(Y ) and αA∩Y = βA∩Y . Then
the coefficient of [A|α] in T [Y |β] is

(−1)|A∩Y | c|A∪Y |.

Proof According to Lemma 2, the coefficient of a term [A|α] that occurs in σ(X, Y, β)
is t(X, Y )(−1)|A|. If α satisfies the given conditions then, by Lemma 3, [A|α] occurs in
σ(X,Y, β) if and only if X is such that A ⊆ X ⊆ V \ Y ′. Since

T [Y |β] =
∑

X⊆V

(−1)|X|σ(X, Y, β),

it follows that the coefficient of [A|α] in T [Y |β] is
∑

A⊆X⊆V \Y ′
(−1)|X|t(X,Y )(−1)|A|.

Writing X = A ∪ R, with A ∩ R = ∅, the condition A ⊆ X ⊆ V \ Y ′ is equivalent to the
condition that R is a subset of V \ (A ∪ Y ). Furthermore,

|X| = |A|+ |R|, |X ∩ Y | = |A ∩ Y |, |X ∪ Y | = |A ∪ Y |+ |R|.

Hence

t(X, Y ) = (−1)|X∩Y |(k − |X ∪ Y |)b−|X∪Y |

= (−1)|A∩Y |(k − |A ∪ Y | − |R|)b−|A∪Y |−|R|,

and the required coefficient is
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∑

R⊆V \(A∪Y )

(−1)|A|+|R|t(X, Y )(−1)|A|

= (−1)|A∩Y |
∑

R⊆V \(A∪Y )

(−1)|R|(k − |A ∪ Y | − |R|)b−|A∪Y |−|R|

= (−1)|A∩Y |
b−|A∪Y |

∑

r=0

(−1)r
(

b− |A ∪ Y |
r

)

(k − |A ∪ Y | − r)b−|A∪Y |−r

= (−1)|A∩Y | C(b− |A ∪ Y |, k − |A ∪ Y |).

5. Levels 0 and 1

The action of T on the invariant subspaces U(S) with |S| = 0, 1 can be described fairly
easily. When S = ∅ the only relevant function is u = [∅|φ], and the equation Tu = c0u
follows from Theorem 2. So the invariant subspace U(∅) is just 〈u〉. Another proof of the
equation Tu = c0u follows from the observation, already noted above, that c0 = C(b, k) is
the number of k-colourings β of Kb such that (α, β) is a compatible pair, for any given α.
In other words, c0 is the number of 1’s in each row of the matrix T . Standard arguments
lead to the conclusion that the eigenvalue c0 has multiplicity 1.
Suppose that S = {h}, where h is any colour (1 ≤ h ≤ k). Denote by [y|h] the function
[Y |β] such that Y = {y} and β(y) = h. The terms that appear in T [y|h] are the [A|α] for
which A = ∅, A = {y} and A = {x}, for all x 6= y. Clearly, for each A, there is a unique
α, and Theorem 2 tells us that the complete formula is

T [y|h] = c1

(

u− [y|h]
)

+ c2

(
∑

x6=y

[w|h]
)

.

Since Tu = c0u, it follows that

U(h) = 〈u, [1|h], [2|h], . . . , [b|h]〉.
When k = b, the set of functions u, [1|h], [2|h], . . . , [b|h] is linearly dependent (u is the
sum of the other functions, since every b-colouring of Kb assigns colour h to exactly one
vertex). However, if k > b there are k-colourings of Kb that do not use the colour h, so
u is linearly independent of the other functions, and the set is a basis for U(h). We shall
assume henceforth that this condition holds.
We have shown that the action of T on U(h), with respect to the given basis, is represented
by the matrix















c0 c1 c1 . . . c1

0 −c1 c2 . . . c2

0 c2 −c1 . . . c2

. . . . . . .

. . . . . . .
0 c2 c2 . . . −c1















.
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We write this matrix as
(

M0 ∗
O M1

)

.

Here M0 is the 1×1 matrix (c0), and M1 is the b×b matrix in the lower right-hand corner;
O and ∗ stand for zero and non-zero matrices respectively. In terms of the identity matrix
I and the all-1 matrix J we have

M0 = c0I; M1 = −c1I + c2(J − I).

In the following sections we shall develop a general theory from which these two equations
follow as special cases.

For the time being, the eigenvalues and eigenfunctions of M0 and M1 can be obtained by
elementary means. The trivial case M0 has already been discussed. For M1 there are just
two distinct eigenvalues, and they are:

−c1 + (b− 1)c2 (multiplicity 1);

−c1 − c2 (multiplicity b− 1).

The corresponding eigenfunctions can be obtained directly from the formula for the action
of T . First, let

φh = [1|h] + [2|h] + · · ·+ [b|h]− (b/k)u.

