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1. Introduction

A typical Paris Métro train consists of five cars. One s first class, and costs 7.80 francs:
four are second class and cost 5.20 francs. Apart from the price (and the resulting crowding
levels), first and second class are identical. For this reason, the Métro is a paradigm for a
fare class system where the only quality differentiation is anticipated crowding. The aim of
this paper is to develop a model within which the optimization of such a fare class svstem.
with respect to various objectives. can be analyzed. The applications of our model are not
restricted to public transport, a singlé supplier, or to situations where the word ‘classes’
is typically used. Many other examples where quality is affected by crowding are equally

covered, for example pricing of lift passes at nearby competing ski resorts.

We model the problem of a supplier who offers several classes of service of a quasi-
public good. He decides on prices and capacities (e.g. number of cars in a train) for
these classes. Heterogeneous consumers then self select themselves into these classes on
the basis of price and anticipated crowding levels. Under certain assumptions, a unique
equilibrium results in which no consumer wishes to unilaterally move to another class.
Since the supplier can predict the equilibrium resulting from his price—capacity choices, he
can choose them optimally with respect to profit maximization, passengers travelling. or
consumer welfare. We compare one and two class systems with respect to their performance

on several of these criteria.

The starting point of our theory is a two stage model of consumer choice. We begin
with a primitive notion of *comfort* as a physical measure of crowding, which is increasing
i capacity and decreasing in population. The evaluation of comfort is assumed to be
the same for all consumers. What distinguishes consumers is a single parameter called
‘income’. Consumer preferences over classes with ex post crowding levels are modeled by
a utility function which depends on comfort and remaining income (income minus price).
Our single nontrivial hypothesis is that the marginal utility of comfort is Increasing in
income. From this and other technical hypotheses we are able to derive a number of
consequences such as existence and partial uniqueness of equilibrium. and the fact that at
equilibrium richer people will be in higher priced classes. Of course this last prediction is
violated in practice when some poor people travel in first class, but we feel it is the right
first order approximation for a simple model where consumers are distinguished by a single

parameter.

When we consider the supplier's optimal response to consumer’s predictable choices.



we obtain a number of qualitative consequences, at least for specific comfort and utility
functions. For example we find that. when facing a profit maximizing supplicr, the rich
may prefer a one-class system while the middle class prefers a two—class system. Another
result is that for low revenue constraints, consumer welfare can be as high in a one-class
system as iy a two—class system, but not for sufficiently high revenue constraints. The
point is not that observations such these have general validity for a fare class system.
but rather that these questions can be considered within our simple model, for arbitrary

comfort and utility functions.

An important practical question related to our model is whether consumers will ac-
tually self select into the equilibrium predicted by our theory. If consumers have perfect
information about the preferences (i.e.. income) of others. and rational expectation on the
behaviour of others, then they can predict equilibrium congestion levels. However neither
of these conditions may hold in practice. To deal with this problem we also consider a
simulation model of a two class train. where consumers in each station select the class of
service myopically based on crowding levels on the incoming train. Here we assume no
knowledge of other consumers’ income or preferences. We find that the system (train)
quickly reaches a dynamic equilibrium whose average properties closely approximate the

equilibrium predicted by our theoretical model.

In studying the consumption of quasi-public goods, club theory has proved useful.
The literature on entrepreneurial clubs. where an entrepreneur rather than club members
decide on membership, is clearly related to what we do in this paper (e.g. Scotchmer
1985). Each fare class in our model can be thought of as an entrepreneurial club. The
distinguishing feature of our analysis is that we model the interaction between the classes.
In this sense our model integrates club theory ideas with quality differentiation ideas. The
main departures from the quality differentiation literature (e.g. Mussa and Rosen) are that
in our model, consumer choice is interdependent and quality is a priori identical and only
differentiated ex post after consumption. In our model high price is not only an indicator

of quality, but actually a cause of quality.

The ideas we consider in this paper are also similar to models of queueing in which
classes of customers are offered different priorities. The priorities determine the queue
discipline and therefore determine how much time a consumner spends 1 the system. Also.
the electricity pricing model of Viswanathan and Tse (1989) 1s closely related to our work.

They consider the problem of designing a menu of prices and corresponding priorities.
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The priorities are degrees of reliability of supply given that capacity is uncertain at anv
point in time. Consumers with a high priority arc cut off later than consumers with a
low priority.  Our model is completely deterministic however and consumers are solely
interested in the comfort of travelling, not in securing a seat. In Viswanathan and Tse's
model. the nncertainty is the rationale for operating a priority system. Also. in their
model, the only decision variables are the prices whereas we allow the supplier to optimize
prices and capacities.

The paper is organized as follows. In the next section we assume a given choice of
prices and capacities and we develop the demand side in the form of a model of consumer
behavior where a consumer’s utility depends on the price and comfort of the chosen class.
We define ‘crowding equilibria’ and show existence and uniqueness. This section is fairly
formal and rigorous, and the casual reader is advised to go directly to section 3 where
a specific example of a crowding equilibrium is given. In section 4 we model the supply
side. We derive prices and capacities for both profit and welfare maximization and we
analyze the regulatory policy implications of our findings. We also consider a duopoly
model where distinet suppliers control and receive the profits of first and second class.
and we calculate the unique Nash equilibrium. In section 5 we present a dynamic model
of consumer sclection into classes of a train. At each stop, consumers of various incomes
enter a class based on its price and the comfort levels of classes on the inconming train. A

final section 6 has brief concluding remarks.

2. Consumer Choices
In this section we consider a game in which the set X of consumers distribute themselves
over a finite set I' of compartments - . The consumers know the price p(5) and capacity

i

s(7) of each compartment + (p and s will be regarded as fixed and given in this section ).
The capacity of a compartment is measured in terms of the fraction of the cousumers it can
accommodate. formalized via a probability measure poon X . Thus a partition {}.}.¢r
of consumners among compartments is called capactty-feasibleif p(Y.) < s(+) forall ~ € T.
To ensure the existence of at least one such partition. we assume a special compartient
37 with p(5*) = 0 and s(7*) = 1. The main result of this section (Theorem 1) is the
existence and essential uniqueness of a consumer partition {},}.er called a crowding
equilibreurn (C.E.) in which no conswmer wishes to change compartments. This result is

proved under specific assumptions of how consumer preferences are based on crowding and

prices.



