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Equimodular curves for reducible matrices

1. Introduction

This paper is a continuation of [BC], and the general motivation for it will be found in the
introduction to that paper. The notation and results of [BC] are assumed, although some
modifications to the notation will be made.

The objects under discussion are functions F from C to a ring of square matrices over
C, with the property that each component of F is a polynomial function C → C. We
shall denote by E(F ) the equimodular curves for F , that is, the set of points z for which
F (z) has two eigenvalues with the same modulus. Conventionally, this includes the points
where F (z) has an eigenvalue of algebraic multiplicity 2 or more.

If F,G are two such functions (possibly with different sizes) we denote by E(F, G) the set
of points z where there is an eigenvalue of F (z) and an eigenvalue of G(z) with the same
modulus.

The main results obtained here concern the equimodular curves in the case when F is
reducible, in the sense that F (z) is similar to a matrix

(

U(z) V (z)
O W (z)

)

,

where the constituents U(z) and W (z) are square matrices and O is a matrix consisting
entirely of 0’s. In this situation, it is clear that the eigenvalues of F (z) are those of U(z)
and W (z). The equimodular curves are determined by two eigenvalues of U(z), or two
eigenvalues of W (z), or one eigenvalue of U(z) and one eigenvalue of W (z). That is,

E(F ) = E(U) ∪ E(W ) ∪ E(U,W ).

In the first part of the paper it will be shown that, if U and W are distinct and irreducible,
E(U,W ) is a set of closed curves. The proof is given in the algebraic framework of [BC],
although it is possible that a more direct proof could be found.

For the intended application of these results, we are particularly interested in the subset
D(F ) of E(F ) containing points that are ‘dominant’ in a certain sense (the definition is
given in Section 5). Roughly speaking, when F (z) is an m × m matrix we may expect
1
2m(m−1) equimodular curves, but only one of them will be in D(F ). In the second part of
the paper we investigate the structure of the set D(F ), and suggest a method of computing
it. We show that, when F is reducible, the dominant curves can be analyzed by a method
that makes use of this property. The method is illustrated by examples involving matrices
that arise in the calculation of the chromatic roots of an interesting family of graphs.

2. A family of examples

The family of examples discussed in this section is very simple. But it does illustrate the
various situations that can arise, including the reducible case. More substantial examples
will be discussed in Sections 5, 6, and 7.
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For each integer j let

Xj(z) =
(

4z 2z + j
2 2z

)

.

The eigenvalues of Xj(z) are the roots of xj(λ) = 0, where

xj(λ) = λ2 − 6zλ + (8z2 − 4z − 2j).

According to [BC] there is a polynomial vj(t, z) such that the points z ∈ C where the
eigenvalues have equal modulus, are those for which vj(t, z) = 0 for some t in the range
0 ≤ t ≤ 4. For a quadratic polynomial vj(t, z) is obtained by substituting the explicit
forms of the coefficients, in this case

a1(z) = −6z, a2(z) = 8z2 − 4z − 2j

in the expression ta2 − a2
1. Hence

vj(t, z) = (8t− 36)z2 − 4tz − 2jt.

The set E(Xj) can now be determined, using the method described in [BC, Section 6].
Here there is just one continuous arc, containing the unique (double) root of the equation
vj(0, z) = 0, and this is the point 0 for all j. The endpoints of the arc are the roots of
vj(4, z) = 0, that is, the points

σj = −2−
√

4− 2j, τj = −2 +
√

4− 2j.

The arc may not be differentiable at internal points where the discriminant discj(t) of vj

(regarded as a polynomial in z) vanishes; that is

discj(t) = (64j + 16)t2 − 288jt = 0.

This happens when t = tj = 18j/(4j + 1), a value which lies in the range 0 < t < 4 only
when j = 1.
The sets E(Xj) in the various cases are discussed in detail below and illustrated in Figure
1.

