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1 Introduction

Many methods for solving Frequency Assignment Problems (FAPs) rely on knowledge about
certain structural properties about the problem to facilitate the algorithms. But if no such
structural information is given explicitly, it may be very difficult to obtain this information
from just the numerical data.

In this note we discuss the possibilities to use algebraic techniques to investigate the struc-
ture of Frequency Assignment Problems, using numerical data such as a constraint matrix
only. Algebraic objects have several advantages over combinatorial properties. For instance,
calculation with high numerical precision is fast and stable, even for large problems. And those
properties usually do not depend on the actual representation of a problem, such as order of
the nodes, etc.

In order to explain our approach a little further, we first describe some of the underlying
assumptions. Frequency Assignment Problems can be described in different ways, using dif-
ferent collections of information. We will always assume that we are given a collection of N
transmitters, numbered 1, . . . , N . But what is further given may vary from problem to prob-
lem. For instance, we may be given information about the geometric position of the set of
transmitters, information about the power of the transmitters, and maybe some information
about the terrain properties.

For our purposes we assume that all we have available is the constraint matrix :

Definition 1.1 A constraint matrix W = [wij ] is the N × N matrix such that if fi denotes
the frequency assigned to transmitter i, for i = 1, . . . , N , then in order to limit interference it
is required that |fi − fj | ≥ wij, for all i, j.

We use the term “transmitter” in a more general sense as a unit to which one channel needs
to be assigned. In a system where certain “actual transmitters” need to be assigned more
than one channel, we will consider each channel as a separate “transmitter”. This makes sense
because a transmitter with multiple channels is indistinguishable from a system where there
is a number of transmitters of the same power all in more or less the same position.

Definition 1.2 A feasible assignment of a FAP with N transmitters, given the constraint
matrix W , is a labelling f : {1, . . . , N} −→ {x ∈ R

∣∣ x ≥ 0 } such that |fi − fj | ≥ wij, for all
i, j, i 6= j.

The span of a FAP is the minimum over all feasible assignments of the largest label used.
By solving a FAP we will mean determining its span and a feasible labelling that will give that
span.

Accepting the hypotheses in the definitions above, the constraint matrix is the unique object
needed to “solve the FAP”. Nevertheless, additional information, such as geometric position
of transmitters, may be available, and may be useful for a method to “solve the FAP”.

The main aim of the methodology discussed in this note is to obtain some further inform-
ation about the FAP which may be helpful for algorithms for solving the FAP.

For several reasons, including historical developments of solution methods for FAPs, we
will usually discuss FAPs in the context of weighted graphs.
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Definition 1.3 A weighted graph (G, w) is a triple (V (G), E(G), w), where V (G) and E(G)
form the vertex set and edge set, respectively, of a simple graph G, and w is a weight-function
defined on E(G). We will assume that all weights w(e), e ∈ E(G), are non-negative real
numbers.

If no confusion about the weight can arise, we often just use G to denote a weighted graph.
Also to make notation easier, we identify the situation that there is no edge between two

vertices u and v and the situation where there is an edge uv with w(uv) = 0.

If a FAP with constraint matrix W = [wij ] is given, then we can easily form a weighted
graph G by setting V (G) = {1, . . . , N}, joining two vertices i, j whenever wij > 0, and setting
the weight of an edge e = ij equal to w(e) = wij . Similarly, given a weighted graph, we can
formulate a FAP on the vertex set in the reverse manner.

From now on we will mix both FAPs and weighted graphs, and hence assume we can talk
about the span of a weighted graph G, notation sp(G), as the span of the related FAP. We also
freely use a mixture of FAP-terms and graph theoretical terms. So a vertex and a transmitter
should be considered as being the same object.

The chromatic number χ(G) of a graph G is the smallest number of labels needed for
a labelling in which adjacent vertices must receive different labels. The span of a weighted
graph (G,w) is one less than the chromatic number of G if w ≡ 1, but the two parameters can
be completely different for general w.

As indicated before, we always assume that a weighted graph G has an associated matrix W .
We define the (weighted) degree of a vertex v as d(v) =

∑
u 6=v

w(uv).

Definition 1.4 Given a weighted graph G with associated matrix W , denote by D the diagonal
matrix with the degrees of the vertices on the diagonal. Then we define the Laplacian L of G

as the matrix L = D −W ; hence Luv =

{
−w(uv), if u 6= v,
d(v), if u = v

(here, and in the definition of

degree above, we follow our convention that w(uv) = 0 if uv /∈ E(G)).
If we want to emphasise the weighted graph determining the Laplacian we denote the Lapla-

cian as L(G).

The matrix L can be seen as a generalisation of the Laplacian matrix from algebraic graph
theory, in a similar way as W is a generalisation of the adjacency matrix of a graph.

Notice that the information contained in the Laplacian is the same as that in the constraint
matrix. In that sense, there seems to be no good reason to study algebraic properties of the
Laplacian and not the constraint matrix. But it seems that the Laplacian is more useful when
one wants to obtain structural information about the underlying graph (or FAP). Also, the
Laplacian has some additional algebraic properties (for instance, it is non-negative definite)
which give a head start in the algebraic analysis.

Definition 1.5 Given a weighted graph or a FAP with Laplacian L, a Laplacian eigenvalue
and a Laplacian eigenvector is an eigenvalue and eigenvector of L. So λ ∈ R is a Laplacian
eigenvalue with corresponding Laplacian eigenvector x ∈ RN if x 6= 0 and Lx = λx.

Since L is a symmetric matrix (Luv = Lvu) we know that it has N real eigenvalues λ1, . . . , λN ,
and a collection of corresponding eigenvectors x1, . . . , xN that form a basis of RN . Because
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of the fairly nice structure of the Laplacian, determining the eigenvalues and eigenvectors is
computationally fairly easy, even for larger values of N . Experiments with N ≈ 10, 000 have
been performed on a standard PC, where running times were in the order of minutes.

The guiding question in the remainder of this note is:

What are the properties of the Laplacian eigenvalues and eigenvectors of a FAP,
and what (structural) information regarding the FAP can be obtained from the ei-
genvalues and eigenvectors ?

Different aspects of this question will be considered in the different sections that follow.

2 Properties of the Laplacian eigenvalues of weighted graphs

2.1 Bounds for the eigenvalues in terms of number of vertices and
components of a graph

In this section we obtain bounds for the Laplacian eigenvalues in terms of the number of
vertices and the number of components of the weighted graph. These results are inspired by
theorems known for simple graphs (see, e.g., [1], [3] and [6]).

Definition 2.1 The weighted complete graph K
(c)
N , where c ∈ R, c > 0, is the graph on N

vertices with all vertices adjacent and all edges have constant weight c.

Lemma 2.2 The eigenvalues of the Laplacian L of a weighted complete graph K
(c)
N are 0 with

multiplicity 1, and cN with multiplicity N − 1.

Proof It is easy to see that L1 = 0, so we conclude that 0 is a Laplacian eigenvalue of the
graph.