Our analysis 1s based on a grouping of compartments into classes according to price.
Specifically. if p; >py > - - > Pm = 0 are the distinct set of prices. then we sayv that the
compartments 4 € I'; (those with p(~) = p; ) are 1 'th class. (We follow the convention that
first class has the highest price.) The lowest (m’th) class contains the compartment -* .
For every copsumer partition {Y,} er into compartments there is an associated partition
{Yi}7" into classes given by 1} = User; ¥, . The distinction between compartments and
classes can be overlooked at first reading by assuming all compartments have distinet prices

and hence that each class consists of a single compartment.

2.1. Crowding and comfort.

The interaction between customers is incorporated into our model through the use of
comfort functions which depend on crowding. The comfort level in each compartmenr -
1s given by a function ¢(v) = fo(n) o where n = p(Y)) is the fraction of the population in

compartment y. We assume that

f-(n}) is continuous and decreasing in n and (7)) =0 Pl

except for 3 = ~* for which ¢(1*) = 0. In examples we will often make the simplifvinge
assumption that all the comfort functions f+ are obtained from a common formula in

terms of population fraction and capacity. fo(n) = f(n,s(5)). where

[ 1s continuous. decreasing in n . increasing in s. and f(s. s) = 0. 12

Note that in our definitions of comfort functions we are implicitly allowing situations
where 17 > s and compartments are overfilled. In these situations. which are allowed for
theoretical purposes which will be clear later. we require that comfort is negative. It is this
requirement. and the existence of a price zero. comfort zero alternative ~* . that ensures
that compartments will not be overfilled at a crowding equilibrium.

The main objective of this section is to show that there is a CONSUMEr partition among
compartments in which no one wishes to change compartments. This will depend o
a subtle interaction between price and comfort between classes.  However we can now
deal with a simpler equilibrium amoug compartments within a given class. where price i
constant and comfort is the sole determining factor.

Lemma 1. (Intraclass Equilibrium) Fix anv class i and let Fi=1{~.. .. ~n} bethe
compartinents with price p, . For anv population fraction n. 0 S S 1lthere is a unigue
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numerical distribution : € A(n), where An)y=1{z: 0< 2, < n, Zk:l ..... WSk =Nl
which equalizes comfort levels across the nonempty compartments of I i - 1his comfort
level, denoted Fy(n), is called the compound comfort function of class | and has the same
properties (1) as the simple compartmental comfort functions fv - with s(7) replaced by
the class capacity s; = Dok wS(e). That is, F; is decreasing and continuous. and
equals 0 at s;.

,,,,,

Proof. For =z € A(n), let ’ ‘
h(z) = min fﬁ,k(zk)
kizpg >0

denote the minimum comfort level among the occupied compartments of class ; when the
consumer distribution is z. Since each compartment comfort function is continuous. it
follows that h(:) is upper semicontinuous. Thus the compactness of A(n) ensures the
existence of the maximin,

Fi(n) = .oax h(z) = h(2(n)),

for some z(n) e A(n). It is easy to see that any maximin distribution Z(n) equalizes
comfort levels among occupied compartments, i.e. that Fi(n) = f,, () for all & with
2k > 0. (Otherwise small numbers of consumers could be transferred from all compart-
ments to one with higher comfort. raising the minimum comfort level.) It then follows from

(1) that Z4(n) can be uniquely determined as the population in =, which gives a comfort
level of Fy(n). If n = s;i, the class capacity, then the distribution k= s(~x) which
fills each compartment with its compartment capacity gives 0 comfort in each compart-
ment. Clearly any other distribution loads some compartment to overcapacity. resulting
in a negative minimum comfort. Hence Fi(s;) =0, as claimed. The remaining assertion.
that Fi(n) is continuous and decreasing in n . follows from the hypotheses (1) of these
properties for f. . 0

The above lemma shows that at a crowding equilibrium all occupied compartments
within a class must have the same comfort level. For this reason we will henceforth assume
that there is a comfort vector C = {(c.... .C¢m ) defined over classes, which of course wil]

depend on the number of consumers in each class according to the formula

¢ = F (p(Y))) (31

Example 1

As an example, assume comfort I each compartment is the following simple function

of the density in the compartment:

s(v)—n

s{)

()= fi(n) = where n = u(Y,) (4)



This means that comfort 1s measured as the fraction of the compartment capacity
which is not occupied. If all compartments in a class have this comfort function. it is casy
to see that the compound comfort function is F(n) = (s — n)/s where s 1s the total

capacity of the class and n is the number of passengers in the class.

Example 2
We now consider the more interesting example of a class with two compartments and

quadratic compartment comfort functions:

fin) = (s(7))* —n®y =717 (5

Assume s(71) > s(72). Aslong as s(~1)? —n? > s(92)% ., only compartment 1 will be

used and therefore the class comfort function is

F(n)=s(y)" =n’ if n<y/s(11)? = s(32)? (6
When both compartments are used, their comfort levels are equalized i.e. s(~;)? —: =
s(2)* — =3 . Since the total number in the class is n = z; + 25 . we can rewrite this equation

as follows

) = s -
<1 = bt

n

[QV]

and the compound comfort function is

o0

s 25 2 2\ ? : :
F(n) :S(’)'l )2 _ <(’71) (’)2) +n ) lf n > \/8(";'1)2 _5(72)2 '

2n
In figure 1 the compound comfort function is drawn for capacities s(4;) = 0.7. s{72} =

0.3 . and figure 2 represents the distribution of passengers over compartinents for these samne

capacities.

2.2. Consumer income and preferences.

Up to this point we have only modeled consumers in the physical sense. 1.e. that they
have hulk which results in crowding. This concept is fully modelled through the measure
¢ on the consumer set X . We now differentiate between consumers by assigning ecach:

an tncome I(r) and then model the utility such an individual obtains in compartmens



v 1n terms of its price p(vy) and comfort ¢(4). We assume that the income function

I:X -0, In,,] has a distribution G . where

G(I)=p{z : I(z) < I} is continuous in I. (9)

In order to define our notion of a crowding equilibrium, it will be necessary to describe
the preferences of individuals over the compartments. We assume that these preferences
are determined by a function U that gives the utility of an individual in a compartment in
terms of the comfort ¢ of the compartment, and the “remaining income™ w after paying
the price of the compartment. The income remaining to an individual of income I after

paying the compartment price p is w = I — p. Thus the utility function is given by