Case 1: j < 0 Here the endpoints σj , τj are real, and σj < −4, τj > 0. For all points
z = ζ on the real axis such that σj < ζ < τj , the roots of xj(λ) = 0 are complex conjugates,
and hence equal in modulus. It follows that the equimodular curve is the interval [σj , τj ]
of the real axis.

Case 2: j = 0 The only difference from the previous case is that τ0 = 0, and the ‘right
half’ of the equimodular curve collapses to the single point 0. The entire curve is the
interval [−4, 0].
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Figure 1: the sets E(Xj) in the various cases.

Case 1: j < 0

Case 2: j = 0

Case 3: j = 1

Case 4: j = 2

Case 5: j > 2
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Case 3: j = 1 Here the endpoints are σ1 = −2−
√

2 and τ1 = −2 +
√

2. For real values
z = ζ such that σ1 < ζ < τ1 the eigenvalues are complex conjugates, and so the interval
[σ1, τ1] is part of the equimodular curve. However, in this case it cannot be the entire
curve, because the point 0 is certainly on the curve, but not in the interval. The mystery
is solved by the observation that when j = 1 the discriminant disc1(t) vanishes at the value
t1 = 18/5. For t in the range 0 < t < t1 we have disc1(t) < 0, so the equation v1(t, z) has
complex conjugate roots. The equation v1(t1, z) = 0 has a double root −1, and the arc
has a self-intersection at that point.

We can visualise the behaviour in the neighbourhood of −1 as follows. For t = t1 − ε the
two roots of v1(t, z) = 0 are complex conjugates lying just above and just below −1. At
t = t1 the roots collide. For t = t1 + ε the roots lie on the real axis, on either side of −1.

Case 4: j = 2 In this case the characteristic polynomial x2(λ) factorises, and the eigen-
values are 4z + 2 and 2z − 2. This means that X2(z) is reducible, with constituents the
1× 1 matrices [4z + 2] and [2z − 2].

The endpoints σ2 and τ2 coincide at −2, so the arc is a closed curve, the circle defined by
|4z + 2| = |2z − 2|.
Case 5: j > 2 In this case σj and τj are complex conjugates, so the arc is an open arc.

3. The polynomial criterion for reducible matrices

In this section we extend the general theory developed in Section 2 of [BC]. Given an
m×m matrix F (z), each of whose entries is a polynomial function of the complex variable
z, with integer coefficients, denote by f(λ) be the characteristic polynomial of F (z), and
let fi(z) be the coefficient of λm−i in f(λ), that is,

f(λ) = det(λI − F (z)) = λm + f1(z)λm−1 + f2(z)λm−2 + · · · + fm(z).

The coefficients fi(z) are the sums of principal minors of F (z), and so they are polynomials
with integer coefficients. Let

fs(λ) = f(sλ) = smλm + sm−1f1(z)λm−1 + sm−2f2(z)λm−2 + · · · + fm(z).

The condition that f has two roots with equal modulus is equivalent to the condition
that f and fs have a common root for some s such that |s| = 1. This happens when the
resultant det R vanishes, where R = R(fs, f) is a 2m × 2m matrix whose entries depend
on the coefficients of f and fs, that is, s and f1(z), f2(z), . . . , fm(z). Thus, F (z) has two
eigenvalues with equal moduli if and only if the resultant has a zero on the unit circle
|s| = 1.

If F (z) is reducible, its characteristic polynomial f(λ) is equal to u(λ)w(λ), where u(λ)
and w(λ) are the characteristic polynomials of the constituents U(z) and W (z). For the
time being it is convenient to work with generic polynomials - that is, we use a symbol fi
instead of the function fi(z). In the reducible case, the coefficients f1, f2, . . . , fm of f are
given in terms of the coefficients u1, u2 . . . , uk of u and the coefficients w1, w2 . . . , w` of w
by the usual rule for multiplying polynomials.
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Lemma 1 If f(λ) = u(λ)w(λ), then

det R(fs, f) = det R(us, u) det R(ws, w) det R(us, w) det R(u,ws).