Let x be any vector orthogonal to 1. Then we easily obtain Lx = (cN)x. Since there are
exactly N − 1 linearly independent vectors orthogonal to 1, cN is a Laplacian eigenvalue with
multiplicity N − 1.

Definition 2.3 The complement (G,w) (or just G) of a weighted graph G is the weighted
graph with the same vertex and edge set, and with weights w(e) = C − w(e) for an edge
e ∈ E(G), where C = max

e∈E(G)
w(e).

Theorem 2.4 If λ is a Laplacian eigenvalue of a weighted graph G on N vertices and maximal
edge-weight C, then 0 ≤ λ ≤ CN .

A vector orthogonal to 1 is an eigenvector of the Laplacian L(G) corresponding to the
eigenvalue λ, if and only if it is an eigenvector of the Laplacian L(G) of the complement G
corresponding to CN − λ.

Proof Choose an orientation on the edges of the considered weighted graph G, and suppose G
has M edges. The vertex-edge incidence matrix Q of G is the N ×M matrix Q such that

Qve =





√
w(e), if edge e points toward vertex v,

−
√

w(e), if edge e points away from vertex v,
0, otherwise.
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Note that this means that for the Laplacian we have L = QQT .
For an eigenvalue λ of the Laplacian L there exist a vector x, with ‖x‖ = 1, such that

Lx = λx. Thus λ = 〈λ x, x〉 = 〈Lx, x〉 = 〈QQT x, x〉 = 〈QT x,QT x〉 = ‖QT x‖2. Therefore λ
is real and non-negative.

Further, by the definition of the complement of the weighted graph G we have L(G) +
L(G) = L(K(C)

n ). If L(G) u = λu for some vector u orthogonal to 1 then by using Lemma 2.2
we find

L(G) u = L(K(C)
n )u− L(G) u = (CN − λ) u. (1)

Since the Laplacian eigenvalues of G are also non-negative, we get λ ≤ CN .
Expression (1) also proves the last part of the theorem.

Theorem 2.5 Let G be a weighted graph with N vertices and maximal edge-weight C. The
multiplicity of the eigenvalue 0 equals the number of components of the graph and the multipli-
city of CN is equal to one less than the number of components of the complementary graph G.

Proof Define the incidence matrix Q as in the previous proof, and let v1, v2, . . . , vk be the
vertices of a connected component of the graph G. The sum of the corresponding rows of the
incidence matrix Q is 0T and any k − 1 of these rows are independent. We conclude that the
rank of the matrix formed from these k rows is k− 1 and its nullity is 1. Therefore the nullity
of Q, and hence of L(G) = QQT , is equal to the number of components of the graph, i.e., the
multiplicity of the eigenvalue 0 equals the number of components of the graph.

Furthermore, by Theorem 2.4 the value CN is an eigenvalue of L(G) with multiplicity m
if and only if 0 is an eigenvalue of L(G) of multiplicity m + 1. The latter is true if and only
if G has m + 1 components. Thus the result follows.

Definition 2.6 The complete p(c)-partite graph K
(c)
N1,N2,... ,Np

is the weighted graph isomorphic

to KN1,N2,... ,Np in which all edges have weight c. In other words, the vertices of K
(c)
N1,... ,Np

can
be partitioned into p disjoint sets V1, V2, . . . , Vp, where each Vi contains Ni vertices, and two
vertices are joined by an edge of weight c if and only if the vertices belong to different parts.

Theorem 2.7 Let G be a weighted graph on N vertices and maximal edge weight C. Then
the multiplicity of CN as an eigenvalue of the Laplacian matrix L is k − 1 if and only if G

contains a complete k(C)-partite graph K
(C)
N1,... ,Nk

as a spanning subgraph of G.

Proof By Theorem 2.5 the multiplicity of CN is equal to one less then k, the number of
components of the complementary graph G. On the other hand the number k of components
of G gives us the information on the existence of a complete k(C)-partite graph K

(C)
N1,... ,Nk

on V (G) as a subgraph of G.

2.2 Bounds for the eigenvalues in terms of edge weights

In this subsection we state two results concerning upper bounds for the smallest non-zero and
the largest Laplacian eigenvalue of a weighted graph. The proofs of the theorems are presented
after all terminology needed and theorems are introduced.
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Definition 2.8 The degree d(v) of a vertex v of a weighted graph G is the sum of all weights
of the edges incident to that vertex, i.e., d(v) =

∑
u 6=v

w(uv).

Theorem 2.9 Let G be a weighted graph on N vertices and suppose its Laplacian L has
eigenvalues 0 = λN ≤ λN−1 ≤ · · · ≤ λ1. Then we have

λN−1 ≤ w(uv) +
1
2

(d(u) + d(v)),

for any two vertices u, v, u 6= v.

Definition 2.10 The 2-degree d2(v) of a vertex v of a weighted graph G is the sum of the
degrees of its neighbours times the weight of the edge with which v is joined to that neighbour.
So d2(v) =

∑
u 6=v

w(uv) d(u).

Theorem 2.11 Let λ1 be the largest Laplacian eigenvalue of a connected weighted graph G.

Then λ1 ≤ max
v∈V (G)

{
d(v) +

d2(v)
d(v)

}
.

Before we proceed we shortly recall some of the matrix theory regarding eigenvalues of matrices.
Assume that the sequence λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A) represent the eigenvalues of a sym-
metric matrix A in decreasing order, and let the coordinates of the matrix and corresponding
vectors be indexed by a set V , |V | = N . A useful characterisations of the eigenvalues are given
by the Rayleigh’s and Courant-Fisher’s formulae (see [7]):

λN (A) = min{ 〈Ax, x〉
∣∣ x ∈ RV , ‖x‖ = 1 },

λ1(A) = max{ 〈Ax, x〉 ∣∣ x ∈ RV , ‖x‖ = 1 },
λN−k+1(A) = min{max{ 〈Ax, x〉

∣∣ x ∈ X, ‖x‖ = 1 } ∣∣ X a k-dimensional subspace of RV },
for k = 1, . . . , N .

Also,

λN−k+1(A) = min{ 〈Ax, x〉
∣∣ ‖x‖ = 1, x ⊥ xi for i = N − k + 1, . . . , N },

where xN , xN−1, . . . , xN−k+2 are pairwise orthogonal eigenvectors of λN , λN−1, . . . , λN−k+2,
respectively.

For a weighted graph G with Laplacian matrix L we have

λN−1(L) = min{ 〈Lx, x〉 ∣∣ ‖x‖ = 1, x ⊥ 1 },
since 1 is the eigenvector corresponding to λN (L) = 0.

Now, we can give the proof of Theorem 2.9.

Proof of Theorem 2.9 Choose two vertices u, v, u 6= v, and define x ∈ RN by

xw =





1, if w = u,

−1, if w = v,

0, otherwise.
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Obviously, x is orthogonal to 1 and therefore we have

λN−1 ≤ 〈Lx, x〉
〈x, x〉 =

(Lx)T x

xT x
=

d(u) + d(v) + 2 w(uv)
2

,

which proves the theorem.