U(e,uw)=U(c.I —p). where (10)
U(c,w) =0 forw <0: 8_[ > 0, QE" > 0, for c.w > 0. and (11)
¢ Jw
o*r
) ) 5
EREm > 0. and continuous. (12)

The interpretation of the assumptions on U is as follows: Assumption (11) will ensure
that at equilibrium no one will be in a compartment with either negative comfort or a price
higher than their income. since the utility they would then obtain is less than they would
get from compartment 5*. (The utility of an individual with income I in compartment
7% 15 U(0,I) > 0, since ¢(y*) = 0 and p(v*) = 0.) Assumption (12) says that the
marginal utility of comfort is increasing in income, and will result in a perfect correlation
of comfort, price and income at equilibrium. In other words, this is the assumption that will
put the richest individuals in first class. This assumption is similar to the single crossing
property in self-selection models (see for example Cooper. 1984). It is certainly true that
this assumption is sometimes violated in practice (and that sometimes poor people place a
sufficiently high value on comfort so that they travel first class). We make this assumption
not ouly as an approximation to reality but (more importantly ) because without it we can
guarantee neither the existence nor the uniqueness of a crowding equilibrium. The main

consequence of assumption (12) is the following.



Lemma 2. (rarity of indifference between classes) For anyv distinct classes i < 7,
with p; > p; and positive comfort levels c;,c; , there is at most one income level I such
that individuals with that income are indifferent between class i and class J . If such an
I exists then individuals with income I > I will prefer the (higher priced) class i and
those with income I < I will prefer class j. In this case I is a continuous function of i
and c; . If no such income I exists, then all individuals prefer the lower priced class j .

Proof. Let c;, ¢; be the comfort levels in classes ¢,j . For & =1i,; let up(l)=Uler. I —
pr) denote the utility to an individual with income I of (any compartment of ) class £ .
First observe that if ¢; < ¢; then wu;(I) < u;(I) forall I, since class j has lower price and
higher comfort. So we may assume that ¢j < ¢;. Suppose ui(I) =u;(I) for some income
I. Tt follows from (12) that glg > 0 which means that classes with higher comfort have
higher marginal utility of income. In particular, since ¢; < ¢; 1t follows that u]«(I) < ui(I)
for all I (where * denotes derivative with respect to income I ). Hence wu;(I) < w,(I) for
I>1 and u;(I) > u;(I) for I < I. as required. To see the upper semicontinuity of [
as a function of ¢,.¢;, fix any Iy > I, so that u; (Io) > u;(Iy). Since w;(I) and wu(I)
are continuous in ¢;, ¢;, it follows that for sufficiently small changes from ¢;.¢; to ¢ N
we still have that u* (Ig) > ul(ly) (where uj(I) = U( (cy.I — pi) ). Hence the same \alue

Iy satisfles Iy > I* = I(c¥, c3). This argument proves that I is upper semicontinuous: a

similar argument proves lower semicontinuity. Thus I is continuous. as required. 0

Let L; = Li(P,C) = {I : wi(I) = max; ux(I)} be the set of incomes for which class
¢ has the highest utility for the given price and comfort vectors over classes. It follows
immediately from Lemma 2 that, for any price and comfort vectors P = (pr--.-, Pm). C =
(€1,...,¢m) for the classes, the sets L; are (possibly empty) closed intervals which pairwise
intersect at most at endpoints and whose union equals the full income range [0.nq.].
Furthermore, for ¢ < j (p; > p;), the interval L; lies to the right of Li (z;€ L. x;€L;
implies I{x;) > I(x;)).

2.3. Definition and properties of crowding equilibria.

Thus far in this chapter we have been developing a theory of choices among compartments
motivated by an intuitive notion of a crowding equilibrium. In this section we formalize

that notion and derive some of its elementary properties.

Definition:  Given price and capacity functions p.s : [ — Ry . a partton {Y.}.¢p
of the consumers X into compartments T is called a Crowding Equilibrium (C.E.) if it
satisfies, for all « € T', (and with c(7) = f,(u(Y2)))

relY, <= Ulda), I(x)—pla)) = mear.g Ule(~). I(x) — p(~ ). i13)



In other words, {Y }aer is a C.E. if each individual is in a compartment maximizing
his utility, given where the other individuals are. Unfortunately we cannot directly prove
the existence of a C.E. because certain chojces (1.e., best compartment) may be nonunique
i our (later) fixed point argument, due to indifference between compartments within
a class. Hosever we have shown (Lemma 2) that indifference between classes is rare,
s0 our argument will work at the level of classes. For this reason vwe will now define a
classwise version of a C.E. (called a Classwise Crowding Equilibriumw, C.C.E.), show it
cxists (Theorem 1), and then usc it to obtain a full C.E. via Lemma 1. The following
definition makes explicit use of the class comfort function F; derived in Lemma 1.
Definition: Given price and capacity functions p,s : T' — R, a partition Y3 of
the consumers X into classes i — 1,....m is called a Classwise Crowding FEquilibrium

(C.C.E.) if it satisfies, for all | = L...,m, (and with ¢; = Fi(u(13))

¢ €Y, = Ulen I(w) = p) = max U(ey, I(2) = py). (14)
tsism

There is an obvious relation between the two types of crowding equilibria, which
follows immediately from their definitions. For the sake of emphasis, we state this relation

as follows.

Lemma 3. Let {Y,},cr be a partition of X into compartinents, and let {Y,}7 be its
m

associated class partition (Y, = Up(v)=p; Y5 ). Then (a) if {)".,,}.YEF/ is a C.E. then {1;}}
1sa C.C.E.: and (b) if {Y:}1" is a C.C.E. and comfort is constant within each class. then

{Y.}.er isa CE. .

We now derive several straight{orward but important propertics of crowding cquilibria.

Lemma 4. (Properties of a Crowding Equilibrium) Supposc {Y,},er isa C.E.

and {Y 37 is its associated class partition (C.C.E.). Then

a) {3} ¢l is capacity feasible and price feasible.

(r(Y5) <s(3) and I(Y,)C (0. p(+)). ~ €.

b) Comfort is constant in (noncmpty compartments of) a class: greater in higher classes.
(clv)=c¢ if plv)=p,: Y, #0 and p, > p; imply ¢ >¢,. )

¢) Riclier individuals are in lugher (priced) classes.

(i#). v€eY 0, ¢ Y5 pi>p; imply I(z,) > I{r;).)