Proof This follows from the general result [6, p.73] that for polynomials α, β, γ,

det R(α, βγ) = det R(α, β) det R(α, γ).

It is shown in [BC] that the polynomial det R(fs, f) is equal to fm(s− 1)m∆m(s, f). Here
∆m(s, f) is a reciprocal polynomial of degree m(m − 1) in s, the coefficients being linear
combinations of monomials in f1, f2, . . . , fm. Applying this result also to u and w we have

det R(fs, f) = fm(s− 1)m∆m(s, f)

det R(us, u) = uk(s− 1)k∆k(s, u)

det R(ws, w) = w`(s− 1)l∆`(s, w).

Since m = k + ` and fm = ukw` it follows from Lemma 1 that

∆m(s, f) = ∆k(s, u)∆`(s, w) det R(us, w) det R(u, ws).

Lemma 2 Put n = kl, and let det R(us, w) be the polynomial

q(s) =
n

∑

i=0

qisn−i.

Then det R(u,ws) is the reverse polynomial

q̃(s) =
n

∑

i=0

qn−isn−i.

Proof It is clear from the definition of the resultant that, for any constant σ,

detR(uσ, wσ) = σn det R(u, w).

Hence

detR(u,ws) = sn det R(us−1 , w) = snq(s−1) = q̃(s).

Clearly q(s)q̃(s) is a reciprocal polynomial of degree 2n = 2kl in s, and its coefficients are
linear combinations of monomials in the coefficients of u and w. Thus we can make the
substitution t = s + s−1 + 2 and obtain

q(s)q̃(s) = snq(s)q(s−1) = sk`rk,`(t),
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where rk,`(t) is a polynomial of degree k` in t.

Example Suppose that f(λ) is a cubic polynomial that factors as u(λ)w(λ), where

u(λ) = λ2 + u1λ + u2, w(λ) = λ + w1.

This means that the coefficients of f(λ) = λ3 + f1λ2 + f2λ + f3 are given by

f1 = u1 + w1, f2 = u2 + u1w1, f3 = u2w1.

Using the definition of the resultant, we have

detR(us, u) = u2(s− 1)2
(

u2(s + 1)2 − u2
1s

)

, det R(ws, w) = w1(s− 1),

det R(us, w) = q(s) = w2
1s

2 − u1w1s + w2,

detR(u,ws) = q̃(s) = u2s2 − u1w1s + w2
1.

The lemma tells us that det R(fs, f) is the product of these four resultants. This is a
polynomial of the form

u2w1(s− 1)3h(s) = f3(s− 1)3h(s),

where

h(s) = (u2(s + 1)2 − u2
1s) (w2

1s
2 − u1w1s + u2) (u2s2 − u1w1s + w2

1).

Using the equations for the coefficients f1, f2, f3, it can be verified that h(s) is the generic
polynomial ∆3(s, f), as given in [BC]:

∆3(s, f) = f2
3 (s6 + 1) + (3f2

3 − f1f2f3)(s5 + s)

+ (6f2
3 − 5f1f2f3 + f3

2 + f3
1 f3)(s4 + s2)

+ (7f2
3 − 6f1f2f3 + 2f3

2 + 2f3
1 f3 − f2

1 f2
2 )s3.

As in [BC], putting t = s+s−1+2 we can write ∆3(s, f) as s3r3(t), for a generic polynomial
r3(t).

In the same way,

q(s)q̃(s) = u2w2
1(s

4 + 1)− (u1w3
1 + u1u2w1)(s3 + s) + (u2

1w
2
1 + u2

2 + w4
1),

and this can be written as s2r2,1(t), where t = s + s−1 + 2 and

r2,1(t) = u2w2
1t

2 − (u1w3
1 + u1u2w1 + 4u2w2

1)t + (u2 + u1w1 + w2
1)

2.
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4. The equimodular curves as unions of arcs

The results obtained in the preceding example are particular cases of the following. With
the substitution t = s + s−1 + 2,