From this theorem it can be concluded that if a weighted graph has at least one pair of non-
adjacent vertices u, v, then λN−1 ≤ 1

2(d(u) + d(v)) ≤ 1
2 (dmax + dmax) = dmax, where dmax

denotes the maximum degree.
Note that the value of λN−1 can be greater than dmax in the case of a weighted graph in

which any two vertices are adjacent. For example λN−1(K
(c)
N ) = cN > c (N−1) = dmax(K(c)

N ).

To prove Theorem 2.11, we use Geršgorin Theorem and its corollaries. These are classical
results regarding the location of eigenvalues of general matrices, and can be found in, e.g., [5].

Theorem 2.12 (Geršgorin Theorem) Let A = [aij ] be an N ×N matrix, and let

R′
i(A) =

N∑

j=1, j 6=i

|aij |, i ∈ {1, . . . , N},

denote the deleted absolute row sums of A. Then all the (complex) eigenvalues of A are located
in the union of N discs

N⋃

i=1

{ z ∈ C ∣∣ |z − aii| ≤ R′
i(A) } = G(A).

Furthermore, if a union of k of these N discs forms a connected region in the complex plan
that is disjoint from all other N − k discs, then there are precisely k eigenvalues of A in this
region.

Corollary 2.13 Let A = [aij ] be an N ×N matrix and let

C ′
j(A) =

N∑

i=1, i 6=j

|aij |, j ∈ {1, . . . , N},

denote the deleted absolute column sums of A. Then all the (complex) eigenvalues of A are
located in the union of N discs

N⋃

j=1

{ z ∈ C
∣∣ |z − ajj | ≤ C ′

j(A) } = G(AT ).

Furthermore, if a union of k of these N discs forms a connected region that is disjoint from
all other N − k discs, then there are precisely k eigenvalues of A in this region.

Theorem 2.12 and Corollary 2.13 together show that all the eigenvalues of A lie in the inter-
section of the two regions, that is, in G(A) ∩G(AT ).
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Corollary 2.14 If A = [aij ] is an N ×N matrix, then

max{ |λ|
∣∣ λ an eigenvalue of A } ≤ min

{
max

i

N∑

j=1

|aij |, max
j

N∑

i=1

|aij |
}

.

We are now ready to give a proof of Theorem 2.11.

Proof of Theorem 2.11 In a graph with no edges both sides of the inequality are 0. Fur-
thermore, it is enough to consider connected weighted graphs only. Denote by D the diagonal
matrix D = diag(d(1), d(2), . . . , d(N)). Then the matrix D−1LD is the matrix given by

(D−1LD)uv =





d(u), if u = v,

−w(uv) d(v)/d(u), if there is an edge joining u and v,

0 otherwise.

Since D is invertible, D−1L D has the same eigenvalues as L. Therefore, application of
Corollary 2.14 to the rows of D−1LD gives us

λ1 ≤ max
u

{
d(u) +

∑
v w(uv) d(v)

d(u)

}
,

and hence the result.

2.3 Continuity of the Laplacian eigenvalues

The following properties from the perturbation theory of matrices appear to be important for
our research. They support our idea of a possibility to classify FAP problems according to
their similarities, i.e., slightly changed initial information in the influence matrix should not
lead to a major change in the approach for solving a given problem. This becomes extremely
important when we recognise that a new problem can be compared to an ”almost similar
problem” for which we have developed a way to solve it. But in order to recognise similar
problems with our approach, it is essential that the Laplacian eigenvalues from similar FAPs
should be comparable as well.

Definition 2.15 The eigenvalue vector of a symmetric matrix is the vector whose entries are
the eigenvalues of the matrix in increasing order.

Definition 2.16 The Euclidean norm, or `2-norm, for a vector x ∈ CN is

‖x‖2 =
( N∑

i=1

|xi|2
)1/2

.

And the Euclidean norm or `2-norm of an N ×N matrix A is

‖A‖2 =
( N∑

i,j=1

|aij |2
)1/2

.
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Our aim in the remainder of this section is to prove that small changes in a Laplacian matrix
bring small changes to its eigenvalue vector. In other words we want to establish:

Theorem 2.17 Let T be the operator that maps the set of symmetric matrices into the set
of vectors, such that the image of a matrix of size N is its eigenvalue vector. Then T is a
continuous operator.

Before we continue we recall the definition of a normal matrix.

Definition 2.18 A matrix A is said to be normal if A∗A = AA∗, where A∗ denotes the
Hermitian adjoint of A. That is, A is normal if it commutes with its Hermitian adjoint.

The following theorem is the crucial for us. Both the theorem and its proof can be found in [5].

Theorem 2.19 (Hoffman and Wielandt) Let A and E be N × N matrices, such that A
and A + E are both normal. Let λ1, . . . , λN be the eigenvalues of A in some given order, and
let λ′1, . . . , λ′N be the eigenvalues of A + E in some order. Then there exists a permutation σ
of the integers 1, 2, . . . , N such that

[
N∑

i=1

|λ′σ(i) − λi|2
]1/2

≤ ‖E‖2.

This result has a corollary regarding symmetric matrices which more or less directly answers
our query and therefore proves Theorem 2.17.

Corollary 2.20 Let A and E be N ×N matrices, such that A and A + E are real symmetric.
Let λ1, . . . , λN be the eigenvalues of A arranged in increasing order (λ1 ≤ λ2 ≤ · · · ≤ λN ),
and let λ′1, . . . , λ′N be the eigenvalues of A+E also ordered increasingly (λ′1 ≤ λ′2 ≤ · · · ≤ λ′N ).
Then we have

[
N∑

i=1

|λ′i − λi|2
]1/2

≤ ‖E‖2.

Proof By Theorem 2.19, there is some permutation σ of the integers 1, 2, . . . , N for which[
N∑

i=1
|λ′σ(i) − λi|2

]1/2

≤ ‖E‖2. If the eigenvalues of A + E in the list λ′σ(1), . . . , λ′σ(N) are

already in increasing order, then there is nothing to prove. Otherwise, there are two successive
eigenvalues in the list that are not ordered in this way, say

λ′σ(k) > λ′σ(k+1), for some k ∈ {1, . . . , N − 1}.
But since

|λ′σ(k) − λk|2 + |λ′σ(k+1) − λk+1|2

= |λ′σ(k+1) − λk|2 + |λ′σ(k) − λk+1|2 + 2 (λk − λk+1) · (λ′σ(k+1) − λ′σ(k)),

and since λk − λk+1 ≤ 0 by assumption, we see that

|λ′σ(k) − λk|2 + |λ′σ(k+1) − λk+1|2 ≥ |λ′σ(k+1) − λk|2 + |λ′σ(k) − λk+1|2.
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Thus, the two eigenvalues λ′σ(k) and λ′σ(k+1) can be interchanged without increasing the sum
of squared differences. By a finite sequence of such interchanges, the list of eigenvalues
λ′σ(1), . . . , λ′σ(N) can be transformed into the list λ′1, λ

′
2, . . . , λ′N in which the real parts are

increasing and the asserted bound holds.