It is easy to check that Tφh = ((b− 1)c2 − c1)φh, so that φh spans a 1-dimensional space
of eigenfunctions.

Next, for any vertices v 6= w let

ψvw
h = [v|h]− [w|h].

Again, it is easy to check that Tψvw
h = (−c2−c1)ψvw

h . So we have b(b−1)/2 eigenfunctions,
one for each edge vw of Kb. These eigenfunctions span a space of dimension b− 1, a basis
for which is obtained by taking the functions corresponding to the edges of any spanning
tree of Kb. For example, we may fix w = b, and take v = 1, 2, . . . , b− 1.

Up to this point we have been considering the action of T on the subspace U(h), for a
given colour h. In fact, for each one of the k colours there is an eigenfunction φh, and
the only linear relationship between them is that their sum is identically zero. Thus, in
the action of T on the whole space Vk, the multiplicity of the eigenvalue (b− 1)c2 − c1 is
(k − 1). Similarly, the multiplicity of −c2 − c1 is (b− 1)(k − 1).

This completes the analysis of the terms at levels 0 and 1. We can now exhibit the leading
terms of the chromatic polynomial of Bn(b), for all b ≥ 2:

P (Bn(b); k) = cn
0 + (k − 1)

(

(−c1 + (b− 1)c2)n + (b− 1)(−c1 − c2)n
)

+ . . . ,

where ci = C(b− i, k − i), i = 0, 1, 2.
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6. The general case

In this section we consider the action of T on an invariant subspace U(S) with |S| = ` ≥ 2.
As in the previous section, it is often convenient to use a more explicit form of the notation,
so we write

[y1, y2, . . . , yr|h1, h2, . . . , hr]

for the function [Y |β] when Y = {y1, y2, . . . , yr} and β(yi) = hi (1 ≤ i ≤ r).
We begin with the case ` = 2. Theorem 2 provides the following basic formula for the
action of T on the space U(S) with S = {h1, h2}:

T [v, v′|h1, h2] = c2

(

u− [v|h1]− [v′|h2] + [v, v′|h1, h2]
)

+ c3

(
∑

w 6=v,v′
[w|h1] + [w|h2]− [v, w|h1, h2]− [w, v′|h1, h2]

)

+ c4

(
∑

w,w′ 6=v,v′
[w, w′|h1, h2] + [w′, w|h1, h2]

)

.

Note that for each set A of two vertices {w,w′} there are two injections from A to {h1, h2},
and thus two terms in the last sum.
Clearly the space U(h1, h2) contains as subspaces U(∅), U(h1) and U(h2). It is easy to
check that

U(h1) ∩ U(h2) = U(∅),

so the subspace U(h1)+U(h2) has dimension 2(b+1)−1 = 2b+1. A basis for this subspace
is

u, [1|h1], [2|h1], . . . , [b|h1], [1|h2], [2|h2], . . . , [b|h2],

which can be extended to a basis of U(h1, h2) by adding the functions [x, y|h1, h2] and
[y, x|h1, h2] for all pairs {x, y}. Then the action of T on U(h1, h2) with respect to this
basis is represented by a matrix of the form







M0 ∗ ∗ ∗
O M1 O ∗
O O M1 ∗
O O O M2





 .

Here M0 and M1 are the matrices discussed in Section 5, O denotes a matrix of zeros, and
∗ denotes a non-zero matrix. The matrix M2 is a b(b − 1) × b(b − 1) matrix whose rows
and columns correspond to the functions [P |γ], where |P | = 2 and γ : P → {h1, h2} is a
bijection.
The entry in row [P |γ] and column [Q|δ] of M2 is the coefficient of [P |γ] in T [Q|δ], so
using the formula for T [v, v′|h1, h2] displayed above, it follows that the entries of M2 are
given by:
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(M2)[P |γ],[Q|δ] =











c2 if P = Q and γ = δ;
−c3 if P ∩Q = {x} and γ(x) = δ(x);
c4 if P ∩Q = ∅ ;
0 otherwise.

We now turn to the general situation when S is a fixed set of ` colours, {h1, h2, . . . , h`},
` ≥ 2. In general, the formula for T [Q|δ] with δ(Q) = S contains terms [P |γ] with
γ(P ) = S′ for each subset S′ of S. Thus the action of T on U(S) can be represented by
a matrix T̂ of a form analogous to that given above for the case |S| = 2. Specifically,
for r = 0, 1, 2, . . . , `, T̂ has a ’diagonal’ consisting of

(`
r

)

submatrices Mr, one for each
r-subset of S. The entries in the lower triangle of T̂ are all zero, so the eigenvalues of T̂
are the eigenvalues of the diagonal submatrices. We shall suppose that these eigenvalues
have been determined for r < `, and concentrate on the matrix M`. Henceforth ` will be
fixed and we write M = M`.