∆m(s, f) = sm(m−1)/2 rm(t),

where rm is a polynomial of degree m(m− 1)/2 in t. And similarly,

q(s)q̃(s) = skl rk,l(t),

where rk,l is a polynomial of degree kl in t.
At this point, we return to the situation when f is the characteristic polynomial of a matrix
F (z), so that its coefficients are complex functions fi(z). Define vf : R×C → C by the rule
that vf (t, z) is obtained from rm(t) by replacing fi by fi(z), and define vu,w : R×C → C
similarly, using rk,l(t).
Recall that when s is replaced by t = s + s−1 + 2, the condition |s| = 1 implies that t is
real and lies in the range 0 ≤ t ≤ 4. This observation leads to the main result of [BC],
that the set of points z where F (z) has two eigenvalues with the same modulus is given by

E(F ) = {z ∈ C | vf (t, z) = 0 for some t, 0 ≤ t ≤ 4}.

Except (possibly) for some isolated points, E(F ) is a union of homeomorphic images of
the interval [0, 4]. All roots of vf (0, z) = 0 are double roots, and consequently the images
of [0, 4] occur in pairs, the end-points corresponding to t = 0 of two paired arcs being
coincident. It is convenient to use the word segment to denote two images of [0, 4] that are
paired in this way.
Thus E(F ) consists of a number of segments, such that the end-points of each segment
are roots of vf (4, z) = 0, and each segment contains a double root of vf (0, z) = 0. The
segments are smooth, except at points where the Jacobian vanishes.
For our present purposes, the crucial observation is that some of the roots of vf (4, z) = 0
may also be double roots, in which case the segments join up. This happens, for example,
in Case 4, Section 2, where the matrix X2(z) is reducible: there is just one segment, and
its endpoints coincide, so that it defines a closed curve.
In general, if F is reducible with constituents U and W we have E(F ) = E(U) ∪ E(W ) ∪
E(U,W ). The algebraic form of this result can be deduced from the theory developed
above, and it leads to the following result.

Theorem 1 Suppose that F (z) is a reducible matrix with constituents U(z) and W (z),
which are distinct and irreducible. Then the equimodular curves in E(U,W ) are closed
curves.
Proof If F (z) is reducible, its characteristic polynomial f is the product uw of the
characteristic polynomials of U(z) and W (z). The following result is a consequence of
Lemmas 1 and 2:

∆m(s, f) = ∆k(s, u)∆`(s, w)q(s)q̃(s).
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Making the substitution t = s + s−1 + 2 and replacing the coefficients of the generic
polynomials by the appropriate functions, we obtain

vf (t, z) = vu(t, z)vw(t, z) vu,w(t, z).

This is the algebraic form of the decomposition E(F ) = E(U)∪E(W )∪E(U,W ). In other
words

E(U,W ) = {z ∈ C | vu,w(t, z) = 0 for some t, 0 ≤ t ≤ 4}.

In order to show that E(U,W ) consists of closed curves, note that the value t = 4 corre-
sponds to s = 1, and so vu,w(4, z) is obtained by substitution in the generic polynomial
q(1)q̃(1). But

q(1)q̃(1) = (det R(u,w))2.

It follows that all roots of vu,w(4, z) = 0 are double roots. Hence the segments comprising
E(U,W ) link up to form closed curves.

5. The dominance property

The intended application of the work presented here concerns the limit set of the zeros
of certain sequences of polynomials. A theorem of Beraha-Kahane-Weiss [1] asserts that
(apart possibly from some isolated points) the limit points are a subset of those parts of
the equimodular curves that have a ‘dominance’ property, which we now define.
For each z ∈ C the spectral radius of the square matrix F (z) is

mF (z) = max{|λ| | det(λI − F (z)) = 0}.

We say that a point z∗ is dominant for F if there are two eigenvalues λa, λb of F (z∗) such
that

|λa| = |λb| = mF (z∗).