Proof. (a) An individual in an overfilled car has negative comfort ¢, by (1). Hence that
individual would prefer the zero comfort and zero price in the alternative compartment
5" . Similarly, an individual paying a price higher than his income has negative “remaining
income” w , and hence zero utility, by the first part of (11). But any individual has positive
utility in +*. by the final mequality of (11). (bh) Within a class, utility depends only
on comfort, so an individual in a less comfortable compartment would move to a more
comfortable one. (Of course an empty compartment might have lower comfort.) For the
second assertion observe that if ¢; < c¢j, then for any individual in Y;. a move to Y;
increases utility by (11). (In other words, a dominated class is cmpty.) ¢) An immediate

consequence of Lemma 2. 0

2.4. Existence and uniqueness of crowding equilbria.

We are now in a position to establish the existence and uniqueness of a classwise crowding
equilibrium. The idea of the existence proof is as follows. We suppose the consumers are
distributed arbitrarily among the classes. We interview each individual and ask him where
he would like to move to, assuming the others stay put. We call this transformation from
one partition to the next (according to preferences expressed at the interview), T . In fact,
we work with numerical distributions rather than the partitions themselves. The iterates
of T do not converge (cycling is likely) but we can successfully use Brouwer’s Theorem to

obtain a fixed point.

Theorem 1. For any given price and capactty functions p,s over the compartments T .
there exists a unique Classwise Crowding Equilibrium Y17

Proof. (existence) For numerical distributions = (z; consumers in class ) in the
simplex A = {z = (z;....,z,): 0< 2 < 1.3°7 2z = 1}, let C(z) be the comfort
vector given by Ci(z) = Fi(z;). For any comfort vector C',let D = D(C) be the demand
vector given by d;(C) = p{z : I(xr) € L,(P, C)}. Recall that L;(P,(C) is the set of incomes
for which class / maximizes utility when the price vector is P and the comfort vector is C.
Hence d;(C') is the fraction of the population whose utility is maximized in class 7. Given
the possibility of ties (indifference between classes) we must consider whether D(C) belongs
to A (the entries might sum to more than one). However Lemma 2 guarantees that only
finitely many income levels can be indifferent between classes. and then our assumption
that the income distribution G is continuous ensures that the fraction of consumers with
those incomes is zero. Hence D(C') always belongs to A\ . Hence we may define a map

T:A—A. by T(z)y=D(C(z)). (15)

The map C : A — R™ is continuous by Lemma 1, since Ci(z) = Fi(z;). The
continuity of the map D : R™ — A follows from the continuity of U/ in ¢, Lemma 2
(continuity of I in comfort). and the assumed continuous distribution of income over X .
It follows that the composite map T is continuous. and since the domain (and range) A
15 a simplex. we may apply Brouwer's Theorem to obtain a fixed point 7 = T(Z). Once

10



we have the invariant numerical distribution z € A it is an easy matter to find the C.C.E.

{Y:}7" . Begin by defining

Yi={e:1-GI{z)) <z} ={a:I(r)€ L (P,C(2))}. (16)

This supply says we put the z; richest consumers into first class. Similarly. for
1 =2....,m . define

i—1 i
Vo= {a:) 5 <1-G(Ix) <Y 5} ={a:I(z) € Li(P,C(5))} (17)
j=1 ) j=1
It follows from this construction that p(¥;) = z;, i = 1,.... m. Hence the comfort

vector for the partition {Y;}{" is exactly C(z). Consequently the definition of }; (17)is
equivalent to the definition (14) of a C.C.E., completing the proof of existence.
(uniqueness) Suppose there are two C.C.E.’s {YA}™, and {}Y;B}7". with corre-

sponding numerical distributions z4. =2 given by
=Y, i=1.....m (18)
=Y, i=1.....m

It follows from Lemma 4c that distinct C.C.E."s have distinct numerical distributions
(since the latter determine the former). Hence there is a class & satisfving

k= max{i: = # =P} (20)
Without loss of generality we may assume that ! > z2 . Since the elements of both =
and =2 sum to one, it follows that there is a class satlsf} ng

j=max{i: 1<i<k—-1.:8 <P} (21)

— 1 H

The above definitions imply that =4 > 2B for ¢ = j +1..... m. and ' > P,

umplying that

m m

PR e (22)

1= )+1 1=j+1

Let » be the poorest individual in YJB. This means that G(I(z)) = Z:”:JH :‘B

i.e.. that z is richer than exactly those consumers in Y;2.i > j + 1. But according to
equation (22). there are consumers in )]+1 who are mt‘hor than r. Hence r € Yo for
sonic 7 > 1. It now follows from the fact that » € } By ‘r and the reqmr(‘ment (14)

for a C.C.E.. that

11



U(k('f, I(x) ~p;) > l'(cf;,,. I{x) = pj4,) and (233

U(cir () = pjar) 2 U, I(2) = py). (24)

But it follows from the inequalities on = and 2. and the monotonicity of comfort in

crowding (1), that (:}-4 > C]B and Cﬁ#r > (:34+7, . Hence the monotonicity of utility in comforr
(11) gives

T .B ‘ . T A ) DR

l(c,j,f(x)—p])<[r(cj.I(J) p;)  and (251

Ut I@) = piur) 2 Ulel o T = prg). (26

But the last two sets of inequalities are inconsistent. so our assumption of distinct
C.C.E.’s was wrong. 0

3.  An example of a crowding equilibrium.

In general it is not possible to give a closed form expression for the crowding equilibrium
resulting from price and capacity decisions of the supplier. However we will do so in this
section for specific functional forms of the utility and comfort functions. and for a specific
icome distribution. We will present the example in a simple and informal manner that is
largely independent of the rigorous treatment of the previous section. so that the reader
may start reading the paper here.

Consider a train consisting of two cars; one first class. and one second class, Suppose
the respective prices are given as p,. p2 and the respective capacities arc given as s;. <. .
Individuals who chose not to travel (or are priced out of travelling) are said to belong ro
third class. which has price 0. Individuals’ incomes I are uniformly distributed on the
unit interval [0.1]. An individual's preferences among the three classes is based on their
respective prices and comfort levels. as follows.