For each P ⊆ V of size ` there are `! injections γ : P → S and `! corresponding func-
tions [P |γ]. Thus the number of rows and columns of M is

(b
`

)

× `! = (b)`, and M can
be partitioned into square blocks MPQ of size `!. The block MPQ corresponds to the
intersection of the rows labelled [P |γ] and the columns labelled [Q|δ], for a given pair of
`-subsets (P, Q). According to Theorem 2, in each block the entries are (−1)|P∩Q|cP∪Q| if
γP∩Q = δP∩Q, and 0 otherwise.
In order to analyse MPQ we need some notation. Write P = {p1, p2, . . . , p`}, where
p1 < p2 < · · · < p`. Given a permutation σ in Sym`, the symmetric group on {1, 2, . . . , `},
define the function

[P, σ] = [pσ(1), pσ(2), . . . , pσ(`) | h1, h2, . . . , h`].

We consider MPQ as a matrix whose rows and columns correspond to the members of
Sym`, the entries being

(MPQ)στ = M[P,σ] [Q,τ ].

Suppose |P ∩Q| = i. Then, using our standard notation for P and Q, there are subscripts
αj , βj such that pαj = qβj , j = 1, 2, . . . , i. Let

FPQ = {φ ∈ Sym` | φ(αj) = βj , 1 ≤ j ≤ i}.

Note that, given any φ ∈ FPQ, the set FPQ is a left coset φH in Sym`, where H is the
subgroup fixing β1, β2, . . . , βi pointwise. Thus |FPQ| = (`− i)!.

Lemma 5 Let X(ρ) be the permutation matrix representing ρ in the regular repre-
sentation of Sym` on itself; that is, Xστ (ρ) is 1 if τ = ρσ and 0 otherwise. Also, let
gPQ = (−1)|P∩Q|cP∪Q|.
Then the block MPQ of M can be written as

MPQ = gPQ

∑

ρ∈FP Q

X(ρ).
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Proof The functions [P, σ] and [Q, τ ] correspond to the colourings σ∗ of P and τ∗ of Q
defined by

σ∗(pσ(r)) = hr, τ∗(qτ(r)) = hr, r = 1, 2, . . . , `.

The term (MPQ)στ is non-zero if and only if σ∗P∩Q = τ∗P∩Q, and then it is equal to gPQ.
Thus it is sufficient to prove that σ∗P∩Q = τ∗P∩Q if and only if Xστ (ρ) = 1 for some ρ ∈ FPQ,
or equivalently, τσ−1 ∈ FPQ.

Given pαj = qβj ∈ P ∩Q, let αj = σ(x). Then

τ∗(qτ(x)) = hx = σ∗(pσ(x)) = σ∗(pαj ).

Suppose τσ−1 ∈ FPQ, so that τ(x) = τσ−1(αj) = βj . It follows that τ∗(qβj ) = σ∗(pαj ),
so σ∗P∩Q = τ∗P∩Q, as required.

Conversely, suppose σ∗P∩Q = τ∗P∩Q. Then σ∗(pαj ) = τ∗(qβj ) and so βj = τ(x). Since
x = σ−1(αj), it follows that τσ−1 is in FPQ.

7. The collapsed matrix associated with a representation

In this section b and ` are fixed positive integers with b ≥ `. If R is an r-dimensional
matrix representation of Sym`, let NR be the matrix defined as follows. In the formula for
the block MPQ of M obtained in Lemma 5, replace each permutation matrix X(ρ) by the
corresponding R(ρ)t, where the superscript denotes the transpose. Thus NR is a matrix
with blocks

(NR)PQ = gPQ

∑

ρ∈FP Q

R(ρ)t.

Note that the blocks are now of size r, instead of `!. Given P , designate the row of NR

given by the ith rows of the blocks (NR)PQ by (P, i), and similarly for the columns. If f
is an eigenvector of NR with eigenvalue λ, so that f is defined on pairs (P, i), then for all
such pairs we have

∑

(Q,j)

(NR)(P,i),(Q,j)f(Q, j) = λf(P, i).

Since

(NR)(P,i),(Q,j) = gPQ

∑

ρ∈FP Q

Rji(ρ).

this can be rewritten as

∑

Q

gPQ

h
∑

j=1

f(Q, j)
∑

ρ∈FP Q

Rji(ρ) = λf(P, i).

13



Theorem 3 Let R be a matrix representation of Sym`, of degree r, and NR the matrix
defined above. Then each eigenvector f of NR with eigenvalue λ can be lifted to r linearly
independent eigenvectors of M with the same eigenvalue.