By convention, this includes the case where there is an eigenvalue λa, of algebraic multi-
plicity 2 or more, such that |λa| = mF (z∗). We shall denote the set of dominant points
for F by D(F ).
Points that lie on an equimodular curve are not necessarily dominant, so D(F ) is, in
general, a proper subset of E(F ). Roughly speaking, if F (z) is an m × m matrix there
are 1

2m(m − 1) equimodular curves, only one of which is dominant. Thus the method of
determining D(F ) used in [4], which involves finding E(F ) before applying the dominance
condition, is not very efficient. The aim is to design a more efficient method, using the
dominance condition from the outset.
A first attempt to do this is based on the idea of locating a small number of points that lie
on the equimodular curves. In the terminology introduced in Section 4, every equimodular
curve is the union of segments. Each segment has end-points given by the value t = 4
(equivalently s = 1), and contains a point given by the value t = 0 (s = −1). We shall
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refer to these points as special points. Algebraically, a special point is a root of one of the
equations

v(4, z) = 0, v(0, z) = 0.

(From now on we drop the subscripts on the v polynomials.)
For each special point z′ it is easy to determine whether or not z′ has the dominance
property, by explicitly computing all the eigenvalues of F (z′). However, it is worth noting
that a special point may be dominant, even though it arises from the equimodularity of
two non-dominant eigenvalues. In other words, it is possible that a root of v(4, z) = 0,
which lies on a dominant equimodular curve, is not the end-point of a segment of that
curve.

There now follows the outline of a suggested method for determining D(F ).
(i) Substitute the functional forms of the coefficients in the generic polynomial rm(t),
obtaining a polynomial v(t, z).
(ii) Compute the special points - that is, the roots of v(0, z) = 0 and v(4, z) = 0.
(iii) For each special point z′, calculate the eigenvalues of F (z′) and determine whether
there are two of them that are equal in modulus to mF (z′). If so, z′ is in D(F ).
(iv) For each dominant root z′ construct a search circle with centre z′ and radius ε.
Locate, if possible, points z′′ on the search circle that also have the dominance and
equimodularity properties. Each such point determines an arc z′z′′ forming part of
D(F ).
(v) Repeat the local search for each point z′′ found in step (iv), thus extending the
arcs. We shall refer to this process as extension.

The local search can be assisted by using results of Salas and Sokal [10, Section 4.2]
concerning the slope of an equimodular curve. But there can be complications caused by
singularities.

Example Let B(z) be the 3× 3 matrix displayed in Section 6 of [BC], where it is called
T (z). The coefficients b1(z), b2(z), b3(z) of the characteristic polynomial are given in the
Appendix, and v(t, z) can be calculated by substituting them in the generic polynomial
r3(t) [BC, Section 4]. After removing the factors z2(z + 1)2, we find the special points
listed in [BC]. The dominant ones are:

(t = 4) : − 1.8726± 1.1275i, −0.3412± 1.1615i, 0.1541, 0.6066;

(t = 0) : − 1.0788± 1.7292i, 0.1601± 0.4718i.

Here, and in the ensuing discussions, points are represented by an approximation to four
decimal places.
All the 4-points except the second pair are single roots, and (necessarily) all the 0-points
are double roots. Thus −1.8726 + 1.1275i is presumably the end-point of a dominant
equimodular curve. Using the extension process, this curve is found to pass smoothly
through the all the special points with positive imaginary parts. However, complications
arise as the curve approaches the point 0.3369 on the real axis, when the search circle will
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contain three possible points z′′. This is because the point 0.3369 is a singularity, a fact
that can be verified by the vanishing of the Jacobian (in this case, the discriminant of v
considered as a polynomial in z). Continuing the process in the obvious way, we obtain
the ‘largest’ of the three curves depicted in Figure 1 of [BC]. It has four segments, two
of which are non-differentiable at the singularity. This curve, D(B), is shown in Figure 4
(Section 7) of this paper.