For real symmetric matrices A and B and their eigenvalues arranged in increasing order we
have

[
N∑

i=1

|λi(A)− λi(B)|2
]1/2

≤ ‖A−B‖2

and this is exactly the relation that proves Theorem 2.17.

3 Laplacian eigenvalues and eigenvectors and their connection
to structural properties of weighted graphs

Since a matrix is not uniquely characterised by its collection of eigenvalues, one cannot expect
all important information of a FAP to be obtainable from the set of Laplacian eigenvalues. But
when we combine the eigenvalues with a full collection of eigenvectors, then we can reconstruct
the matrix. So we can expect to obtain more detailed information about a FAP by considering
both the eigenvalues and certain eigenvectors simultaneously.

The following are some results on possible structural properties of a FAP that can be
recognised using the combination of eigenvalues and eigenvectors.

We mainly write the theorems using graph theory terminology, but sometimes rephrase
them in radio terms so that their relation to frequency assignment problems is clear.

The first result is useful to check whether a given FAP can be divided into independent
FAPs of smaller size.

Theorem 3.1 Let G be a weighted graph on N vertices. The multiplicity k of the Laplacian
eigenvalue 0 is equal to the number of components of G.

If each components has Ni vertices, i = 1, . . . , k, then the values of Ni and the vertices
in each component can be recognised as follows: The N × k matrix M whose columns are k
independent eigenvectors that correspond to the eigenvalue 0 contains k different rows r(i),
i = 1, . . . , k, where row r(i) occurs Ni times. Moreover, indices of rows that are identical
correspond to vertices belonging to the same component of G.

Proof Theorem 2.5 already explains that the multiplicity of the eigenvalue 0 represents the
number of components of the corresponding weighted graph.

Let us, therefore, concentrate on the second part of the theorem about the connection
between coordinates of the eigenvectors and the components of the graph. Consider the mat-
rix M , described in the statement of the theorem; where we claim that identical rows of M
correspond to the vertices from the same component.

The fact that G has k connected components of sizes N1, . . . , Nk helps to reconstruct the
Laplacian matrix L of G. Without loss of generality we can assume that the first N1 rows of L
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correspond to the first component, the second N2 rows correspond to the second component,
etc. The Laplacian matrix is then of the form:

L =




L11 0 · · · · · · · · · 0

0 L22
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · · · · 0 Lkk




,

where each Lii is an Ni × Ni submatrix that represents the Laplacian matrix of the i-th
component of G.

Define the vector xi as the vector with coordinates 1 for all coordinates that correspond to
the component i and 0 everywhere else, for i = 1, . . . , k. And let y be any vector of the form

y = α1 x1 + α2 x2 + · · ·+ αk xk,

where the αi’s are real numbers.
It is easy to prove that Ly = 0 y, and since there are exactly k linearly independent choices

for y, we can conclude that any such choice gives a basis of the Laplacian eigenspace that
corresponds to the eigenvalue 0. This also means that a matrix having these k eigenvectors as
its columns, for any choice of k independent eigenvectors, is such that it contains at most k
different rows of which the first N1 are identical (to r(1), say), the second N2 are identical, (to
r(2)), etc. In fact, this matrix has exactly k distinct rows, for the rank of the matrix is k. This
proves the existence of a bijection between the rows of the matrix M and the vertices of G
so that indices of the identical rows are the indices of the vertices that belong to the same
component of the graph G.

Next, we describe a method that can identify channels belonging to a multiple-channel trans-
mitter in a given set of channels.

Theorem 3.2 A weighted graph G on N vertices contains a collection S of n > 1 vertices
with the following properties:
• w(uv) = w, for some constant w, for all u, v ∈ S, u 6= v;
• w(uv) = wv (i.e., wv is only depending on v) for all u ∈ S and v ∈ V (G) \ S;
if and only if there is a Laplacian eigenvalue of multiplicity n−1 such that the n−1 eigenvectors
have the following form:
• they are orthogonal to 1;
• there exist N − n coordinates for which the n− 1 eigenvectors are all 0.

Moreover, the n coordinates for which not all n−1 eigenvectors are 0 represent the vertices
that belong to the set S.

Proof First suppose that a collection S as described in the theorem exist. Without loss of
generality we can assume that the first n rows of the Laplacian matrix L of G correspond to
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the n vertices in S. Therefore we have the following form of L:

L =




d −w · · · −w · · · −wv · · ·
−w d

. . .
...

...
...

. . . . . . −w
...

−w · · · −w d · · · −wv · · ·
...

...
−wv · · · · · · −wv

...
...




,

where d is the degree of a channel in S (which is constant), and v is any transmitter outside S.
It is not difficult to prove that any vector of the form x = [α1, α2, · · · , αn, 0, · · · , 0]T , where∑

i αi = 0 (i.e., x is orthogonal to 1), is an eigenvector of L with eigenvalue d + w. And there
are n − 1 linearly independent vertices of this form. This proves the “only if” part of the
theorem.

Next suppose that there is an eigenvalue λ of multiplicity n − 1, and denote the n − 1
eigenvectors from the statement of the theorem by x(1), x(2), · · · , x(n−1). Again, we can assume
that the coordinates for which not all eigenvectors are equal to 0 are the first n. So each x(k)

looks like

x(k) = [α(k)
1 , α

(k)
2 , · · · , α(k)

n , 0, · · · , 0]T .

Writing out the relevant coordinates involved in the equations Lx(k) = λx(k) gives the follow-
ing:




x11 x12 · · · x1n · · · · · ·
x21 x22 · · · x2n · · · · · ·
...

...
. . .

...
xn1 xn2 · · · xnn · · · · · ·
...

...
... · · · · · ·

yv1 yv2 · · · yvn
...

...
... · · · · · ·







α
(k)
1

α
(k)
2
...

α
(k)
n

0
...
0




= λ




α
(k)
1

α
(k)
2
...

α
(k)
n

0
...
0




, (2)

where v is some vector outside the first n. In order to prove this part of the theorem we need
to show that
• for every vector v outside the first n, the vector [yv1, yv2, · · · , yvn]T is a multiple of 1;
• there exist constants d and w such that xii = d for all i = 1, . . . , n, and xij = −w for i 6= j.

The first part we can do by considering the n − 1 linear equations that we obtain for
yv1, yv2, · · · , yvn using the matrix equation in (2) for each eigenvector. This gives:

yv1 α
(1)
1 + yv2 α

(1)
2 + · · ·+ yvn α(1)

n = 0,

yv1 α
(2)
1 + yv2 α

(2)
2 + · · ·+ yvn α(2)

n = 0,

· · ·
yv1 α

(n−1)
1 + yv2 α

(n−1)
2 + · · ·+ yvn α(n−1)

n = 0.
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Since the n − 1 eigenvectors are independent, the system above is a homogeneous system of
n−1 linearly independent equations with n unknowns. Using the condition of the theorem that
the sum of all entries in each eigenvector is 0, we get that the a solution is: yv1 = yv2 = · · · =
yvn = 1, i.e, [yv1, . . . , yvn]T = 1. But since the solution space has dimension 1, all solutions
must be a multiple of 1, as required.