Proof We shall show that, for i = 1, 2, . . . , r, the vector f i
R defined by

f i
R[P, σ] =

r
∑

j=1

Rji(σ) f(P, j)

is an eigenvector of M with eigenvalue λ.

We have

(Mf i
R)[P, σ] =

∑

[Q,τ ]

M[P,σ],[Q,τ ]f i
R[Q, τ ]

=
∑

Q

∑

τ

gPQ

∑

ρ∈FP Q

Xστ (ρ) f i
R[Q, τ ],

=
∑

Q

gPQ

∑

ρ∈FP Q

∑

τ

Xστ (ρ) f i
R[Q, τ ],

The last sum is

∑

τ

Xστ (ρ)f i
R[Q, τ ] = f i

R[Q, ρσ]

=
r

∑

j=1

Rji(ρσ) f(Q, j)

=
r

∑

j=1

f(Q, j)
r

∑

h=1

Rjh(ρ)Rhi(σ).

Thus, since NRf = λf ,

(Mf i
R)[P, σ] =

∑

Q

gPQ

∑

ρ∈FP Q

r
∑

j=1

f(Q, j)
r

∑

h=1

Rjh(ρ)Rhi(σ)

=
r

∑

h=1

Rhi(σ)





∑

Q

gPQ

r
∑

j=1

f(Q, j)
∑

ρ∈FP Q

Rjh(ρ)





=
r

∑

h=1

Rhi(σ)λf(P, h)

= λf i
R[P, σ].

The linear independence of the r vectors f i
R follows from the fact that each matrix R(ρ)

is invertible, and hence has rank r.
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The irreducible representations of Sym` correspond to the partitions π of `. If R is the
representation Rπ, denote NR by Nπ. The degree nπ of Rπ is given by a well-known
formula of Frobenius, and the size of Nπ is nπ

(b
`

)

.

Suppose that the eigenvalues of Nπ are

νi
π with multiplicities f i

π (i = 1, 2, . . . , iπ),

so that

∑

i

f i
π = nπ

(

b
`

)

.

According to Theorem 3, νi
π is an eigenvalue of M with multiplicity nπf i

π so, as eigenvalues
of M , the total multiplicity of all the νi

π is

∑

π,i

nπf i
π =

∑

π

n2
π

(

b
`

)

.

It is a standard result that
∑

π n2
π = `!, the order of Sym`. Thus the total multiplicity is

`!
(b

`

)

= (b)`. Since this is equal to the size of M we have the following result.

Theorem 4 Every eigenvalue of M is an eigenvalue of Nπ for some partition π of `,
and conversely.

The symmetric group Sym` has two representations of degree 1: the principal represen-
tation defined by Rpri(σ) = 1 and the alternating representation defined by Ralt(σ) =
sign(σ). These representations correspond to the partitions [`] and [1`]. Each has a cor-
responding matrix whose PQ block is the scalar

gPQ

∑

ρ∈FP Q

χ(ρ),

where χ is Rpri or Ralt (considered as a character). These matrices will be denoted by Npri

and Nalt. In the following sections we shall obtain explicit formulae for the eigenvalues of
these two matrices.

8. The principal terms

The Johnson graph J(b, `) is defined to be the graph whose vertices are the `-subsets of a
b-set, two of them being joined by an edge whenever they intersect in a set of size ` − 1
[1]. This is a connected graph of diameter d = min(`, b− `), and the distance between two
vertices P and Q is `−|P ∩Q|. The distance matrices A0, A1, . . . , Ad are therefore defined
by

(Aj)PQ =
{

1 if |P ∩Q| = `− j;
0 otherwise.

15



Lemma 6 The matrix N = Npri can be expressed in terms of the the distance matrices
of the Johnson graph J(b, `), as follows:

N =
d

∑

j=0

(−1)`−j j! c`+j Aj .

Proof According to the formula given at the end of the previous section, NPQ is equal
to gPQ|FPQ|. If |P ∩Q| = i then gPQ = (−1)ic2`−i and |FPQ| = (`− i)!, so

NPQ = (−1)ic2`−i(`− i)! .

The result follows by putting i = `− j and using the definition of the distance matrices.

Note that when ` = 0, 1 the formula gives N = c0A0 and N = −c1A0 + c2A1, respectively.
The matrix A0 is the identity, and when ` = 1 the graph J(b, 1) is a complete graph, so
A1 = J − I. In these cases we have M = N and so we recover the formulae for M0 and
M1 obtained by direct means in Section 5.