We now turn to the case where F (z) is reducible, with just two distinct irreducible con-
stituents, U(z) and W (z). We shall say that a point z∗ is dominant for the pair (U,W ) if
mU (z∗) = mW (z∗), and denote the set of points dominant for (U,W ) by D(U,W ). Clearly,
D(U,W ) is a subset of E(U,W ) and

D(U,W ) ⊆ D(F ) ⊆ D(U) ∪D(W ) ∪D(U,W ).

According to Theorem 1, the curves comprising E(U,W ) are defined by the vanishing of
a polynomial function v(t, z) and the curves can be decomposed into segments, with the
additional property that the special points defined by v(4, z) = 0 occur in pairs, so that
the segments link up to form closed curves. In this case v(t, z) = q(s, z)q̃(s, z), so all the
relevant information can be obtained from the polynomial q. Noting that the values t = 4
and t = 0 correspond to s = 1 and s = −1 respectively, we can adapt the method suggested
above to the determination of D(U,W ).

(i) Substitute the functional forms of the coefficients in the generic polynomial q(s),
obtaining a polynomial q(s, z).
(ii) Compute the special points, that is, the roots of q(1, z) = 0 and q(−1, z) = 0.
(iii) For each root z′, calculate mU (z′) and mW (z′), and determine whether they are
equal. If so, z′ is in D(U,W ).
(iv) For each dominant root z′ construct a search circle and locate points on it that
also have the dominance and equimodularity properties. Each such point determines
an arc z′z′′ forming part of D(U,W ).
(v) Repeat the local search for each point z′′ found in step (iv), thus extending the
arcs.

6. Triple points

An equimodular curve is smooth, except at points where a Jacobian vanishes [BC, Section
6]. However, there may be points where the curve is smooth but the dominance property
is not preserved. Indeed, the dominance property will be altered at points where a third
eigenvalue is equal in modulus to the two eigenvalues that define the curve. We shall say
that z0 is a triple point if three (or more) eigenvalues have equal modulus at z0. (Salas
and Sokal [10] refer to this as a T-point.) A triple point lies on three equimodular curves,
corresponding to the three possible pairs of these three eigenvalues.

The extension process outlined in the previous section will recognise a triple point. As we
approach a triple point, extra points will appear on the search circle, having the equimod-
ular and/or dominance properties. This also happens as we approach a singularity, but
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a triple point can be distinguished from a singularity by testing whether the Jacobian is
zero.

It is possible that all three eigenvalues involved in a triple point are dominated by some
other eigenvalue, in which case the triple point plays no part in the determination of D(F ).
But in the extension process we are constructing an equimodular curve that forms part
of D(F ). In this case, each of the three curves passing through a triple point z0 has the
property that its points on one side of z0 are in D(F ), while those on the other side are
not. See Figure 2.

Figure 2: a typical triple point, bold lines indicating the dominant parts.

Example Let C(z) be the 4 × 4 matrix whose characteristic polynomial is given in
the Appendix. Substituting the coefficients of the characteristic polynomial in the generic
polynomial r4(t) gives the polynomial v(t, z), and after removing the factor (z + 1)2 we
obtain a polynomial which has degree 6 in t and 16 in z. Only a few of the special points
have the dominance property:

(t = 4) : − 1.5684± 2.1597i, 0.5000;

(t = 0) : 0.5324± 1.5856i.

The dominant 4-point at 0.5000 is a double root.

We begin the extension process at one of the 0-points, say 0.5324 + 1.5856i, and denote
by Γ1 the equimodular curve so constructed. Moving to the left, the extension proceeds
smoothly and the curve terminates at the end-point −1.5684 + 2.1597i. This part of Γ1 is
dominant.

However, on leaving 0.5324 + 1.5856i in the other direction, the extension process hits a
triple point α at 0.5872 + 1.4516i. Two other equimodular curves Γ2 and Γ3 pass through
α, and they intersect Γ1 again at β = 0.5944 + 1.2671i. Between these two points Γ2

and Γ3 are dominant, but Γ1 is not. However Γ1 becomes dominant again after passing
through β. See Figure 3.