We assume that the comfort levels ¢;.¢, in the two travelling classes is determined by
the “unoccupied fraction”™ comfort function of example 1. This means that if the populatior.

of class 7 1s n; . then the comfort is

Sp—n; -

(‘,’Z~’——1 : = 1.2. {27,
dl

Comfort in third class (not travelling) is assumed to be zero. The utility to an:

ndividual of travelling in a class with comfort ¢ and which resulrs (after paving the
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appropriate fare price) in remaining positive income w = I—p.isassumed to be U(c.w) =
cwt, (wh = max(w, 0)) . Observe that this utility function satisfies the hypothesis of the
previous section. that the marginal utility of comfort is increasing in imcome. Also observe
that an individual travelling in a class he cannot afford ( p > 1) obtains utility zero. which
will prevent him from doing so at equilibrium. The class utility functions w;(I) describing

the utility to an individual of income I travelling in class 7 are given by:

¢ (I —pi), if1I>p,

u,l-([):["(c,,f—‘pi): (28)

0, if I < p;

The aim of this section is to determine the unique crowding equilibrium resulting
from the above functional forms and parameters. That is. we wish to determine passenger

numbers n;. ny and ns. as a function of D1-P2. 51,82, so that when

1. the ny individuals with incomes in the range 1 —ny < I <=1 travel in first class.

1

those next richest ny, = 1 — n, — p2 in the range p, < I <, —n; travel second class.

and
3. the poorest n3 = p, don't travel at all

then no individual would prefer to be in a different class.

Of course since p, is a known parameter. it is clear from the above equations that it is
sufficient to find n; . since it determines ny and ny . (The fact that at equilibrium richer
individuals will be in higher classes was demonstrated in the previous section. Lemma 4c.)
The reason that. at equilibrium. anyone with income above p2 will travel is that positive

utility alwayvs results from affordable travel.

The problem of finding the equilibrium is stmply the probleni of finding the indifference
income I between first and second class which is guaranteed by Lemuna 2. (Indifference
between second and third class is clearly at po.) If the price differential between first
and second class is sufficiently high. clearly no one will travel in first class at equilibrium.
However ignoring this degenerate (and casily analyzed) case. we see that [ is determined
by the equation o) (1 — py) = ¢y (I — p2) . so that at equilibrium we have the following

three equations:

7 CrP1 — Cop2
= — <
('1—(‘2
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L3 :1—1 (29)

If we replace the comfort levels ci and ¢ in the equation for I by their values in
terms of n;.s; we can solve (with some difficulty) the three equations for the equilibrium
values I,7, and 7, in terms of the price and capacity parameters. The equilibrium

numbers 71y, 72, of first and second class travellers are given by the formulae:

N s &9 N N
n1(p1,p2) = [2*21)24‘ R —Vd| . na(pr-p2) =1—ps — ny(py.ps).

S$1 + S S1+ 83

(SN

where

J— —4(s1 — 2py 84 +p%31 — D151 82+ p2 sy Sg)
81 + 3

2
S DS I po s

+(—2+2p2+ 2L Pis2 ~P2L2) |
S1+S2 Sy Hsy s+ s

(%]

4. Supplier choices

The theory developed in section two. as lustrated by the example in section three, de-
scribes how consumers may react to given prices and capacities for the different fare classes.
We say “may”™ because one cannot of course guarantee that the unique crowding equilib-
rium will in fact obtain. We will deal with this practical problem in section five, where we
use simulation to show that even myopic consumers who are unaware of the preferences
or incomes of others will dynamically approximate the crowding equilibrium. For the mo-
ment we will deal with the problem confronting the supplier. who chooses the prices and
capacities of the fare classes, assuming the unique crowding equilibrium will result. That
1s, the supplier acts as the Stackelberg leader in a two stage game. We are thus led to the
question of what the supplier is trying to achieve.

In this section we will outline how various possible objectives of the supplier can be
optinuzed within the framework of our model. We will do this for the particular model
of section 3, since we have explicitly calculated the crowding equilibrium resulting from
arbitrary prices and capacities in a two class (plus third nontravelling class) situation.

This means that we are assuming that comfort ¢ in a class is given by (s —n)/s where

14



n and s are the number of passengers and capacity of the class. and utility is given by
¢(I —p). To make the problem amenable to algebraic solution we shall further assunie
fixed capacities of 1 for the two classes (s1 = s = 1). so that the supplier’s only choice
variables are the prices. (In actuality, capacities are indeed often fixed in the short run. <o
this restriction of convenience is not too damaging.) With this restriction, the crowding

equilibrium calculated in equation (30) reduces to

PLA2p =3+ Vd
=t . n

1 1 2 =1-ny—p; where d = (1+p,)? +4pe(pr —1—py). (311

We will consider a number of possible objectives for the supplier, who may be a
private monopolist or a public utility. In section 4.1 we consider the profit maximization
problem. We then (section 4.2) briefly analyze the welfare implications for individiuals of
varying income. of profit maximization with one compared with two classes. In section
4.3 we consider the objective of maximizing the total number of travelling passengers
(ny +ny =1—n3) subject to an arbitrary revenue constraint. This has been suggested
as a possible objective for a public transport system. Section 4.4 analyzes the problem of
optimizing (revenue constrained) “total welfare” if we allow interpersonal comparisons of
utility. Section 4.5 considers a duopoly model where two suppliers of a similar good (e.a..
nearby ski resorts) set prices to maximize their own profits. If we call one of these i
first class supplier. then our model applies and we can find the Nash cquilibrium prices.
We summarize the crowding equilibria corresponding to these various supplier objectives

m section 4.6.

4.1. Profit maximization

Assuming that costs are fixed and independent of the numbers travelling. we may sc-

costs equal to zero and maximize the following profit function

T

Prp2)=pion 4 peio=prig +pa (1= Ry — o). (32

where 713 and 7y are the numbers of passengers 1n first and second class in the crowdinz
equilibrium corresponding to the prices p; and ps as given in equation {31). Fixing ;.
1t 1s possible to solve for the value Pi = o(py) which maximizes the profit function = . :r)

that



C(p2) =7 (dpa).pe) = max m(p1.pa). (33)

The function ¢ may be expressed as a closed form function of P2, but the expression
1s too long to print. However we have graphed it, along with the restricted maxinium

profit function ¢, in Figure 3. The first order condition on ¢ then gives the optimal

prices py = 447, and p; = é(p2) = .593 and the maximun profit as @ = .27. The
equilibrium numbers in the fare classes are ny = 127, ny = 426, ny = 447 and the
equilibrium comfort levels are ¢ = .87 and ¢ = .57. We will need these numbers for

comparative purposes later.