Since J(b, `) is a distance-regular graph, each matrix Aj is a polynomial function of the
adjacency matrix A = A1, that is Aj = vj(A). In fact, the polynomials vj can be obtained
explicitly from the Eberlein polynomials, defined formally by the rule

Ej(u) =
j

∑

t=0

(−1)t
(

u
t

)(

`− u
j − t

)(

b− `− u
j − t

)

.

Although Ej(u) is ostensibly a polynomial in u, of degree 2j, it turns out [1] that it is also
a polynomial function vj of λu = (`− u)(b− `− u)− u, of degree j. Since the eigenvalues
of A = A1 are

λi = (`− i)(b− `− i)− i (0 ≤ i ≤ `),

it follows that the eigenvalues of Aj = vj(A) are vj(λi) = Ej(i).

Theorem 5 Let T (k) be the compatibility operator for k-colourings of the untwisted
bracelet on Kb, where k > b. Given ` such that 0 ≤ ` ≤ b put d = min(`, b − `). Then
T (k) has d + 1 eigenvalues ν`i, 0 ≤ i ≤ d, given by the formula

(−1)`ν`i =
d

∑

j=0

(−1)j j! c`+j Ej(i),

where c`+j = C(b− `− j, k− `− j) and Ej is the Eberlein polynomial defined above. Each
(−1)`ν`i is a monic polynomial in k of degree b− `.

Proof The set of eigenvalues of T (k) contains the set of eigenvalues of the matrix T̂
representing its action on a subspace U(S), where |S| = `. Among these eigenvalues are
the eigenvalues of M , and by Theorem 4, these in turn include the eigenvalues of N .
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The result follows from the formula for N given in Lemma 6, and the expression for the
eigenvalues of Aj in terms of the Eberlein polynomials.

The multiplicities of the eigenvalues of Npri can be deduced from the general theory
of distance-regular graphs. It is known [1] that the multiplicity of the eigenvalue λi =
(`− i)(b− `− i)− i of the adjacency matrix A1 of J(b, `) is

mi =
(

b
i

)

−
(

b
i− 1

)

.

Since Npri is a polynomial function of A, the eigenvalue ν`i also has multiplicity mi.

It has already been mentioned that, when ` = 0 and ` = 1, M is equal to Npri, so
all the eigenvalues of M are given by Theorem 5. When ` = 2 and b ≥ 4 we have
N = c2A0 − c3A1 + 2c4A2, and there are three distinct eigenvalues of N , which are also
eigenvalues of M . They can be obtained as follows. The relevant Eberlein polynomials are

E0(u) = 1;
E1(u) = λu = (2− u)(b− 2− u)− u;

E2(u) =
1
4

(

λ2
u − (b− 2)λu − (2b− 4)

)

.

It follows that the eigenvalues of N are:

c2 − (2b− 4)c3 + (b− 2)(b− 3)c4, multiplicity 1;

c2 − (b− 4)c3 − 2(b− 3)c4, multiplicity b− 1;

c2 + 2c3 + 2c4, multiplicity b(b− 3)/2.

9. The alternating terms

The matrix Nalt is simpler than Npri, for the following reason.

Lemma 7 If |P ∩Q| ≤ `− 2 then (Nalt)PQ = 0.
Proof If |P ∩Q| = `− j, the set FPQ is a coset of the stabilizer of a symmetric group of
order j!. When j ≥ 2 this coset contains equal numbers of odd and even permutations, so

∑

ρ∈FP Q

sign(ρ) = 0.

The result follows from the definition of Nalt.

When P = Q the set FPQ contains only the identity permutation, and when |P ∩Q| = `−1
it contains just one, non-identity, permutation ρPQ. It follows that

Nalt = (−1)`(c`I − c`+1D),

where

17



DPQ =
{

sign(ρPQ) if |P ∩Q| = `− 1;
0 otherwise.

It is helpful to think of D as the adjacency matrix of a signed graph J±(b, `), that is,
J(b, `) with the edge PQ given the sign of ρPQ. It will be convenient to write

sign(ρPQ) = (−1)ε(P,Q),

and consider ε(P,Q) as an integer modulo 2.
The next lemma provides a useful method of determining ε(P,Q). Given a subset A of
{1, 2, . . . , b} and an element a ∈ A define π(a,A), the place of a in A, to be the value of s
such that a is the sth member of A in the standard (increasing) order.

Lemma 8 Suppose that P and Q are `-subsets of {1, 2, . . . , b} such that |P ∩Q| = `−1,
and let P \ (P ∩Q) = {p}, Q \ (P ∩Q) = {q}. Then

ε(P, Q) = π(p, P ) + π(q, Q).