Continuing the extension process along Γ1, the curve crosses the real axis at the double end
point 0.5000. It then traces out a path conjugate to the one already described, including the
brief loss of dominance, before terminating at −1.5684− 2.1597i. The complete dominant
set for C is shown in Figure 3. It contains parts of three equimodular curves Γ1,Γ2, Γ3. The

11



decomposition of Γ1 into segments is clear from the description given above, but further
calculations are needed to determine the decompositions of Γ2 and Γ3.

Figure 3: D(C), with schematic diagram of one pair of triple points.

7. Triple points in the reducible case

When F is reducible, with two irreducible constituents U and W , it is natural to begin by
finding D(U) and D(W ). Only a part of D(U)∪D(W ) will be in D(F ): a point z in D(U)
is dominant for F if and only if the two dominant equimodular eigenvalues of U dominate
all the eigenvalues of W at z; and similarly with U and W switched.
The application of this criterion may involve the determination of triple points, as indicated
in the following theorem. It implies that, in the construction of D(U,W ) by the extension
process, triple points will occur if and only if the curve under construction hits D(U) or
D(W ), and such a triple point will separate a part of D(U) or D(W ) that belongs to D(F )
from a part that does not.

Theorem 2 A triple point that belongs to D(U,W ) must belong to D(U) ∪D(W ).
Proof Consider part of an equimodular curve that belongs to D(U,W ). With suitable
care about the domain of definition, we may suppose that there are eigenvalues λ1(z), µ1(z)
such that the curve is defined by an equation of the form |λ1(z)| = |µ1(z)|, where |λ1(z)| =
mU (z) and |µ1(z)| = mW (z). Then at a triple point z0 there is a third eigenvalue equal
in modulus to λ1(z0) and µ1(z0). Without loss of generality, we may take it to be an
eigenvalue µ2(z0) of W (z0). It follows that the two other equimodular curves passing
through z0 are defined by the equations

|λ1(z)| = |µ2(z)|, |µ1(z)| = |µ2(z)|.

Since |µ1(z)| = mW (z) in a neighbourhood of z0, it follows that the second curve is in
D(W ), and hence z0 is in D(W ).
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Example Let the matrix F (z) be defined by

F (z) =
(

B(z) V (z)
O C(z)

)

,

where B(z) and C(z) are the square matrices of size 3 and 4 whose dominant sets D(B)
and D(C) have been described in the examples above. These sets are shown in Figure 4;
they intersect at the real point 0.5000.

Figure 4: D(B) (continuous lines) and D(C) (broken lines).

It remains to find D(B, C), and then to determine which parts of D(B) and D(C) also
belong to D(F ). The calculation of the special points is described in the Appendix, and
it turns out that only 4 of the roots of q(1, z) = 0 and 2 of the roots of q(−1, z) = 0 have
the dominance property. They are:

(s = 1) : − 1.0000, −0.4660± 1.4456i, 0.6383;

(s = −1) : 0.2574± 0.6675i.

When the extension process is used to construct D(B, C), four triple points are encoun-
tered. Starting from 0.6383, a dominant equimodular curve ∆1 extends to the left until
it hits triple points on D(C) at 0.5043± 0.1927i. Here dominance is acquired by another
equimodular curve ∆2 that passes through the dominant special points at 0.2574±0.6675i
and −0.4660 ± 1.4456i before hitting D(B) at the triple points −0.6735 ± 1.5822i. At
these points dominance is acquired by another equimodular curve ∆3 that closes up at the
dominant special point −1.0000.

The preceding description also determines the parts of D(B) and D(C) that belong to
D(F ). They are the parts of D(B) to the left of the triple points that lie on it, and the
part of D(C) that joins the triple points that lie on it.

The set D(F ) is shown in Figure 5. The subset D(B, C) is the union of parts of three
closed curves ∆1, ∆2, ∆3, belonging to E(B, C), and the rest comprises parts of D(B)
and D(C).
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Figure 5: the dominant set D(F ).