The approach to solve the second part is similar. Writing out the top line of (2) for each
eigenvector gives the system:

x11 α
(1)
1 + x12 α

(1)
2 + · · ·+ x1n α(1)

n = λα
(1)
1 ,

x11 α
(2)
1 + x12 α

(2)
2 + · · ·+ x1n α(2)

n = λα
(2)
1 ,

· · ·
x11 α

(n−1)
1 + x12 α

(n−1)
2 + · · ·+ x1n α(n−1)

n = λα
(n−1)
1 .

Since the eigenvectors are linearly independent, we find that the solution space must be
1-dimensional, which means that every solution must be of the form x11 = λ + k1, x12 =
· · · = x1n = k1, for some k1 ∈ R (use that

∑
j α

(k)
j = 0 for all k). Repeating this for the other

lines in the matrix equation gives that we must have xii = λ + ki, and xi1 = · · · = xi(i−1) =
xi(i+1) = · · · = xin = ki, for some ki ∈ R, for all i = 1, . . . , n. Because of the symmetry of the
Laplacian we get that all ki must be equal, say to a real number w. So we obtain that there
exist real number w such that

xij =

{
λ + w, if i = j,

w if i 6= j.

Setting d = λ + w completes the proof of the theorem.

Corollary 3.3 Let L be the Laplacian matrix of a FAP with N channels. This system contains
a collection S of n > 1 channels with the following properties:
• the n channels all belong to the same transmitter, with mutual influence w, for some con-
stant w;
• the influence between any of the channels in S and a channel outside S does not depend on
the channel in S;
if and only if there is a Laplacian eigenvalue of multiplicity n−1 such that the n−1 eigenvectors
have the following form:
• they are orthogonal to 1;
• there exist N − n coordinates for which the n− 1 eigenvectors are all 0.

Moreover, the n coordinates for which not all n−1 eigenvectors are 0 represent the channels
that belong to the set S.

The following theorem explores whether a given set of transmitters can be separated into
subsets so that vertices from different subsets influence one another maximally. Recall the
definition of the complete p(c)-partite graph K

(c)
N1,N2,... ,Np

in Definition 2.6.
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Theorem 3.4 Let G be a weighted graph on N vertices and maximal edge weight C. The
graph G contains a complete k(C)-partite graph K

(C)
N1,... ,Nk

as a spanning subgraph if and only
if the multiplicity of CN as an eigenvalue of the Laplacian matrix L is k − 1.

Further, the N × (k− 1) matrix M whose columns are k− 1 independent eigenvectors that
correspond to the eigenvalue CN contains k different rows r(i), i = 1, . . . , k where each row r(i)

occurs Ni times. Moreover, indices of rows that are identical correspond to vertices belonging
to the same part Vi of the k(C)-partition of G.

Proof In Theorem 2.7 we have already proved that multiplicity of CN is equal to k − 1 if
and only if G contains a complete k(C)-partite graph K

(c)
N1,... ,Nk

as a spanning subgraph. The
main point for discussion here is the remaining part of the theorem, describing the relation
between entries of the eigenvectors and the partition of vectors.

In order to realize which vertices of G belong to which part we consider k− 1 independent
eigenvectors that correspond to CN . More precisely we look at the matrix M , described in
the statement of the theorem. Our claim is that identical rows of M correspond to vertices in
the same part.

In order to this, consider the complementary weighted graph G. Following Theorem 2.4,
we see that G has a Laplacian eigenvalue 0 of dimension k, and all eigenvectors of L(G) for
the eigenvalue CN are also eigenvectors of L(G) for the eigenvalue 0. Additionally, the all-1
vector 1 is an eigenvector of L(G) corresponding to the eigenvalue 0. Using this information
in Theorem 3.1 immediately reveals that G has a structure consisting of k components, where
the vertices of each component can be found by looking at identical rows in the matrix of
eigenvectors (the extra vector 1 makes no difference here). Going back to the original graph G,
this means a structure for G as described in the theorem.

Corollary 3.5 Let L be the Laplacian of a FAP with N channels, where the maximal inter-
ference between any pair is C. This system contains a partition S1, S2, . . . , Sk of the channels
into k parts with size Ni i = 1, . . . , k, with the following properties:
• the interference between any pair of vertices from different pairs is C;
if and only if there is a Laplacian eigenvalue CN of multiplicity k − 1 such that the k − 1
corresponding eigenvectors have the following form:
• they are orthogonal to 1;
• he N × (k − 1) matrix M whose columns are the k − 1 eigenvectors contains k different
rows r(i), i = 1, . . . , k where each row r(i) occurs Ni times.

Moreover, indices of rows in M that are identical correspond to channels belonging to the
same part Si.

In Theorem 4.6 in the next section we will show that knowledge about the structure of a FAP
along the lines of the corollary above, can be very useful when trying to find the span of the
FAP.
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4 Determining the span using the information provided by
algebraic methods

Let us recall the definition of the span from the introduction.

Definition 4.1 The span of a weighted graph G is the minimum over all feasible assignments
of the largest label used.

We have already mentioned that we don’t see it as our task to compute the span for given
FAPs, but our plan is to investigate how much the eigenvalues and eigenvectors can help in
discovering useful structures of the FAP that can give better approximations for the values of
the span. Some first results in that direction follow.

4.1 The chromatic number of a weighted graph

Definition 4.2 The chromatic number χ(G) of a graph G (weighted or not) is the smallest
number of labels needed for a labelling in which adjacent vertices must receive different labels.

An alternative definition is to say that the chromatic number of a weighted graph with all
weights positive is the smallest number of labels needed in a feasible assignment.

Note that the chromatic number carries less information for frequency assignment then the
span does, but it is certainly a useful parameter to get some ideas about the order of the span.

The following theorem gives bounds on the chromatic number of weighted graphs.

Theorem 4.3 Let G be a connected weighted graph on N vertices, with at least one pair of
non-adjacent vertices. Let λ1, . . . , λN be the Laplacian eigenvalues of G in decreasing order
and denote by dmax the maximal vertex degree of G. Then we have:

• If λN−1 < dmax, then the chromatic number χ(G) satisfies:

χ(G) ≥ λ1 − 2λN−1

dmax − λN−1
.

• If λN−1 = λN−2 = . . . = λN−k+1 = dmax and λN−k > dmax, then

χ(G) ≤ (k + 1)λN−k − λ1 − (k − 1) dmax

λN−k − dmax
.