4.2. Welfare consequences of profit maximization

In the previous section we considered how a monopolist would set prices if two classes
were allowed. Actually the number of fare classes that may be used is often exogenous.
determined by custom, physical constraints, or law. Planes typically have three (economy.
business, first) and trains may have one. two, or three. Suppose that a public governing
body may restrict the number of fare classes available to a profit maximizing monopolist.
What should it do? This is a complicated problem which we cannot tully answer here, but
we can certainly analyze it within our framework and get relevant data for our particular
model.

We now ask how each income level does under a single class profit maximizing equi-
librium compared with the two class maximum derived in the previous section. If the
monopolist operated a single class with the same total capacity ( s = 2 ) as above. his sole
choice variable would be the single price p. Since the utility function ¢(I—p) that we are
using gives positive utility to affordable travel, the cquilibrium demand for travel is simply

n(p) =1 - p. Hence the single class profit function is p(1 — p), which has a maximum

of .25 at p=.5, with n=1—5=_5 people travelling. Thus the comfort level in the
single class is given by ¢ = (s — n)/s =1.5/2 = .75, and the utility of an individual with
income [ travelling in this class (1 >.5) is thus w(J)=.75(] — D).

Recalling the equilibrium prices and comfort levels derived in the previous section for a
two class profit maximization, we see that the class comfort functions w; in the two classes
are given by wu,([) = ¢, (I-p)t = ST(I—.593) and wy (1) = ST(1-.44T)F . In Figure
4 we have graphed the single class utility function u(7) and the two class utility function

max(u,(I), uz(1)), which give the utility an individual of income I receives at equilibrium
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from a profit maximizer operating one or two classes. These two functions intersect at
I = .66, with the singlc class utility higher for lower 7. and the two class utility greater
for higher incomes I. (Those indivuals with income below p, . who cannot afford to travel
1n either scenario, are of course indifferent to the two scenarios.) Thus for the particular
comfort and; utility functions of this section, we have the counter-intuitive result that the
rich prefer one class and the “middle class” prefer two classes. The explanation for this is
simply that the extra class enables the monopolist to extract more money from the rich
by crowding the second class. We also observe that the extra class allows more people to

travel at equilibrium, which may be regarded as sociallyv desirable.

4.3. Maximizing passengers, with revenue constraint

Much of our analysis up to this point, while presented in a “train” metaphor, could apply
equally well to the pricing of any good where crowding affects quality. However. for the
particular application of trains, or other public transport. it may be socially advantageous
to increase the number of passengers. The reasons for this may be ecological or economic
(reducing overall travel times). For example in the latest Blackett Memorial Lecture. D.
Quarmby (1991) suggests that the objective of London Transport is. approximately. to
maximize passenger miles subject to financial limits. Since our model doesn’t distinguish
between trips of different lengths, we restrict our analysis here to maximizing the number
of passengers travelling, subject to an arbitrary revenue constraint.

In our two class model, any individual whose income is above the second class price
p2 will travel. Hence the total number of travellers is given by 1~ py = i1 + 112 . So we
ask the related question, what is the maximum revenue (profit) achievable when the price
of second class is p, ? Luckily we have alr eady calculated this function. which we called
((p2), and graphed in Figure 3. Therefore the function .\ (r)=1-(C"Yr) (where ¢! is
the inverse of ¢ ou the monotone domain [0, 5] ) answers the original question of giving
the maximum number of travelling passengers in an equilibrium yvielding revenue r. The
function N(r) is graphed in Figure 5.

The properties of the “total passengers” function N(r) are easily explained. Its
height is 1 if the required revenue can be obtained with p, = 0. We consider this case.
If the price in first class is p1 the indifference income I is determined by the equation
(I) (j—p] ) =(1-1) (1:—0) . giving comfort times remaining income in first and second class.
Thus we have T = (1 +p1)/2 and the profit is npr =(1-1)p, = ({1 - p1)/2) py «which

has a maximum at = .5, in which case 77; = .25 people travel first class givine a
1 ) 1 P IS) I}
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profit of .125. Thus r = .125 is the highest revenue which can be achieved with evervone
travelling. The last point on the graph is (7,1 — py) = (.27..553). as calculated for the
unrestricted profit maximum in section 4.1. Revenues above 27 cannot be achieved at

all.

4.4. Maximizing welfare, with revenue constraint

We now consider the problem faced by a supplier who wishes to maximize the welfare
of the individuals using the fare class system. subject to a revenue constraint. For tlis
purpose we use the simplest measure of group welfare. the total utitity of the population.
This is the only place in the paper where we assume that interpersonal comparisons of

utility are possible. Specifically. we define the total welfare of class ¢ to be

b,
W,—:/ c(I—p)dl  i=1.2 (341

i

if individuals of income a; < I <b; are in class 7. and the total welfare " to be

I'I- == ”'1 + U}. (33‘

At the crowding equilibrium resulting from the prices p;. p, . the toral welfare is given

by the formula

I 1
I/i'v(])l.])g):/ (‘g(f—pz)df—%—/ c1 (L —p)dl. {36
P /

2
where ¢; =1 —1,(p1.p;) with #; from (3l).and I =1—n(p1.p2).
Our aim in this section is to analyze the two class constrained maximun welfare

function ¥ given by

U(r)= max (p.ps) (37
m(p1p2)2r

and compare it with the corresponding maximum for a single class.

o
(x

PHr)y = max Wipop).
Tp.pi>r
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A theoretical upper bound for all these total welfare functions can be obtained by
considering the unconstrained welfare optimization problem which is clearly solved by zero
prices in both the single or two-class case. In either case the comfort is ¢ = (2-1)/2 =
(1 =(1/2))/1 = .5, the average remaining income is .5, and hence 1|~ = N(0.0) =

5)(.5) = .25 . Thus the unconstrained welfare maximization problem can be solved with
a single class. We shall see below that this property persists for low revenue constraints.
The single class constrained optimum ¥! can be determined analytically, by consid-

ering the profit and welfare functions -of the single price p,

m(p)=p(1-p)

39)
w / (L=p)) (I —p)dl =(1+p)(1-p)?)2. (
p

Il

If we eliminate p from the system (39) and solve for W = ¥! in terms of revenue

(profit) r = 7, we obtain

l—r+(1+r1/1-4r

8

Tlir) = 0<r<.25 (40}

(Recall that r = .25 is the maximum single class profit.) We graph the single class welfare

optimum ¥! in Fig. 6, together with scatter points which will be explained later.