8. Conclusion

The matrices B(z) and C(z) discussed in the preceding sections are not totally arbitrary, as
they arise in the discussion of the limit points of the chromatic roots of a family of graphs
[4,SC]. Nevertheless, their individual properties and their interaction as constituents of
F (z) provide good illustrations of some of the difficulties involved in the determination of
dominant equimodular curves.

Among these difficulties are the points of non-differentiability, indicated by the vanishing
of a Jacobian polynomial. The degree of this polynomial may be large [BC, Section 6].
Another difficulty is the presence of triple points, which are not easy to detect analytically,
and which may be confusingly close together. In addition, there is the inherent problem
that the end-points of segments are points where two eigenvalues are equal: this means that
although the points themselves may be found relatively simply, the behaviour of curves
that pass close to them is difficult to determine.

On the positive side, the technique of reducing F to its constituents, and examining them
in pairs has some advantages. There are some simple rules governing the topology of D(F ),
and these can be used in the construction of the required configuration. Further checks
are provided by the decomposition of the curves into segments.
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Appendix

The purpose of this Appendix is to enable the reader to make an independent check of the
calculations referred to in the main part of the paper.

The following are the coefficients of the characteristic polynomials of the matrices B(z)
and C(z) discussed in Sections 5,6,7.

b1(z) = −z4 − 2z3 − 4z2 − 1

b2(z) = z(z + 1)(z4 + z3 + 2z2 + 2)

b3(z) = −z2(z + 1)2;

c1(z) = −z2 + 2z − 2

c2(z) = −2z3 + z2 − 2z − 1

c3(z) = −z4 + 1

c4(z) = (z + 1)2.

We describe briefly the calculations required to determine D(F ), where F (z) is the matrix
with constituents B(z) and C(z). The equimodular curves E(B, C) are derived from the
generic polynomial r3,4(t) = s−12q(s)q̃(s), where
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q(s) = det



















s3 s2b1 sb2 b3 0 0 0
0 s3 s2b1 sb2 b3 0 0
0 0 s3 s2b1 sb2 b3 0
0 0 0 s3 s2b1 sb2 b3

1 c1 c2 c3 c4 0 0
0 1 c1 c2 c3 c4 0
0 0 1 c1 c2 c3 c4



















.

This can be written as a polynomial of degree 12 in s:

q(s) =
12
∑

i=0

qis12−i.

The coefficient qi is an integral linear combination of terms of the form βγ, where each β
is a monomial of weight i in the b’s and each γ is a monomial of weight 12 − i in the c’s.
For example,

q0 = c3
4, q1 = −b1c3c2

4, q2 = b2c2
3c4 + b2

1c2c2
4 − 2b2c2c2

4.

Substituting the relevant functions of z, as given above, we obtain a polynomial function
of s and z. In fact,

q(s, z) = (z + 1)4q0(s, z),

where q0 is a polynomial of degree 22 in z. Putting s = 1 the coefficients of z22, z21 and
z20 vanish, and we get

q0(1, z) = z(z + 1)4(z5 + 3z3 + 2z − 2)p9(z),

where

p9(z) = 4z9 + 6z8 + 10z7 + 9z6 − 12z5 + 6z4 − 28z3 + 15z2 − 6z + 4.

Similarly putting s = −1 we get

q0(−1, z) = 4z22 + 12z21 + 42z20 + 48z19 + 126z18 + 42z17 + 233z16

− 226z15 + 351z14 − 642z13 + 852z12 − 1038z11 + 1476z10

+ 1010z9 + 1107z8 − 1010z7 + 859z6 +−670z5 + 380z4

− 206z3 + 88z2 − 20z + 2.

The points listed in Section 7 can now be found by solving the equations q0(1, z) = 0 and
q0(−1, z) = 0 and testing the roots for dominance. In particular the point 0.6383 is the
largest real root of p9(z) = 0. This corresponds to the critical value 2.6383 found by Chang
[SC], a value which has special significance in the physical context.
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