Proof Let s = π(p, P ), t = π(q, Q), and suppose that s > t. Then

pi = qi (i = 1, . . . , t− 1, i = s + 1, . . . , `), pi = qi+1 (i = t, . . . , s− 1).

Thus ρPQ must be the cycle (t, t + 1, . . . , s), which has sign (−1)s−t = (−1)s+t. It is easy
to check that the result holds for s ≤ t also.

Lemma 9 If D is the adjacency matrix of the signed graph J±(b, `) then

D2 = `(b− `)I + (b− 2`)D.

Proof Since (D2)PQ =
∑

Z DPZDZQ, it is clear that (D2)PQ = 0 whenever the distance
between the vertices P and Q of J±(b, `) is greater than 2; that is, whenever |P ∩Q| < `−2.
If P = Q, we have (D2)PP =

∑

Z D2
PZ . Here the non-zero summands correspond to the

vertices Z that are adjacent to P in J±(b, `), and each non-zero summand is 1. Since there
are `(b− `) such vertices, (D2)PP = `(b− `).
If |P ∩Q| = `− 1 or `− 2 the non-zero summands DPZDZQ correspond to the vertices Z
that are adjacent to both P and Q.
Suppose first that P and Q are adjacent, and let R = P ∩ Q where |R| = ` − 1 and
P = R ∪ p, Q = R ∪ q. Then there are b − 2 vertices adjacent to both P and Q, of two
types:

b− `− 1 vertices R ∪ x, (x /∈ R ∪ p ∪ q);

`− 1 vertices R \ y ∪ p ∪ q, (y ∈ R).

For a vertex X = R ∪ x of the first type we have

ε(P, X) = π(p,R ∪ p) + π(x,R ∪ x), ε(X, Q) = π(x,R ∪ x) + π(q, R ∪ q).
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Hence ε(P,X) + ε(X,Q) = ε(P, Q), and DPXDXQ = DPQ for all b− `− 1 vertices of this
type.
For a vertex Y = R \ y ∪ p ∪ q of the second type, we have

ε(P, Y ) = π(y,R ∪ p) + π(q,R \ y ∪ p ∪ q), ε(Y, Q) = π(p,R \ y ∪ p ∪ q) + π(y,R ∪ q).

Here it turns out that ε(P, Y )+ε(Y, Q) = ε(P, Q)+1. For example, suppose that p < y < q;
then

π(p,R \ y ∪ p ∪ q) = π(p,R ∪ p), π(q,R \ y ∪ p ∪ q) = π(q, R ∪ q),

π(y, R ∪ p) = π(y, R ∪ q) + 1,

which gives the result. Hence, for all `− 1 vertices Y of this type, DPY DY Q = −DPQ.
So the value of (DPQ)2 when |P ∩Q| = `− 1 is therefore

(b− `− 1)DPQ + (`− 1)(−DPQ) = (b− 2`)DPQ.

If |P ∩Q| = `− 2, suppose P = S ∪ a ∪ b, Q = S ∪ c ∪ d, where |S| = `− 2. For brevity,
write P = Sab, and so on. Then there are just four vertices adjacent to both P and Q:
Sac, Sad, Sbc, Sbd.
Suppose a < b < c < d. Then it is easy to check that

ε(Sab, Sac) + ε(Sac, Scd) = 1 + ε(Sab, Sbc) + ε(Sbc, Scd)
ε(Sab, Sad) + ε(Sad, Scd) = 1 + ε(Sab, Sbd) + ε(Sbd, Scd).

It follows that (DPQ)2 = 0 in this case, as required. The other cases can be verified in a
similar way.

Theorem 6 Let T (k) be the compatibility operator for k-colourings of the untwisted
bracelet on Kb, where k > b. Then for each ` in the range 2 ≤ ` ≤ b − 1, T (k) has two
eigenvalues ν∗`i, i = 0, 1, given by the formulae

ν∗`0 = (−1)`(c` − (b− `)c`+1), ν∗`1 = (−1)`(c` + `c`+1).

(Note that when ` = b the eigenvalue ν∗b0 = (−1)b can also be regarded as belonging to
this family - see Section 10).
Proof The set of eigenvalues of T (k) contains the set of eigenvalues of the matrix T̂
representing its action on a subspace U(S), where |S| = `. Among these eigenvalues are
the eigenvalues of M , and by Theorem 4, these in turn include the eigenvalues of Nalt.
It follows from Lemma 9 that the eigenvalues λ1, λ2 of D are the roots of the quadratic
equation

λ2 − (b− 2`)λ− `(b− `) = 0, that is λ1 = b− `, λ2 = −`.
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Consequently the eigenvalues of Nalt = (−1)`(c`I− c`+1D) are (−1)`(c`− (b− `)c`+1) and
(−1)`(c` + `c`+1).