The two class welfare function W{pi.p2) may be written explicitly using the equi-
librium populations #; given by equation (31). However, it is not possible to explicitly
solve for W™ in terms of 7 in the manner we did above for a single class. However
we show in Fig. 6 a scatter plot of (rr(pl.,pg).ffi'(pl,pg)) for 0 < py < p; <1 with
pi € {0..05..1...... 95.1}. Observe that when r = 7 is less than about .1. these points
are on or below the single class welfare curve W . so that for low revenue constraints the
extra class does not create welfare improvements. However, for higher revenue constraints
the extra class does allow small welfare j improvements. The welfare correspondmo to the
two-class profit maximizing prices is W(j;.py) = (-59..45) = .09, so the rightmost
plotted point approximates (.27..090) . where the .27 is the two-class maximum profit.
However the welfare corresponding to the single—class profit maximnizing price of .5 {profit
-25) 1s the larger number H(3) = ¥l(25) = 3/32 = .094. This means (for the coni
fort and utility functions of this section) that a public body which can restrict the profit

maximizing supplier to a single class should do so. if its aim is maximizing total welfare.
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4.5. Nash equilibrium in a duopoly with crowding effects

Up to now we have only considered the case where & single supplier controls first and
sccond class. However our model of consumer choice (section two) makes no assumptions
about who is deciding on the price and quantity vectors, and therefore applies equally well
to the case Of several competing suppliers. An illustrative example might be the case of
two nearby ski resorts with fixed lift capacity, where ‘comfort” is affected by crowding. To
conform with our previous terminology, we call the services provided by the two supplier
‘classes’. )

In this section we consider the situation where two separate profit maximizers control
the prices of first and second class, and we find the unique pure strategy Nash equilibrium
price pair pj < P71 . Each supplier i ¢ {1.2} sets the price p; and obtains the profit
7i(P1,p2) = pi ni(py »P2) . the revenue collected in class 7 with the (crowding) equilibrium
number 7; (of equation (31) ) of passengers.

In Figure 7 we plot supplier 1’s profit =, as a function of his choice of price D1 . for
various second class prices p, =.1,.2,.... 9. It can be seen that for p2 2 .4, supplier 1
would like to respond to a second class price p, with an equal or (if allowed) lower first
class price. However for p2 < .3, there is a unique optimal response p; = Ri(p>) which

1s higher than p,. This optimal response function Ry is given by the formnula

B(p. .
Ri(p2) = A(py) - C'(p(jzl)/:‘ + Cip)'/3, ¢ < p2 <~ .34, where
— {3+ 10r)
A(r) =
() ;
o T34 1000w (=10 — 61 — 422)
B =
(x) G + c
Diz) = —(3;{— 100)° n r (34 10z) (—10 — 6r — 477) R R A N R
216 24 4

Clx) = D) + /B(s)’ + D(z)2.

The range of the response funciion R; is approximately the p; interval [.32. .44]
and we can similarly compute supplier 2's optimal response to any price p; in that range,

(with C the same in terms of B and D) as



B ('1)1 )

- W + C(p )1/3, 32 <py <~ 44, where

Ry(pr) = A(py)

¢ —(16 — 24y)
Ay) = S Y
_ (16— 24y)* 316y + 542
Bly) = =+ 48
Doy - —(16 — 24y)”  y (24 4y +27) (16 - 24y) (=3 — 16y + 52)
W= - 32 * 293 '

In Figure 8 we graph the two response equations p; = Ri(py) and py = Ry(p;) for
the relevant domains. The unique intersection point (p¥ = .356. py = .307) cannot be
computed algebraically but can be approximated by iteration of the composed function
Ry o Ry. At this Nash equilibrium, the crowding equilibrium passenger numbers are
n1 = .303 in first class and 12 = .389 in second class. The total welfare function at this
duopoly Nash equilibrium (see previous section) is Wi{pl.p3) = .150. which compares very
favorably with that computed earlier for the profit maximizing monopolist of Wipr.po) =
09 for 2 classes or .094 for one class. Thus where feasible. competition is favorable for the

consumer.

5. Discrete equilibration dynamics

In the previous sections we have discussed the properties of a crowding equilibriuni. hur
we have not considered the question of how it may be achieved. Since the equilibrium is
unique (Theorem 1), it may of course be argued that consumers could do the necessary
(fixed point) calculations to correctly predict it. This seems an unlikely scenario. and in any
case 1t requires that consumers know the income distribution. To counter these problems.
we now mtroduce a very simple model of consumer behaviour which quickly leads to
discrete. dynamic approximation to the crowding equilibrium. In brief. we consider a two
class train which proceeds from station to station, dropping off and picking up customers.
Our basic behavioural assumption is that each customer decides which class to enter hased
only on the price-comfort pair for the two classes of the train as it enters the station.

We now decribe our model more formally. We assume the train has fixed prices pp.
and capacities s;, s, in the two classes. Since individuals with incomes less than pa will

not travel, we divide the remaining income interval [p2.1] into m equal subintervals. and
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consider only income levels j =1,. . 1 corresponding to incomes I(j) at the center of
these intervals. This is a discrete model for the uniform distribution. We assume that at
each station there are two consumers of each incorne level who will enter the train (in one
of the two classes) and ride for k stations. Thus the fofal population of the train is always
2mk . For pyrposes of comfort calculations, we therefore assume that each individual has
mass & = (1 —py)/2mk . Each individual on the train is characterized by an income level
J and an integer ¢ € {1,..., k} describing his remaining number of stations. Since there
are only two classes, the composition.of the train is fully determined by the matrix A .
where a;; € {0,1.2} is the number of individuals in first class of income level j who have
¢ stations remaining. Let 4 denote the set of all possible train compositions. i.e. the set
of all & x m matrices with entries in {0,1.2}.

The dynamics of the model will be expressed in terms of a transformation T : A4 — A
where a train entering a station with composition 4 will leave with composition T(A1).
The action of T with respect to individuals staying on the train is obvious: their number
of remaining stops decreases by 1. and their income level is unchanged. If we denote

A" =T(A). this can be expressed as

a;]« = ajyy,; fori<k-1.