Recall from the paragraph following the proof of Theorem 2.9 that for a weighted graph with
at least one pair of non-adjacent vertices, we have that the second smallest Laplacian eigen-
value λN−1 is smaller than or equal to the maximum vertex degree. Note that the condition
that G must have at least one non-adjacent pair of vertices is not really a restriction. Any
graph that fails that restriction has all vertices adjacent, which means that the chromatic
number is equal to the number of vertices.

The following result from matrix analysis is used in the proof of Theorem 4.3. Its proof
can be found in [4].
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Lemma 4.4 Let A be a real symmetric matrix of order N , and let S1, . . . , St, t ≥ 2, be a
partition of {1, . . . , N} into non-empty subsets. Denote by Akk the submatrix of A with row
and column indices from Sk. If 0 ≤ ik ≤ |Sk|, k = 1, . . . , t, then

λi1+i2+...+it+1(A) +
t−1∑

i=1

λn−i+1(A) ≤
t∑

k=1

λik+1(Akk),

where λi(X), i = 1, 2, . . . are the eigenvalues of the matrix X in decreasing order.

Proof of Theorem 4.3. Set t = χ(G). There exists a partition S1, . . . , St of the vertices
of G such that each of the subgraphs of G induced by Si contains no edges. With i1 = i2 =
· · · = it = 0, Lemma 4.4 gives:

λ1 +
t−1∑

i=1

λN−i+1 ≤
t∑

k=1

λ1(Lkk). (3)

Furthermore, since λN = 0, we get:

t−1∑

i=1

λN−i+1 = 0 + λN−1 +
t−1∑

i=3

λN−i+1 ≥ (t− 2)λN−1. (4)

Since the sum of the eigenvalues of a symmetric matrix is equal to the sum of its diagonal
elements, and the diagonal elements of L are the degrees of the vertices, we get for each k that

|Sk|∑

i=1

λi(Lkk) =
∑

v∈Sk

d(v) ≤ |Sk| dmax.

Since the Lkk are diagonal matrices, their eigenvalues are just the elements on the diagonal.
So we have for all k, λ1(Lkk) = max v ∈ Sk{d(v)} ≤ dmax, hence

t∑

k=1

λ1(Lkk) ≤ t dmax. (5)

The last two inequalities (4) and (5) together with (3) give:

λ1 + (t− 2) λN−1 ≤ t dmax. (6)

If λN−1 < dmax, then after simplifying expression (6) we get:

χ(G) = t ≥ λ1 − 2 λN−1

dmax − λN−1
.

In the second case if λN−1 = dmax, then there is a k such that λN−2 = · · · = λN−k+1 = dmax

and λN−k > dmax. Then we can write

t−1∑

i=1

λN−i+1 = 0 + λN−1 + · · ·+ λN−k+1 +
t−1∑

i=k+1

λN−i+1

≥ (k − 1) dmax + (t− k − 1) λN−k. (7)
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From equations (5) and (7) we obtain

λ1 + (k − 1) dmax + (t− k − 1)λN−k ≤ t dmax,

which is equivalent to

χ(G) = t ≤ (k + 1) λN−k − λ1 − (k − 1) dmax

λN−k − dmax
.

as required.

The following theorem gives another way of finding an upper bound for the chromatic number.

Theorem 4.5 Let G be a connected weighted graph on N vertices. Let λ1, . . . , λN be the
Laplacian eigenvalues of G in decreasing order and denote by dtotal the sum of the degrees of
all vertices of G. Then we have:

χ(G) ≤ 2 +
dtotal − λ1

λN−1
.

Proof We follow the proof of Theorem 4.3 until equation (4). Then we continue with the

approximation
t∑

k=1

λ1(Lkk) ≤ dtotal, and we get t λN−1 ≤ dtotal − λ1 + 2 λN−1. The result

follows, since λN−1 is always a positive number for connected graphs.

4.2 The span of weighted graphs with a specific structure

In the introduction we mentioned the search for useful structures, where by useful we mean
structural information that can assists us in determining the span of a FAP. Many existing
algorithms use properties such as the existence of (near-)cliques to assist them in the search
for good solutions. But finding these structural properties may be equally hard to solving the
FAP. Algebraic methods have at least the property that they are fairly easy to compute.

We can actually give an example of a structural property that can be determined by
algebraic means and provides information about the span of a weighted graph. The following
is a consequence of Theorem 3.4.

Theorem 4.6 Let G be a weighted graph on N vertices and maximal edge weight C. If the
graph has a Laplacian eigenvalue CN with multiplicity k − 1, then G contains a complete
k(C)-partite graph K

(C)
N1,... ,Nk

as a spanning subgraph.
For i = 1, . . . , k, let Si denote the weighted subgraph of G spanned by the vertices belonging

to part i of K
(C)
N1,... ,Nk

and let si denotes the span of Si. Then the span sp(G) of the whole

graph G is equal to
k∑

i=1
si + (k − 1)C.

Proof We first show that we can find a feasible labelling for G using labels from 0 to
k∑

i=1
si + (k − 1) C. Namely, we find an optimal assignment, using labels in [0, si] for each of

the subgraphs Si, independently. Then we combine these ”independent” assignments in the
following way:
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Keep the labels of S1 unchanged. Increase each label of S2 by s1 + C; increase each label
of S3 by s1 + s2 + 2 C, etc. In other words, any label assigned to a vertex in Sj , for some j,

will be increased by
j−1∑
i=1

si + (j − 1) C. It is easy to see that the resulting labelling is feasible

and that the maximum label used is
k∑

i=1
si + (k − 1)C, which implies

sp(G) ≤
k∑

i=1

si + (k − 1)C. (8)

We still have to prove that it is not possible to do any better, so that the span is at least
the sum in the right hand side of (8). We will prove this by induction on k.

If there is only one part (k = 1), then there is nothing to prove.
So suppose that the theorem is true for k−1, k ≥ 2, i.e., if a weighted graph with maximum

weight C contains a complete (k − 1)(C)-partite graph K
(C)
N1,··· ,Nk−1

as a spanning subgraph,

then the span is at least
k−1∑
i=1

si + (k − 2)C. And we will prove that under this assumption the

statement is true for k.
So consider a feasible labelling of the weighted graph G with maximum weight C for which

the maximum label is as small as possible. We will refer to this particular labelling as L, and
to its .

Now consider the subgraph G′ spanned by vertices of the parts S1, S2, . . . , Sk−1. Suppose
that the labelling L labels the vertices of G′ using labels from [p, p′], for some p, p′ ≥ 0, where
at least one vertex gets label p and another one has label p′. Since G′ contains K

(c)
N1,N2,... ,Nk−1

as

a spanning subgraph, by induction this means that the span of G′ is at least
k−1∑
i=1

si +(k− 2)C.

So we certainly must have p′ − p ≥
k−1∑
i=1

si + (k − 2)C.