The multiplicities of the eigenvalues ν∗`i can be computed directly. Since the trace of D is
zero, the multiplicities f0 and f1 of its eigenvalues b− ` and −` satisfy

f0(b− `) + f1(−`) = 0, f0 + f1 =
(

b
`

)

.

Hence the multiplicities of the eigenvalues ν∗`0 and ν∗`1 are

f0 =
(

b− 1
`− 1

)

, f1 =
(

b− 1
`

)

.

Since the principal and alternating representations are the only representations of Sym`
when ` = 2, in this case the eigenvalues of Npri and Nalt account for all the eigenvalues of
M . For b ≥ 4 there are three distinct eigenvalues of Npri (Section 8) and for b ≥ 3 there
are two distinct eigenvalues of Nalt, which are

c2 − (b− 2)c3, multiplicity b− 1;
c2 + 2c3, multiplicity (b− 1)(b− 2)/2.

10. Conclusion: the cases b=2,3,4

In the Introduction it was pointed out that the terms in the chromatic polynomial of Bn(b)
appear to occur in levels, the terms at level ` being of the form

(

Polynomial of degree `
)

×
(

Integer
)(

Polynomial of degree b− `
)n

.

The foregoing theory reveals that each ‘Polynomial of degree b − `’ is an eigenvalue of a
matrix M = M`, and the corresponding ‘Integer’ is its multiplicity as a eigenvalue of M .
Furthermore all these expressions can be obtained from collapsed matrices NR associated
with representations R of Sym`. In this section we shall study the cases b = 2, 3, 4,
obtaining all the eigenvalues and multiplicities explicitly. In these cases a little extra
work will produce the full chromatic polynomial, specifically the ‘Polynomial of degree
`’ involved in each term. This polynomial arises because the matrix M is defined for a
fixed `-subset of the k colours available, and so M occurs many times as a block of the
compatibility matrix T (k). This means that each eigenvalue has a global multiplicity as an
eigenvalue of T (k), as well as its local multiplicity as an eigenvalue of M .

All the eigenvalues that we have obtained can be expressed in terms of the functions
ci = C(b − i, k − i), where C was defined in Section 4. For a given b, ci is a monic
polynomial in k of degree b− i. Each eigenvalue λ at level ` is a linear combination of the
ci’s, with coefficients that depend on b, not k, and it is easy to check that (−1)`λ is a monic
polynomial of degree b − `. It is also worth remarking that there are many relationships
among the λ’s, arising from the recursive form of the definition of the ci’s.
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In the following exposition it will appear that the cases b = 2, 3, 4 are mainly covered by the
general theory of the principal and alternating representations, as developed in Sections
8 and 9. In addition there is the simple observation that, when ` = b, the matrix M is
(−1)bI. It remains only to deal with the case b = 4, ` = 3, which involves a nonlinear
representation.

The case b = 2

In this case the relevant polynomials are

c0 = k2 − 3k + 3, c1 = k − 2, c2 = 1.

At level 0 we have the eigenvalue c0, and at level 1 two principal eigenvalues

−c1 + c2 = −(k − 3), −c1 − c2 = −(k − 1),

both with local multiplicity 1 and global multiplicity k−1 (Section 5). At level 2, we have
the eigenvalue c2 = 1, which is both a principal eigenvalue and an alternating one. It can
be shown [3] that the global multiplicities are k(k−3)/2 and (k− 1)(k− 2)/2 respectively,
so the total global multiplicity of 1 is k2 − 3k + 1. The chromatic polynomial of Bn(2) is
thus as given in Section 1.

The case b = 3

In this case the relevant polynomials are

c0 = k3 − 6k2 + 14k − 13, c1 = k2 − 5k + 7, c2 = k − 3, c3 = 1.

At level 0 we have the eigenvalue c0, and at level 1 two principal eigenvalues

−c1 + 2c2 = −(k2 − 7k + 13), −c1 − c2 = −(k2 − 4k + 4),

with local multiplicities 1 and 2 respectively, and global multiplicity k − 1. At level 2 we
have d = min(`, b − `) = 1, so there d + 1 = 2 principal eigenvalues, and two alternating
eigenvalues:

c2 − 2c3 = k − 5, c2 + c3 = k − 2, c2 − c3 = k − 4, c2 + 2c3 = k − 1,

with local multiplicities 1,2,2,1 respectively. It turns out that the principal eigenvalues
have global multiplicity k(k−3)/2, and the alternating eigenvalues have global multiplicity
(k − 1)(k − 2)/2 (compare the case b = 2, ` = 2).

Finally, at level 3 we have the eigenvalue −c3 = −1. Its global multiplicity is k3 − 6k2 +
8k − 1, so this completes the derivation of the chromatic polynomial of Bn(3), as given in
Section 1.