Since the numbers of consumers in both classes of the incoming train. N1. N2 can
be computed from its composition matrix A . the onlookers at the station can compure
the two current comfort levels ¢i(4) and c2(A4). Each individual of income level J
waiting for the train, can calculate the two utilities wy(j) = U(ey(A).I(j) — 1) and
us(g) = Ulca(4). I(j)—p,) . He then enters the class yvielding the greater utility calculation.
Of course. he may regret this decision unmediately. if comfort levels change. In summars.

our behavioural rule for individuals entering the train (i.e. with / = k) is

20 afug(y) > ualy)

/
al ;=
kj .
0. otherwise,
It should be observed that the two individuals of each income level j entering at each
station always enter the same class. The ouly reason for the doubling of tvpes in our model
is for the initialization used below. where the initial composition of the train has these two

individuals in different classes.



A full analysis of the discrete dynamical system T : A — A . for arbitrary values of
the parameters (comfort functions, utility functions. capacities. prices. and the discrete
model parameters m and k) is beyond the scope of this paper. We content ourselves
with modelling the example given in section 3.1. Recall that example has a train with
first and segond class cars, each with capacity one. Comfort in each class 1s givenl by
l—n=1- Na, where n denotes the population fraction in that class. N the numnber

of individuals. Utility is given by Ufc.w) = cwt . We assume each individual travels

k= 10 stations and that there are. = 10 income levels between p, and 1. We
assume the prices are the profit maximizers determined in section 3.1, P1 =p; = .593 and
D2 = po = 447 .

In Table 1 we have run the dynamical system 7 for the above parameters. starting
with a balanced train A(0), which has the two individuals of each type split one each
between first and second class. The initial matrix A(0) has its bottom row ip the row
labeled t = 0, and similarly the matrix 4(¢) = T(A(0)) has its bottom row in row t.
(All matrices are 10 x 10. The time evolution of the train mayv be described as follows.
Since A(0) is the matrix of ones, it has population N1 = 100 = V2. Thus comfort on
this train is the same in first and second class, and so all income levels will prefer to enter
second class. This is indicated by the row ¢ = 1 consisting of all zeroes. The resulting
configuration for first class. A(1) has all ones except for a bottom row of zeroes. As this
pattern continues. the population in first class decreases. By time 5. the mecoming train
has N1 = 50 people in first class. and those on the platform with income levels 9 and
10 choose to enter the train (the 2°s in row ¢ = 6. columns J = 9.10). Thereafter. the
population in first class oscillates widely. but then settles down to a cvele of length 11
beginning with the matrix A(32) (outlined). We call this cyele B(0).B(1)..... B(10).
where B(q) = A(q + 32), g=20..... 10. In this cycle, all income levels below 8§ are never
present in first class. and all above § are always in first class. The interesting behaviour is

restricted to income level eight.

The cyelic behaviour can be explained as follows. When there are 1 — 44 people
in first class. the indifference income level between first and second class (as in Lemma 2)
can be calculated as I,y = .861. Since (7)< Iy < I(8) = .862 . it follows that income
levels 8. 9. and 10 will choose to enter the first class of an incoming train with 44 people i
first class. Similarly, since I(8) < Lig = 87 < 1(9) = .92 . only income levels 9 and 10 will

enter an incoming train with 46 in first class. Now consider the matrix B(0) = 4(32).
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It has six income &'s. who will get off two each at the next three stations. Its first class
population is 46. Thus no new 8's will enter, and since two leave, the population of B(1) is
44. Thus for the next two stations two 8’s leave and two new 8's enter. Then two 8s enter
and none leave, bringing the total back to 46, at which point no new 8's enter. resulting
eventually i1y B(0) again (at position t = 43 ). It is perhaps easier to see this patterﬁ n
Figure 9, where first class population and lowest income entering first class are graphed
together from the data of Table 1. The composition of first class at time t is completely

described by the ten data points on the lower curve, ending at t.

It is interesting to see how the limit cycle B(0),...,B(10) approximates the crowd-
ing equilibrium calculated for the continuous model of section 3.1, with n, = .127. In
our discrete model. using the same parameters, we obtain an 1l-cycle with an average
of 4545 = (3/11)44 + (8/11)46 individuals in first class. If we multiply this by the
individual’s mass. a = (1 — p2)/200 = .00276 , we find the average fraction of the pop-
ulation in first class to be 45.45 x .00276 — 126 . This is in fact not only close to the
continuous model. it is the closest possible in our model. To see this oberve that if e
increased to population 46 for 9/11 of the time, the average fraction of the population in
first class would go up to .131. which is a bigger error. (The length of a cycle must divide
E+1=11)

We have also checked how long it takes, starting from a random (equiprobable and
independent entries 0 or 2) initial train composition A, to reach the limit cycle matrix
B(0). The distribution of the stopping time ¢ for which T9(4) = B(0) is given in
the following table. for 50 randomizations of the initial train composition A(0). (The

initialization has a;; equiprobably 0 or 2.)



Table 2: Stopping time g for B(0) from random start .

q 29 30 31 32 42 43 44
fréquency 1 3 4 13 1 15 13

6. Conclusion

In this paper we analyzed the effects of crowding on demand for a quasi-public good

which is offered to consumers in ‘classes’ which are identical except for price (and perhaps

capacity). We modeled consumer preferences among the classes in terms of a common
physical notion of ‘comfort’ and a compound utility function which depends on comfort.
price, and a consumer’s ‘remaining income’. Consumers are identical except for their initial
‘Income’.

For this model we showed that however the supplier sets prices and capacities for
the classes, consumers choices amongst them are uniquely characterized by what we call a
“crowding equilibrium”. We also showed, by a dynamic model. that this equilibrium can be
approximated by consumers with mcomplete information about each other’s preferences.
who behave in a myopic fashion.

Given that this unique consumer equilibrium can be anticipated by the supplier. for
arbitrary prices and capacities, we considered the following two stage game (for specific
comfort and utility functions). In the first stage, the supplier sets prices and capacities
of the classes, acting as a Stackelberg leader. Then consumers forn the corresponding
crowding equilibrium. We analyzed this game and found explicit solutions for several
possible objectives of the supplier: profit maximization, maximizing consumption with
revenue constraint, maximizing total consumer welfare. In the case of separate suppliers
controlling the classes, we found the unique Nash equilibrium. Somnte qualitative conclusions
of our analysis are the following:

(1) Richer consumers (facing profit maximizer) may prefer a one class systermn: poorer ones
two classes.
(11) For low revenue constraints, a single class can achieve equal total welfare to two classes.

but not for higher constraints.

1i1) Total welfare is hicher if the two classes are controlled by competing suppliers.
g A I & supj
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