Next look at the labels that L assigns to the vertices of Sk. Suppose these labels are in the
in the range [q, q′], for some q, q′ ≥ 0, where again the labels q and q′ actually occur. If p′ ≤ q,
then we must have in fact p′ + C ≤ q. Since the span of the graph spanned by Sk is sk, we get
that q′ − q ≥ sk. This gives for the largest label in L, which is q′ in this case:

q′ ≥ q + sk ≥ p′ + C + sk ≥
k−1∑

i=1

si + (k − 2) C + p + C + sk =
k∑

i=1

si + (k − 1)C + p,

which would complete the proof. If q′ ≤ p, then we are done using a similar argument.
So we are left to consider the cases p < q < p′ or q < p < q′. Since these two cases are more

or less symmetric, we only consider the first case. This means that the labelling L uses some
labels t and t′ for G′ such that in the interval (t, t′) no other label is used for G′, but there are
vertices in Sk that get labels from (t, t′). Let a be the smallest and a′ be the largest label in
(t, t′) which is assigned to some vertex in Sk. Then we have in fact t + C ≤ a ≤ a′ ≤ t′ − C.
Suppose the largest label in L is m.
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Now we transform the labelling L as follows:
• All labels in the range [0, t] stay the same.
• Every vertex which has a label b in the range (t, t′) (all these vertices are in Sk) will be
relabelled to b + (m + C − t′).
• Vertices that have a label b larger than or equal to t′ are relabelled with b− (t′ − a).

It is straightforward to check that this transformation gives a new feasible labelling L of G.
Moreover, the largest label m of L will be m = a′+(m+C− t′) ≤ m, since a′ ≤ t′−C. Since L
was a feasible labelling with minimal largest label, we in fact must have m = m.

The largest label that a vertex in G′ receives in L is p′ = p′ − (t′ − a) ≤ p′ − C. And the
smallest label that in vertex in Sk receives in L′ either remains q (if q < t) or it is increased to
q = q + (m + C − t′) ≥ q + C (q = t). We conclude that the described transformation gives a
new feasible labelling L with the same smallest and largest label and in which the numbers of
labels of Sk occurring between labels of G′ is smaller than in L.

Repeating the transformation, if necessary, gives as an end result a feasible labelling of the
type p′ ≤ q with the same smallest and largest label. And we have shown earlier in the proof
that the existence of such a labelling proves the theorem.

5 Eigenvalues of Laplacian matrices for specific FAPs

In this section we will determine eigenvalues and eigenvectors of the Laplacian matrix for the
following FAPs:

• A system of one transmitter with multiple channels.

• The FAP formed by transmitters regularly placed on a square grid, with influence based
on a collection of constraints that are of the same type for each transmitter.

• The FAP formed by transmitters regularly placed on a triangular grid, with influence
based on a collection of constraints that are of the same type for each transmitter.

5.1 FAP with one multiple-channel transmitter

In the introduction we described that a multiple-channel transmitter with N channels would
be considered as a set of several N transmitters whose influence matrix is an N × N matrix
with zeros on the diagonal and a constant C on all other positions, where C is the channel
separation between any two channels. The spectrum for the Laplacian matrix L of such system
has an eigenvalue 0 with multiplicity 1, and an eigenvalue CN with multiplicity N − 1. In
particular, apart from one eigenvalue 0, all other eigenvalues are concentrated in one large
number.

5.2 Infinite grids

The approach in this section is taken from [2]. In order to discuss Laplacian eigenvalues of FAPs
defined on infinite grids, we represent them as weighted graphs defined on two-dimensional
integer lattices. The vertices of the graphs are the points in Z2, i.e., points of the form
vx = (x1, x2), where x1 and x2 are integers. The edges are determine by an ‘edge-defining
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multi-set’ E′ such that two vertices vx and vy are joined if and only if the ordered pair vy−vx =
(y1 − x1, y2 − x2) belongs to E′.

Since we are now working with infinite graphs, we must extend our algebraic methods. We
will not give full details, but only give an informal description. For an infinite graph with finite
degrees it is possible to define the Laplacian operator L. If f is a function defined on the set
of vertices V , then the function Lf is defined by

(Lf)(v) =
∑

uv∈E

[f(v)− f(u)],

where E denotes the set of edges of the graph. Generalising the finite case, we call a number λ
an eigenvalue of L if there exists a non-zero function f such that Lf = λ f , i.e., such that for
all v ∈ V we have

λ f(v) =
∑

uv∈E

[f(v)− f(u)].

For the grids defined as above, this becomes equivalent to

λ f(x1, x2) =
∑

(yi,y2)∈Z2, (y1−x1,y2−x2)∈E′
[f(x1, x2)− f(y1, y2)], for all (x1, x2) ∈ Z2.

In order to overcome the problem that a suitable function f must satisfy an infinite number
of conditions, we use the translational symmetry of the lattice graphs. Specifically we define a
function f by assigning a value f0 to the vertex (0, 0): f(0, 0) = f0. Then we assign values to
the remaining vertices (x1, x2) as follows:

f(x1, x2) = hx1
1 hx2

2 f0, for all (x1, x2) ∈ Z2,

for certain h1, h2. It can be shown that this construction gives enough eigenvalues and eigen-
vectors, enabling us to give detailed information on the algebraic properties of infinite grid
FAPs.

The infinite square grid

As stated before, we assume the vertices of the two-dimensional square grid we set vertices
to be the elements of Z2. The edge-defining multi-set E′ is {(0, 1), (0,−1), (1, 0), (−1, 0)}, and
we assume that all edges have weight one, i.e., there is a constraint one between any two
“adjacent” transmitters.

As described above, in order to find the eigenvectors we consider function f on the vertex set
with f((0, 0)) = f0. By the given information on the edge-defining multi-set E′ and constraints,
it follows that the neighbouring vertices to (0, 0) are (0, 1), (−1, 0), (1, 0) and (0,−1) and
therefore the λ f = Lf condition at (0, 0) is:

λ f(0, 0) = [f(0, 0)− f(1, 0)] + [f(0, 0)− f(−1, 0)] + [f(0, 0)− f(0, 1)] + [f(0, 0)− f(0,−1)].

Substituting f(x1, x2) = hx1
1 hx2

2 f0 for these points gives the equation

λ f0 =
(
[1− h1] + [1− h−1

1 ] + [1− h2] + [1− h−1
2 ]

)
f0,
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which can be simplified to

λ = 4− h1 − 1
h1
− h2 − 1

h2
.

In particular we see that every choice for h1, h2 different from 0 gives an eigenvalue λ and
corresponding eigenfunction f

The infinite triangular grid

Again, in this case the set of vertices is the set of all two-dimensional integer pairs. The edge-
defining multi-set is this time E′ = {(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1,−1)}. All edges
are supposed to have weight one.

Following similar calculations as for the square grid, we get the eigenvalues:

λ = 6− h1 − 1
h1
− h2 − 1

h2
− h1 h2 − 1

h1 h2
,

for each choice for h1, h2 different from 0.

5.3 Laplacian eigenvalues of finite parts of grids

The calculations in the previous subsection can give us an idea about eigenvalues of regular
infinite grids. In this subsection we want to show what happens if we are only looking at a
finite part of the grids under consideration.