The case b = 4

In this case the relevant polynomials are
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c0 = k4 − 10k3 + 41k2 − 84k + 73, c1 = k3 − 9k2 + 29k − 34,

c2 = k2 − 7k + 13, c3 = k − 4, c4 = 1.

At level 0 we have the eigenvalue c0, and at level 1 two principal eigenvalues

−c1 + 3c2 = −(k3 − 12k2 + 50k − 73), −c1 − c2 = −(k3 − 8k2 + 22k − 21),

with multiplicities 1 and 3 respectively. At level 2, general formulae for the three principal
eigenvalues were obtained in Section 8, and for the two alternating eigenvalues in Section
9. Putting b = 4 in these formulae we obtain the eigenvalues

c2 − 4c3 + 2c4 = k2 − 11k + 31, c2 − 2c4 = k2 − 7k + 11, c2 + 2c3 + 2c4 = k2 − 5k + 7,

c2 − 2c3 = k2 − 9k + 21, c2 + 2c3 = k2 − 5k + 5,

with multiplicities 1,3,2,3,3 respectively.

The calculation at level 3 presents a new feature, because the nonlinear irreducible repre-
sentation of Sym3 is involved. Such representations can be constructed using the methods
given by James and Kerber [9], for example. In this case the representation is associated
with the partition [21] and is generated by the following matrices

R[21](12) =
(

1 −1
0 −1

)

, R[21](123) =
(

−1 1
−1 0

)

.

Returning to our theory, we proceed as follows. Enumerate the 3-subsets P of {1, 2, 3, 4}
in the order 234, 134, 124, 123, and label the rows and columns of M accordingly. This
means that M can be written as a 4×4 matrix composed of blocks MPQ, each block being
a 6 × 6 matrix given by the formula in Lemma 5. Here the set FPQ contains only one
permutation in each case, and since c3 = k − 4, c4 = 1, we can write M = Z − (k − 4)I
where

Z =







O I X(12) X(123)
I O I X(23)

X(12) I O I
X(132) X(23) I O





 .

According to Theorem 4, every eigenvalue of M is an eigenvalue of one of the collapsed
matrices Npri, Nalt, N [21], corresponding to the irreducible representations of Sym3. For
Npri and Nalt the eigenvalues are given explicitly by theory developed in Sections 8 and
9.

The matrix N [21] is the 8 × 8 matrix obtained by replacing the 6 × 6 matrices X(ρ) by
the appropriate 2 × 2 matrices R[21](ρ)t. Writing N [21] = Z [21] − (k − 4)I, we find that
Z [21] has eigenvalues 2, 0,−2 with multiplicities 3, 2, 3 respectively, so the eigenvalues of
N [21] are −(k − 6), −(k − 4), −(k − 2), with the same multiplicities. Recalling that, as
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eigenvalues of M , the multiplicities are doubled (because the degree of R[21] is 2), we have
the complete set of eigenvalues and multiplicities of M :

principal : − k + 7 (1) − k + 3 (3)

alternating : − k + 1 (1) − k + 5 (3)
[21] : − k + 6 (6) − k + 4 (4) − k + 2 (6).

The global multiplicities are as follows: 1
6k(k − 1)(k − 5) for the principal eigenvalues,

1
6 (k − 1)(k − 2)(k − 3) for the alternating eigenvalues, and 1

6k(k − 2)(k − 4) for the R[21]

eigenvalues. (Note that the last expression is generally a half-integer, but everything comes
out right because the local multiplicities are double-integers.)
The multiplicity of the level 4 eigenvalue c4 = 1 can now be found by ad hoc methods,
giving the following result, in agreement with Chang [8]:

P (Bn(4); k) = (k4 − 10k3 + 41k2 − 84k + 73)n

+ (k − 1)
(

(−k3 + 12k2 − 50k + 73)n + 3(−k3 + 8k2 − 22k + 21)n
)

+ k(k − 3)/2
(

(k2 − 11k + 31)n + 3(k2 − 7k + 11)n + 2(k2 − 5k + 7)n
)

+ (k − 1)(k − 2)/2
(

3(k2 − 9k + 21)n + 3(k2 − 5k + 5)n
)

+ k(k − 1)(k − 5)/6
(

(−k + 7)n + 3(−k + 3)n
)

+ (k − 1)(k − 2)(k − 3)/6
(

(−k + 1)n + 3(−k + 5)n
)

+ k(k − 2)(k − 4)/6
(

6(−k + 6)n + 4(−k + 4)n + 6(−k + 2)n
)

+ k4 − 10k3 + 29k2 − 24k + 1.
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