A first approach, which allows analytical analysis, is to consider the final part as being a
finite grid embedded on a torus. In this way we avoid boundary problems. In other words, the
gives us a finite problem with ‘infinite-like’ properties.

Following the arguments above, we think of the grids as lying on a torus curved in two
directions. And we assume that after going for m steps in one direction we return to the
original position, and after n steps in the other direction we do the same.

To compute the eigenvalues in this case we make a clever choice of the multipliers h1 and h2.
In each coordinate direction we must make sure that the graph does not repeat indefinitely,
but folds to itself after m repetitions with respect to the first coordinate and n repetitions with
respect to the second coordinate. Hence we can no longer use any values for h1 and h2, but
we must have hm

1 = h0
1 = 1 and hn

2 = h0
2 = 1. These equations have the solutions:

h1 = exp
(
2 π i

r

m

)
, for some r, 0 ≤ r ≤ m− 1;

h2 = exp
(
2π i

s

n

)
, for some s, 0 ≤ s ≤ n− 1.

For each possible value of h1, h2, hence for each possible value of r, s, we get a Laplacian
eigenvalue according to the formulae for the infinite grids.

• For the square grid we have λ = 4− h1 − 1
h1
− h2 − 1

h2
, which, after simplifying, gives the

following eigenvalues:

λrs = 4− 2 cos
(
2π

r

m

)− 2 cos
(
2 π

s

n

)
, r = 0, 1, . . . ,m− 1, s = 0, 1, . . . , n− 1.

A graphical representation of these eigenvalues, for m = n = 30, can be found below.
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• And for the triangular grid we derived λ = 6− h1 − 1
h1
− h2 − 1

h2
− h1 h2 − 1

h1 h2
, which

results in the following mn eigenvalues:

λrs = 6− 2 cos
(
2 π

r

m

)− 2 cos
(
2π

s

n

)− 2 cos
(
2 π (

r

m
+

s

n
)
)
, r = 0, 1, . . . ,m− 1,

s = 0, 1, . . . , n− 1.

Although we can give the eigenvalues of grids embedded on a torus explicitly, it is not clear
how close they are to the eigenvalues of ‘real’ finite parts, lying in a plane. The problem is that
it seems very hard to give exact analytical results for eigenvalues for these cases. Numerical
analysis can provide an outcome here. Using the program Maple 6, we’ve calculated the
eigenvalues of the Laplacian associated to finite parts of the infinite square and triangular grid
with 900 points.

For the square grid we took a 30× 30 square part of the infinite square grid embedded in
the plane. The distribution of the eigenvalues of this system is given in Figure 1 on the right.
For comparison, the distribution for the 30× 30 square grid on the torus is shown in the same
picture on the left. Note that the symmetry from the part on the torus is broken in the right
side because of edge effects.
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Figure 1 Distribution of Laplacian eigenvalues for 30× 30 finite parts of the square lattice.
The left picture shows the part embedded on the torus; the right picture is of a similar part
in the plane.

A similar calculation was done for a part of the triangular lattice with 900 points embedded
in the plane. Since this lattice is not of the same form in the x and y-directions, we took the
points lying in a rectangular box similar to the shape of the 4× 4 part below.

The distribution of the eigenvalues for both the case of the part of the triangular grid with
900 points embedded on the torus and in the plane are given in Figure 2.
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Figure 2 Distribution of Laplacian eigenvalues for 30 × 30 finite parts of the triangular
lattice. The left picture shows the part embedded on the torus; the right picture is of a similar
part in the plane.

5.4 Square and triangular grids with different constraints

The calculations above (both analytical and numerical) can also be done for more involved situ-
ations. As an example of this we consider both the square and triangular grid with constraints
given in Figure 3.
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Figure 3 More complicated constraint patters for grids. The pictures indicate the constraints
experienced by one point related to the position of its neighbouring points, for the square grid
(left) and the triangular grid (right).

For the analytical analysis, we use the same technique as before. In order to take into
account of edges with weight more than one, we just increase their multiplicity in the edge-
defining multi-set. So for the square grid we again use the set of all two-dimensional integer
pairs as the set of vertices. But the edge-defining multi-set giving the constraints as illustrated
in the left of Figure 3 we use

E′ = {(1, 0), (1, 0), (0, 1), (0, 1), (−1, 0), (−1, 0), (0,−1), (0,−1),
(1, 1), (−1, 1), (−1,−1), (1,−1)}.
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When we consider the grid embedded on the torus, then using a similar procedure as before
gives the form of the eigenvalues:

λrs = 12− 4 cos
(
2π

r

m

)− 4 cos
(
2π

s

n

)− 2 cos
(
2π (

r

m
+

s

n
)
)− 2 cos

(
2 π (

r

m
− s

n
)
)
,

r = 0, 1, . . . , m− 1, s = 0, 1, . . . , n− 1.

The distribution of the eigenvalues for the case m = n = 30, hence with 900 vertices, is given
on the left side of Figure 4. Again, for comparison, we numerically calculated the Laplacian
eigenvalues of a 30 × 30 part of the square grid in the plane, with similar constraints. This
distribution can be found in Figure 4 as well.
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Figure 4 Distribution of Laplacian eigenvalues for 30× 30 finite parts of the square lattice,
with constraints determined by the left picture in Figure 3.. The left picture shows the part
embedded on the torus; the right picture is of a similar part in the plane.

Finally, for the triangular lattice with constraints according to Figure 3, we can analytically
determine the Laplacian eigenvalues for the part embedded on the torus as follows. Take as
the edge-defining multi-set:

E′ = {(1, 1), (1, 1), (0, 1), (0, 1), (−1, 0), (−1, 0), (−1,−1), (−1,−1), (0,−1), (0,−1),
(1, 0), (1, 0), (1, 2), (−1, 1), (−2,−1), (−1,−2), (1,−1), (2, 1)},

where multiple entries correspond to edges with weight 2. This gives the following form of the
eigenvalues:

λrs = 18− 4 cos
(
2π

r

m

)− 4 cos
(
2π

s

n

)− 4 cos
(
2 π (

r

m
+

s

n
)
)− 2 cos

(
2 π (

r

m
− s

n
)
)

− 2 cos
(
2π (

2 r

m
+

s

n
)
)− 2 cos

(
2π (

r

m
+

2 s

n
)
)
, r = 0, 1, . . . , m− 1,

s = 0, 1, . . . , n− 1.

And, finally, also for this case we calculated these eigenvalues for the case m = n = 30. And
we did numerical calculations for this part of the triangular grid with the same constraints
for a similar finite part, but now embedded in the plane. A graphical representation of these
outcomes are given in Figure 5.
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Figure 5 Distribution of Laplacian eigenvalues for 30 × 30 finite parts of the triangular
lattice, with constraints determined by the right picture in Figure 3. The left picture shows
the part embedded on the torus; the right picture is of a similar part in the plane.
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